SlideShare a Scribd company logo
TABLE OF CONTENTS
TITLE PAGE
ABSTRACT
DECLARATION
ACKNOWLEDGEMENT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF APPENDICES
CHAPTER 1: INTRODUCTION
1.1 BACKGROUND
1.2 STATEMENT OF RESEARCH PROBLEM
1.3 PREVIOUS SIMILAR STUDIES
1.4 RESEARCH QUESTIONS
1.5 RESEARCH OBJECTIVES
1.6 SCOPE AND LIMITATIONS
1.7 IMPORTANCE OF RESEARCH FINDINGS
1.8 RESEARCH DESIGN
1.9 CHAPTER ORGANIZATIONS
1.10 RESEARCH PROGRAMME
1.11 REFERENCES
2
3
-
-
4
4
9
11
12
13
14
15
16 – 17
18
19
20 – 21
LIST OF TABLES
TITLE PAGE
Table 1: BIM usage in construction stages 6
Table 2: Research Design of Proposal 16 – 17
Table 3: Programme Chart for Semester 5 19
Table 4: Programme Chart for Semester 6 19
CHAPTER 1
INTRODUCTION
1.1 Background
Building Information Modelling (BIM) applications are by and large quickly
grasped by the development business to decrease cost, time, and improve quality and
also ecological manageability. Accordingly numerous development firms are picking
up involvement with these new instruments and forms and changing their desires
from college graduates. The same number of development programs endeavour to
convey educational modules and research that is important to the business; it is basic
to precisely comprehend the effect of BIM on the operations and routine with regards
to development organizations. These applications persistently introduce change
openings while reinforcing coordinated effort inside the development business.
Individuals, process and innovation are to a great extent talked about elements
influencing BIM selection over the worldwide development industry. The agitating
priority imagined by development experts with the beginning of BIM in Malaysia
has earned more research concentrate on these delicate issues to innovation reception.
Harris, Adi, Haron, Preece and Husain (2014) all recall back to where that the
Director of Public Works Department (PWD) officially introduced the use of BIM
within Malaysia in the recent year of 2009 the opening of Infrastructure &
Construction Asia’s Building Information Modeling and Sustainable Architecture
Conference. The Malaysian government all alone prosperity deals with to urge
development players to apply BIM to development ventures since it can conquer run
of the mill development venture issues, for example, postponement and conflicts in a
plan by various experts and development cost overwhelm. Autodesk devices have
been proposed by the administration as a BIM instrument stage. Latiffi, Mohd,
Kasim and Fathi (2013) express that it is critical for development players to know
about the significance of BIM application in development ventures in light of the fact
that BIM can be one of the conditions expected of an organization to fit the bill for
government and private tasks, like what is polished in some different nations.
BIM can be broken down into numerous applications; most which have been
deemed as outdated while a minority of them have claimed a more superior
entitlement. Examples of the more renowned applications include Autodesk, Revit
and AutoCAD, while the more trending ones include AtlesPro and Glodon. NBS
(2016) shows an updated statistical analysis of the cost reduction tendency generated
from the use of BIM, proving that through all these applications, all of them have
identical characteristics, which is to improve overall productivity and cost reductions.
In fact, this is actually the leading reason why most companies embed the use of
BIM softwares. A case study has shown that 63% believe BIM will help bring about
a 33% reduction in the initial cost of construction and whole life cost of built assets,
while 57% believe BIM will help bring about a 50% reduction in the time from
inception to completion for new-build and refurbished assets (NBS, 2016).
Table 1: BIM usage in construction stages (Source: Latiffi, Mohd, Kasim & Fathi,
2013, p. 3)
BIM can be connected to all development venture stages, which are a pre-
construction stage, construction stage and post-construction stage. Table 1
demonstrates the application of BIM in a construction venture for each stage,
comprising of pre-construction stage, construction stage and post-construction stage.
It can be seen that BIM application in a development venture helps in dealing with
the task all the more adequately. Latiffi, Mohd, Kasim and Fathi (2013) trust that the
capacity of BIM to cultivate joint effort between construction players encourages the
design process choice much more adequately. As cited by Latffi, Mohd, Kasim and
Fathi (2013), BIM likewise guarantees culmination of a quality construction project
since it helps with sorting out exercises and staging amid the planning phase of a
project.
Under perceptions made by Latffi, Mohd, Kasim and Fathi (2013), the
utilization of BIM in pre-construction stage is more evident than during the
construction and post-construction stages. This is due to the numerous exercises that
are done at this stage, for example, design plan, scheduling and estimating; these
activities generally require the utilization of BIM technology.
On 27 August 2007, PWD leading group of trustees was set up by the
government to pick a suitable BIM platform to ensure interoperability (JKR, 2013).
The driving inspiration by working up the leading group of trustees was to perceive
development progress of construction projects that included BIM use. Also, the
admonitory group masterminded a BIM standard manual documentation for PWD
generally speaking for construction players' reference. The board additionally gives
BIM preparing and consultative help to broaden bunches in using BIM apparatuses
(JKR, 2013). The fundamental projects in Malaysia that incorporated the execution
of BIM is the Multipurpose Hall of Universiti Tun Hussein Onn Malaysia (UTHM)
in the Southern region of Malaysia (CREAM, 2012). Other BIM projects in Malaysia
are National Cancer Institute of Malaysia, which is depended upon to be done on 31
August 2013, Educity Sports Complex in Nusajaya, Johor and Ancasa Hotel in
Pekan, Pahang.
As far as ease of use, BIM tools, for example, RevitArchitectural and Revit
Structural can outline the whole development forms through a propelled 4-
Dimensional (4D) reenactment and clash recognition. Evidence has demonstrated
that BIM has proven itself through successful projects that have been managed in
different nations, for example, the USA, the UK, Hong Kong and Australia (Fernaux
and Kivvits, 2008, pp.10 – 31). Cases of such successful projects are One Island East
in Hong Kong, Hilton Aquarium Atlanta, Georgia, The Freedom Tower, New York
and The Sydney Opera House, Australia.
Moreover, the unwavering quality of information trade between any architect
and structural engineer must be verified before continuing to build up a model that
can facilitate different procedures, for example, mechanical an electrical design,
assessments and development stage process. Based on the mentioned features, the
PWD recognized that BIM devices from Autodesk and Exactal Cost-X were relevant
to the business. The tools serve as an application stage for the Malaysian government.
This has been formally proclaimed by the PWD on 25 February 2010.
However, through it all, the industries have been focussing the adaptation of
BIM applications by their employees. Educational industries however, show the lack
of embedment of BIM application skills within students entirely. Redirecting the
focus of implementation of BIM applications to the educational industry can allow
students to have a better grasp at the usage of these applications. The need to handle
all these information as an employee under numerous commitments can be very
stressful, thus better for the students to adapt these applications at a much more
efficient rate.
1.2 Statement of ResearchProblem
The fundamental issue that most organizations look inside the business about
BIM is the adjustment level inside representatives. There is strong proof to
demonstrate that a creative and productive development industry adds to a stable
worldwide economy. Olatunji, Sher and Gu (2009) trusts that the development
business is famously traditionalist and ease back to adjust to change as outlined by
the way that the development business has stayed one of the slowest adopters of
inventive advancements in spite of solid confirmation of the connection between
interest in Information Technology (IT) and enhanced execution and is, all things
considered, inadequate in encouraging amicable workplaces. Olatunji, Sher and Gu
(2009) also quotes “one of the single largest determinants of project failure may be
that construction professionals expose themselves to conflicts of interest”. For
instance, a disciplined professional may choose to secure their expert intrigue as
opposed to acknowledging an obligation of care to ensure the business. Strikingly,
such disappointments have expanded the disintegration of train limits, to a great
extent because of an expanding interest for multi-gifted experts (Olatunji, Sher & Gu,
2009, p. 67).
Ruddock, L (1999) trusts that because of the way that development request is
firmly connected to add up to interest for speculation, the industry's future depends to
a great extent on the achievement of national governments in animating financial
development. Ruddock, L (1999) has developed the investigation including the
connection between the GDP levels for those nations and the venture levels in
divisions including Non-private development, Civil Engineering, New private
development as well as Renovation and modernisation from the year 1991 to 1998. It
was demonstrated that the more than an area has been contributed to, the higher the
GDP level is achieved. While Ruddock, L (1999) has trusted that there has been a
dread, in a few nations, that there may be a long haul drop in development request as
populace balances out and as the real framework and lodging needs are fulfilled. In
any case, new mechanical, business and social speculation and the updating of
natural gauges are creating expanding development needs. The main issue will be to
fulfil these necessities. (Ruddock, L, 1999)
There is no common intrigue shown between the workers and the
organizations all alone. This essentially depicts the representatives have built up a
shared dread among each other, and that dread is the over executions of these
products. They expect that people will wind up noticeably a far second rate later on
and have decided to not adjust to these applications, in the sore trust that BIM won't
assume control over these employments if there is no adjustment in any case.
Regardless of the expectation that the take-up of BIM in the AEC/FM will be
moderate yet unavoidable (Goldberg, 2005), there are some genuine hindrances
which should be tended to all together in order for this selection to happen. That is
the reason it is essential to enable understudies to get a handle on the enthusiasm for
new learning aptitudes within the area of implementation of BIM. In the end, if the
students can depict a typical enthusiasm for utilizing BIM, at that point they will be
comfortable in securing their employment as graduates later on. Therefore, this paper
aims to study the implementation of BIM and its impact on the prospects of
graduates.
1.3 Previous Similar Studies
A somewhat comparative study "Investigating the Barriers and Driving
Factors in Implementing Building Information Modeling (BIM) in the Malaysian
Construction Industry: A Preliminary Study" led by Zahrizan, Nasly, Ahmad,
Marshall-Pointing and Zuhairi (2013) with the goal to decide the potential
obstructions and driven elements of implementation of BIM by taking a gander at
three variations of the theme which are the respondents' profiles, conceivable
hindrances and the relative significance of the driving components in implementing
BIM, all in their individual request. The information was gathered by ordering the
distinctive sorts of factors, which for this situation considered 19 of those factors,
into two classifications delegated as External Push and Internal Push. Discoveries of
the investigation featured conceivable variables to the obstacle or the drive of the
application of BIM. Early investigation is proposed to dispose of conflicting
elements, for example, the ignorance of the presence of BIM or its capacity. Comfort
inspecting technique was utilized in spite of the fact that this approach has its
potential for inclination. However, in the wake of considering this is a preparatory
report, accommodation inspecting was viewed as suitable (Frey, Botan, Friedman
and Kreps, 1991). This examination itself demonstrates the conceivable components
influencing the implementation of BIM.
In addition to that, a comparative report "Preliminary building information
modelling adoption model in Malaysia: A strategic information technology
perspective" conducted by Enegbuma, Aliagha and Ali (2014) proposes that the
adoption of BIM has more significance to the interaction of the human viewpoint
with the regularly developing goals of technology and strategic IT. Enegbuma,
Aliagha and Ali (2014) believe that the principal factors that hinder a successful
appropriation rate included individuals, process and technology. The discoveries
were influenced by a few outer components, fundamentally alluding to the
environment where BIM is used. The paper's further discoveries likewise speak to
the intervening impact of the coordinated effort for new BIM entrants.
1.4 ResearchQuestions
This research is expected to ascertain the following topics:
i) What is the implementation of various types (or a certain type) of BIM
Applications within several schools and its impact on the educational
industry?
ii) Why has BIM not been fully utilized and implemented within the students
in schools?
iii) What are the effects of implementing BIM within the students’ daily
learnings?
iv) What is the required skill cap that students must achieve to use BIM
efficiently and how will this affect their adaptation to BIM?
1.5 ResearchObjectives
In particular, this study aims to achieve the following specific objectives:
i) To study the implementation of various types of BIM Applications and
the primary BIM software, Glodon within several schools and its impact
on the educational industry.
ii) To determine and analyse the effects of implementing BIM within the
students’ daily learnings.
iii) To identify the students’ skill cap levels in the application of BIM and
how do they intend to use these applications in the future
iv) To determine why BIM has not been fully utilized within schools.
1.6 Scope and Limitations
The study is executed under the specific parameter as described in the following:
i) Respondents to the questionnaire survey shall be limited to the views expressed
through any experience in the usage of BIM that they have gained within their years
of studying in college. Graduates that have been under employment over 1 year shall
be exempted. To fully show their adaptation skills as employees despite knowledge
of BIM prior to graduating and how have they adapted.
ii) These college or university institutions shall be registered within a range of area
as classified within the compounds of Kuala Lumpur, Malaysia. The research shall
include undergraduates, post graduates and graduates from the education
backgrounds that will potentially lead to future prospects within the construction
industry.
iii) Limitations envisaged are the difficulties to generate effective responses and low
response rate within the few months period of questionnaires survey distribution. To
enhance the efficiency and reliability of the study, direct interview methodology is
expected to be performed, targeted the students who have been in the education
industry within their line of choice for more than one year. Most of the
undergraduates who have lesser than one year of college experience are considered
freshmen and will probably not have the skill cap to adapt to BIM.
1.7 Importance of ResearchFindings
It is denoted that the world will eventually encounter the need to implement
BIM into the construction process which permits growth in effectiveness in each part
of the construction industry. The implementation of BIM inside the prime era of
undergraduates, postgraduates and graduates, preceding the employment phase can
help build up the graduates' capabilities of using BIM effectively. Therefore, there is
a need to consider the conceivable advantages from the implementation of BIM in
the education industry.
1.8 ResearchDesign
Table 2: Research Design of Proposal
OBJECTIVE TYPES OF DATA SOURCES OF
DATA
METHOD OF
COLLECTION
i) To identify the
implementation of
various types (or a
certain type) of BIM
Applications within
several schools and
its impact on the
educational industry.
- Types of BIM
Softwares
implemented.
- Different schools
involved in using
BIM.
- Articles
- Books
- Conference papers
- Databases
- Dissertations
- Journals
- Online Resources
- Reports
Primary Data
- Questionnaires
- Pilot Interviews
Secondary Data
- Document analysis
- Reading
ii) To determine and
analyse the effects of
implementing BIM
within the students’
daily learnings.
- Possible negative
or positive effects
upon
implementation of
BIM on students.
- Perspective rate of
adoption students
and lecturers
involved.
- Articles
- Books
- Conference papers
- Databases
- Dissertations
- Journals
- Online Resources
- Reports
Primary Data
- Questionnaires
- Pilot Interviews
Secondary Data
- Document analysis
- Reading
1.8 ResearchDesign(Cont’d)
OBJECTIVE TYPES OF DATA SOURCES OF DATA METHOD OF
COLLECTION
iii) To identify the
students’ skill cap
levels in the
application of BIM
and how do they
intend to use these
applications in the
future.
- Expected level
information
needed to excel in
BIM usage
compared to the
average level.
- Different types of
BIM applications
and which serves
to be the most
user-friendly.
- Articles
- Books
- Conference papers
- Databases
- Dissertations
- Journals
- Online Resources
- Reports
Primary Data
- Questionnaires
- Pilot Interviews
Secondary Data
- Document analysis
- Reading
iv) To determine
why BIM has not
been fully utilized
within schools.
- Possible factors to
why BIM is not
fully implemented
for the sake of
students
development.
- New and outdated
software that play
their roles of
factor.
- Articles
- Books
- Conference papers
- Databases
- Dissertations
- Journals
- Online Resources
- Reports
Primary Data
- Questionnaires
- Pilot Interviews
Secondary Data
- Document analysis
- Reading
1.9 Chapter Organizations
This thesis is comprising of five (5) chapters and organized in the following order:
Chapter 1 presents an introduction to the research, which highlights the background,
need of study, statement of research problems, research questions, research
objectives, scope and limitation, research design, structure of thesis and research
program.
Chapter 2 is dedicated to the literature reviews associated to the research, which
apply the previous relevant research findings as support and basis of an academic
context of the study. The chapter provided insights into the implementation of
container construction with the criteria, constrains and advantages underpinning in
this construction method.
Chapter 3 shows the methodological aspects of the study, which outline selected
research design, data resources, procedures utilized in the study, data gathering
method employed and lastly analytical techniques of data collection.
Chapter 4 discussed the analysis of data collected from the questionnaire. Based on
the formulated research objectives, it reports the results of the survey in relation to
congruence with or divergence from related literature. The analysed data
accompanied with charts and tables to indicate the level of satisfactory.
Chapter 5 noted as the last chapter which summarizes the research findings with a
concrete conclusion with the recommendations for further studies.
1.10 ResearchProgramme
Table 3: Programme Chart for Semester 5
1 2 3 4 5 6 7 8 S/B 9 10 11 12 13 14
Identification of Area
of Interest
Approval of Research
Title
Identification of
Research Objective
Submission of
Research Proposal
Submission of
Literature Review
Week
Activity
Table 4: Programme Chart for Semester 6
1 2 3 4 5 6 7 8 S/B 9 10 11 12 13 14
Finalization of
Theoritical Framework
Submission of
Research Methodology
Preparation of
Questionnaire
Distribution of
Questionnaire
Data Collection
and Analysis
Conclusion and
Recommendation
Final Submission of
Dissertation
Week
Activity
Completed OutstandingIn Progress
CHAPTER 2
LITERATURE REVIEW
2.1 Introduction
This chapter aims to provide the review of literature that has been previously carried
out by other scholars. It will start off by providing an overview of the Graduate Quantity
Surveyor (QS), the Quantity Surveying Education in Malaysia and its recent implementation
of BIM software within the education industry. In this chapter, the relevant objectives, as
stated in the previous chapter are the factors that either hinder or catalyse the growth of the
implementation of BIM Software within colleges or educational institutions. Finally yet
importantly, this chapter shall provide remedies to address the lack of awareness among
students about implementing BIM professionalism before being exposed to the working
environment. Therefore, based on the previous studies proffered by past researchers, it is
possible to discover related findings, which shall serve as theories for the subsequent chapters.
2.2 Definition of BIM
As per the WSP Online (2013), it is the process of designing a building
collaboratively by utilizing one coherent system of computer models rather than as a set of
drawings. BIM is converged between technology and an arrangement of work forms that
enable the entities to synergize their workforce, resulting in the better effectiveness of the
work process. There are several types of BIM software that coincides with the improvement
of the construction and the education industry, such as the most trending one, Glodon, Cost X,
Atlespro and so forth. BIM all alone can possess entirely different definitions yet there exists
a widespread acceptance that it can't solely exist without the incorporation of either
technology or the set of work processes.
Implementation of BIM within Malaysia was officially presented by the Director of
Public Works Department (PWD) in the year 2007. The Malaysian government on its own
well-being deals with to encourage construction players to apply BIM to construction projects
since it can overcome typical construction project issues, for example, deferral and conflicts
in design by different professionals and construction cost overrun.
In summary, BIM is an enormous platform on its own that enables users to acquire a
better grasp of the insights and details about the project that they are attending to. At the
technical core of BIM is the software that enables proficient 3D modelling and information
management. Extensive utilization of the software eventually leads to a complete
comprehension of the technical core. It additionally goes about as a sociotechnical framework
where it is delegated a blend of both man-made technology and the social and institutional
results of its implementation in the society. BIM is a 'system' because it could be depicted as
a unified element comprising of many interacting parts, some physical, others not. It is
'sociotechnical' on the grounds that it has social segments, complementing the technical core.
2.3 Implementation of BIM in Malaysia
In the year 2007, the Director of the Public Works Department (PWD) introduced the
implementation of BIM into Malaysia. Starting from there, BIM has seen an ascent in its use
within the country. Autodesk tools have been proposed by the government as a principle BIM
tool platform. It is vital for construction players to know about the significance of BIM
application in construction projects. This generally implies that the application of BIM is
being focussed towards the employment industry as opposed to its development under the
education industry.
In this era of modernisation, it has turned into a need for individuals to work
productively where there are major time limitations and delays, particularly within the
construction industry where these circumstances are quite often unavoidable. The
implementation of BIM has prompted numerous breakthroughs of project possibilities. As
shown under the National BIM Report (2016), through the implementation of BIM, 63%
believe that BIM will help with a 33% diminishment in the underlying expense of
construction and whole life cost of built assets, demonstrating that it is a cost-beneficial entity
on its own.
Adam Matthews (2016) states that there are three patterns that focus public sector
minds on investing resources into better approaches for working. Firstly, governments and
public agencies across the world are adjusting to the new norm of inclined pressure on public
spending. This is being catalyzed by full-scale issues such as cost bearing of an ageing
populace, rising social welfare and national debt concerns. These issues are far from unique
as governments around the globe are also confronting similar extreme budgetary imperatives.
However, despite fiscal challenges, governments must build and fund national infrastructure
for the future. Putting framework development on hold devastates future prospects of a region
or a country as inadequate infrastructure limits prospects for growth or inward investment.
Thirdly, to aggravate the general public challenge, expanding regulation and policy
drivers to decrease utilization of natural resources, including non-renewable energy sources,
are creating an intense requirement for public procurers to discover better approaches to
address this three-sided problem; spend carefully, build more, and build to a higher, more
feasible quality standard. The construction sector holds the guarantee of a critical
commitment to these three difficulties. Through these trends, it solidifies the undeniable
certainty that without a proficient option in construction planning, there will be no space for
country development in construction.
Henceforth, this focusses on the employees' ability to complete these ideas by
adjusting to the recently implemented idea of BIM inside Malaysia on its own. The idea
persists as a technique to crystallize the concept of productive development in the
construction sector yet paying little heed to any sort of effort to implement its adaptability,
Olatunji, Sher and Gu (2009) trust that the industry has remained one of the slowest adopters
of innovative technologies in spite of solid evidence of the relationship between investment
in Information Technology (IT) and improved performance.
On a relative note, there is no significant common interest shown between the
employees and the companies on their own. This basically indicates that the employees have
built up a shared fear among each other, and that fear is the over implementation of these
software. They fear that humans will become far inferior in the future and have decided to not
adjust to these applications, in the sore trust that BIM will not assume control over these
employments if there is no adjustment in any case. In spite of the expectation that the take-up
of BIM in the AEC/FM will be moderately slow but inevitable (Goldberg, 2005), there are
some genuine hindrances which should be tended to all together for this adoption to occur.
This begs the question for another underlying clause which may improve this
adaptability, which is to implement it where reception of new information is at its peak; to
implement the full functional use of BIM within students or fresh graduates before or at the
early stages of their working environment. That is why it is important to allow students to
grasp the interest in new learning skills within the area of implementation of BIM. In the end,
if the students are able to portray a common interest in using BIM, then they will be
comfortable in securing jobs as graduates in the future.
The conceivable effects from the implementation of BIM alongside the arrangement
of full comprehension to the students and the lecturers can be satisfying. From the
implementation of BIM in such a case, students will have the capacity to comprehend the
concept of BIM much better with their perk in cutting-edge technology. Their capabilities of
understanding the stage are not hindered by their personal variables, but instead the external
factors, such as lecturers possess insufficient teaching materials for BIM or the lack of
training periods given to the students of this generation. Their ability can serve a productive
protocol when they are in the working stage, where these expectations are already addressed
without the need of excessive training.
Macdonald and Mills (2011) hypothesize the need to establish BIM education
framework to support the adoption of collaborative design and BIM education by
Architecture, Engineering and Construction (AEC) schools. Furthermore, Macdonald (2012)
built up the Illustration, Manipulation, Application and Collaboration (IMAC) framework to
help lecturers benchmark their curriculum to enhance collaborative design education among
students of the architecture, engineering and construction (AEC) disciplines. The framework
synthesized Bloom et al. (1956) learning taxonomy which classifies learning into cognitive,
affective and psychomotor and Krathwohl et al. (1964) which stretched out the classification
to incorporate changes in interest, attitude and qualities. The framework aims to redevelop
current courses to accommodate BIM competencies for different disciplines.
In Malaysia, there are currently five (5) public universities and 13 private universities
offering the Bachelor Degree of Quantity Surveying program. The following are as shown in
Table 2.1.
Table 2.1: List of Public Universities and Private Universities in Malaysia offering
Bachelor Degree of Quantity Surveying program (Source: BOARD of QUANTITY
SURVEYORS MALAYSIA website)
Category Universities
Public Universities Universiti Sains Malaysia (USM)
University of Malaya (UM)
Univeristi Teknologi MARA (UiTM)
Universiti Teknologi Malaysia (UTM)
International Islamic University of Malaysia (IIUM)
Private Universities Taylor’s University
INTI International University and Colleges
Heriot-Watt University Malaysia
Linton University College
Infrastructure University Kuala Lumpur (IUKL)
University of Reading Malaysia
SEGi University
University Tunku Abdul Rahman (UTAR)
Tunku Abdul Rahman University College
Twintech International University College of Technology
Lagenda Education Group
University College of Technology Sarawak (UCTS)
Imperia Institute of Technology
2.4 Ability to Adapt to New Information within Undergraduates, Post Graduates
and Graduates
Perspectives of knowledge - that is, regardless of whether students see their
capabilities as settled or pliant - influence student performance in the classroom (Dweck,
1986). Any student, who considers knowledge to be fixed, is normally demoralized by
mistakes and experience barriers while learning. A view some hold is that sciences are saved
for the savvy students (Barmby and Defty, 2006); science is an ability that most typical
individuals are unequipped for accomplishing normally. This is illustrative of a settled
mentality, which can keep individuals down. Then again, understudies, who consider
knowledge to be moldable, gain from slip-ups and consider difficulties to be snags to prevail.
All subjects, regardless of the trouble, are an arrangement of aptitudes that should be
refined. Individuals need to expel themselves from the settled outlook that getting the hang of
anything troublesome is a capacity they either have or don't have and start to understand that
with exertion they can refine aptitudes and build up that insight. Thus, students ought to
receive a development mentality of refining aptitudes and building up their insight. Learning
is never completed; difficulties and disappointments need to in the end be grasped. This
investigation was a path for understudies to build up a development mentality, a view that has
been appealed to enhance scholastic execution from a settled view (Blackwell et al., 2007;
Mangels et al., 2006; Birgit, 2001). A development mentality individual trusts that his or her
insight can change, either decidedly or contrarily, contingent upon the exertion and training
(Blazer, 2011).
Students are not all the same, which implies their mentalities, are not all the same.
Jones, Byrd, and Lusk (2009) examined secondary school students' convictions about insight
and found that "students have a scope of convictions about the meaning of knowledge" (p. 3).
Dweck (1999) noticed that students with settled attitudes have a tendency to stay away from
challenges since they need to do well.
Thusly, fixed mindset students avoid activities where they may fail, basically when
completely implementing BIM and its full functions as a sort of new data for students to deal
with. These difficulties that the fixed mindset students stay away from are external forces that
get in students' way when demonstrating what they know. Individuals with fixed mindsets
don't process why they should attempt since they normally don't have the capacity, because it
doesn't propel them or roll out a positive improvement for them, so it is viewed as a futile
activity.
Miele and Molden (2010) found a "propensity for [fixed mindset] theorist to become
less confident as they put more exertion into the assignment" (p. 553). For instance, students
with a fixed mindset more often than not either disregard feedback or resent it to their
knowledge. Since they believe knowledge can't be enhanced, the feedback of insight is seen
as a feedback of the students. This apparent feedback of insight isolates students and
disheartens them from having a go at anything new, driving them to evade more difficulties
after some time. Likewise, other students' success influences the settled personality to make
these students look terrible in their psyche. Other students' prosperity is viewed as either luck,
objectionable actions, or as tarnish to their own success as it achieves resentful things
towards the students. Since the students with fixed mindsets tend to not challenge themselves
and would prefer not to attempt, they cannot achieve their maximum potential and it will end
up more challenging for them to improve because everything they do or try to learn is who
they are.
Despite what might be expected, growth mindsets are met with changed qualities
(Dweck, 1999). These growth mindset students believe that intelligence can be developed
because the brain is a muscle that can be trained over time. This tends to lead these students
towards a desire to move forward. Since they know and feel that they can improve, they grasp
challenges. This new grasp happens in light of the fact that growth mindset students know
they can turn out better on the other side, which raises the confidence of the students. From
this, the ability for students to adjust to BIM and its entire functions may seem practically
unimaginable, yet eventually, students will have the capacity to get a grasp its concept, given
enough endorsement and practice along the process.
2.5 Quantity Surveying Competency
Competency is characterized as a widely inclusive desire of a professional in a
workplace where the application of skills and knowledge to handle new situations and job
scope is required (Golob, 2002; Mohd Derus et al., 2009). These skills over the long haul
prompt to an upper hand in competitiveness (Deist and Winterton, 2005). Stewart (2012)
suggests that the QS profession aligns with present BIM drive, have more research in
quantity take-off IT con Vol. 21 (2016), Ali et al., pg. 143 with BIM and create a new
standard, whilst keeping in mind the compatibility of the software.
Standard measurement difference, for example, Ireland Agreed Rules of Measurement
(ARM), UK New Rules of Measurement (NRM), Malaysian Standard Method of
Measurement of Building Works (SMM) and others, create clashing software needs which
require modifications for each market (Olatunji et al., 2010; Stewart, 2012; Yusuf et al.,
2013). The UK New Rules of Measurement (NRM) is as of late utilized for different phases
of development to be specific:
 NRM 1: Order of cost estimating and cost planning for capital building works.
It caters for the quantification of building works used in preparation of
cost estimates and cost plans.
 NRM 2: Detailed measurement for building works. It guides the detailed
measurement and description of building works used during a tender
pricing
 NRM 3: Order of cost estimating and cost planning for building
maintenance works. This guides quantification and description of
maintenance works used in preparing initial order of cost estimates
during the preparation stages, cost plans during the design
development and preconstruction stages, and detailed, asset-specific
cost plans during the pre-construction phases.
This new procedure of measurement gives a steady approach to deal with cost
management and enhances comprehension of measurement rules by various collaborating
professionals (Lee et al., 2011; RICS, 2012). Wu et al., (2014) opined that for measurement
utilizing BIM, quantities should be exported to link BIM estimating with design tools and
utilize specific BIM measurement tools. Be that as it may, issues of substandard quality of
BIM models, inconsistent level of design information, data exchange and conflicting formats
utilized for estimating still exists.
Current research in Malaysia prescribes the utilization of SMM for preparing BoQ for
M&E services rather than schedule of costs to reduce the risk of value vulnerability and
enhanced client value. Consequently, estimation utilizing BIM requires the filtration of BIM
information to fit in with SMM (Yusuf et al., 2013). Regarding soft skills demanded by
employers of quantity surveyors, Shafie et al. (2014) found that having high levels of critical
thinking, problem-solving and decision-making abilities ranked highest in priority for
employer skill demand. These soft skills are in accordance with that of the Ministry of Higher
Education (MOHE) 2006 (see below):
 Communication skills (CS)
 Critical thinking and problem-solving skills (CTPS)
 Teamwork skills (TS)
 Lifelong learning and information management skills (LL)
 Entrepreneurship skills (ES)
 Ethics and professional moral (EM) and;
 Leadership skills (LS)
Mohd-Derus et al. (2009) posited that organizational environment, job demand, and
individual competencies define competency of a QS.
2.5.1 BIM Competencies for Quantity Surveying Students
Stanley and Thurnell (2014) suggest that incompetency and lack of protocols relevant
to foster effective collaboration within the BIM team forms a limiting factor to BIM usage.
Gardner et al. (2014) found similar barriers in BIM competency among graduates in South
Australia where its trait is a close parallel to the competency highlighted by Royal Institution
of Chartered Surveyors (RICS) BIM manager certification which measures BIM initiation,
processes and collaboration and integration including optional competencies of both
commercial and technical abilities (White, 2013). Lewis et al. (2015) further found that BIM
training improve students’ confidence and perception of utilizing BIM in energy simulation
of buildings for improving sustainable designs and construction related courses. Nath et al.
(2015) found that among Singapore construction precasters, workflow comparison of current
and future BIM utilization revealed an increase in overall productivity improvement of
approximately 36% for processing time and 38% for total time.
Accordingly, HDB seeks to leverage the BIM capabilities to improve the construction
productivity through increased support for standardization of precast elements which
eventually leads to error-free generation of shop drawings. Wood et al. (2014) developed a
framework to address the need to comprehend the level of development (LOD) of
construction professionals in the construction industry. The framework extracts materials
information from BIM and subsequently provided an algorithm to fuzzy match BIM objects
with cost data for quantity measurements. Morlhon et al. (2014) developed a critical success
factor model which integrates capability maturity model (CMM) and critical success factors
(CSFs) focusing on BIM impact on project management. The CSFs include business process
re-engineering, standardization, stakeholders influence, education to information
management, technical education and systems selection process.
The implementation of BIM within Quantity Surveying (QS) students allows for
development of certain competencies that may serve as a fulfilment expectation under the
employers’ line of benchmarks. A summary of such competencies for Quantity Surveying
students utilizing BIM is shown in Table 4.
Table 2.2: Summary of BIM Competencies for Quantity Surveying Students
Competency Skill Set Author
Quantity Take-off Ability to utilize BIM for
quantity take-off
Monteiro and Martins
(2013)
Energy Modelling (EM) Building element based
energy simulation
Lewis et al. (2015)
Precast Productivity Shop drawing development
and quantity take off
Nath et al. (2015)
Level of Development
(LOD)
Structural design quantity
take-off
Wood et al. (2014)
Project Management Project monitoring Morlhon et al. (2014)
Bill of Quantity Developing BoQ for M&E
services
Yusuf et al., 2013
Collaboration Adapting to collaborative
work environments
Gardner et al. (2014)
2.6 Factors Affecting the Implementation of BIM in general
There are many benefits that BIM can offer to the Malaysian construction industry,
especially in enhancing the communication between different parties in construction projects.
BIM is able to streamline and aids clear communication between client, consultant and
contractor in construction projects by providing a single respiratory system for exchanging
digital information in one or more agreed format. Khanzode & Fisher (2000) and Azhar et al.
(2008) believe that, this approach can reduce errors associated with inconsistent and
uncoordinated project documents because BIM is capable of carrying information which are
related to the building either its physical or functional characteristics. Despite the numerous
benefits from the utilisation of BIM, factors impeded the pace in implementing BIM in
construction industry have been identified.
On top of cost, compatibility and complexity of the technology are also the factors
that influence the adoption of new technology. Cost is a more subjective issue because it
requires external factors such as regulations imposed by the government or clients. Lederer,
Maupin, Sena and Zhuang (2000) believes that to increase the pace of adoption of new IT,
higher compatibility and more user-friendly technology are the characteristics that the
technology must have because, it is easy for people to accept and use new technology if they
are familiar with it.
The factors that affect the implementation of BIM shall be further discussed in
subcategories in relation with similar studies by other researchers.
2.6.1 Technical and Social Interference
Griffith et al. (1999), O’Brien (2000) and Whyte & Bouchlaghem (2002) believe that,
the failure to implement new information technology (IT) in construction industry happens
because of technical issues rather than social issues such as lack of technical expertise, the
complexity of the system and lack of support system. According to Griffith, Raymond and
Aiman-Smith, the relative invisibility of the implementation of process for new technologies
is a major problem which leads to “The Invisibility Problem” theory. Implementation
includes any process undertaken to institutionalize a new technology as a stable part of an
organisation and follows the adoption decision and is bounded by institutionalization, in
which technology becomes a part of the status quo (Griffith, Raymond & Aiman Smith, 1999,
p 30)
The invisibility of implementation results in the tendency for decision makers to
acquire major new technologies, to overestimate the value of a new technology and the
likelihood of successful implementation. Griffith, Raymond and Aiman-Smith (1999) quote
that from a superficial perspective, the estimated value of a successful implemented
technology may seem easy to establish, and it is almost always not the case. Caterpillar, for
example, took more than two years to get its first larger, flexible manufacturing system to
effectively function and several more years to actually achieve the full realization of the
system’s actual capabilities.
M. Lynne Markus and Robert Benjamin make an even stronger statement based on
their experiences with information technology specialists and consultants involved in
information. Markus and Benjamin note that managers often possess a certain theory
suggested as, the “Magic-Bullet Theory”, when it comes to information technology-enabled
transformation. They have built a gun and the magic-bullet of information associated to this
gun, when fired, cannot do anything but hit its mark. Since the bullet is programmed to
always hit its mark, there is almost no reason to worry about who is going to aim this gun and
fire it.
However, Ruikar et al. and Rojas & Locsin have a more contradicting view where
they believe that people actually play a part as the major barrier to implementing new IT in
the construction industry. Martinko et al. added that, the failure in changing people behaviour
to handle new tools is the most prominent factor of why people are reluctant to adopt new
technology.
A survey done by Khemlani revealed that the primary obstacles in implementing BIM
is the resistance from employees who are reluctant to learn something new and challenges
because of their beliefs and complacency with current status. Lack of initiative and training
(Bernstein and Pittman 2004), the fragmented nature of AEC industry (Johnson and Laepple
2003), varied market readiness across geographies, and reluctance to change existing work
practice (Johnson and Laepple 2003) have been discussed as some of the reasons for slow
adoption of BIM. In an industry where most projects are handled in multi-organizational
teams the lack of clarity on responsibilities, roles and benefits in using the BIM approach is
an important inhibiting factor (Holzer 2007).
Some of the surveys conducted recently (Khemlani 2007b, Howard and Bjork 2008)
suggest that collaboration is still based on exchange of 2D drawings, even though individual
disciplines are working in a 3D environment and the demand for object libraries is growing.
These surveys reveal that a tool preference varies with film size, and there is a greater
demand for technologies supporting distributed collaborative works across all firm sizes.
However, there is a lack of confidence in standards such as IFC (Industry Foundation Class).
This shows that regardless of the existence of the latest technology, users are still incapable
of adopting these technologies through the belief that there is no existential change in human
behaviour that may alter their adoption capabilities.
2.6.2 Organisational Interference
Stephenson, P. & Blaza, S. and Love et al. believe that the factors of the failure in
implementing new technology originates from organisational problems. Most organisations
are reluctant to change their business process because they are afraid that by changing their
business process, it involves expenses and jeopardises their established process because they
cannot accept the underlying ratio uncertainty of loss. Most employees in these organisations
develop the intuition that technology will take over their roles and feel anxiety towards
changes especially when new technology is involved and this happens because not many
managers understand how to manage technological change. As Taylor, J.E., & Levitt, R.
(2007) understand, many organisations believe that implementing BIM will affect their
established business processes because implementing new technology will reshape their
business processes and during this process, productivity will suffer because the transition
process from fragmented to collaborative in nature will put the project outcomes and clients’
expectations at risk.
Love, P.E.D., Li, H. Cheng, E.W.L and Tse, R.Y.C (2001) has concluded from a list
interviews that the organizational barriers that were identified included the following:
• indirect or hidden costs;
• inability to quantify (financially) the impact of e-commerce;
• inappropriate investment appraisal techniques;
• myopic strategic planning;
• lack of employee knowledge;
• lack of an IT infrastructure;
• a reluctance to form collaborative partnerships; and
• a general reluctance to change the way business was undertaken.
Table 2.3: Details of Firms interviewed (Source: Love, P.E.D., Li, H. Cheng, E.W.L
and Tse, R.Y.C, 2001)
It was generally perceived that firms did not want to change as they were not able to
foresee the benefits that e-commerce offered. In fact, none of the 20 businesses interviewed
had begun to embrace business-to-business e-commerce, despite the forthcoming introduction
of electronic tendering for Government projects and the goods and services Tax (GST).
Seventeen firms considered e-commerce to be simply an interactive web page. In fact, when
probed about the idea of sharing information and knowledge using the internet there was
found to be a general consensus that this would jeopardize their competitive advantage.
Figure 2.1: Barriers to adopting e-commerce in construction (Source: Love, P.E.D., Li, H.
Cheng, E.W.L and Tse, R.Y.C, 2001)
From the survey interviews carried out, only one interviewee stated that they would
like to transform their business processes by developing appropriate internal structures,
systems and protocols to take advantage of web-based technologies. While the interviewee
recognized the urgency to employ such technologies, the degree of change that was required
to transform their business was considered to be too dramatic, at least in the short and
medium terms. Essentially, this business like all others was heavily reliant on cash flow and
thus, could not invest in technologies that would not bring about immediate benefits.
In a different perspective, education industries have a similar behaviour to the
construction industry. The employees represent the lecturers and the decision makers would
represent the higher order in the programme of the school to decide whether it is worth
investing into these BIM software. There exist these similar barriers that most educational
institutions may encounter, thus allowing only a small fraction of the fulfilment for study of
BIM among their students.
2.6.3 Lack of Knowledge and Skill
Knowledge is practically a component that every living being needs to process in
order to make progress in any activity they are committed in. Stewart and Mohamed (2003)
explain that effective IT implementation in construction is essential to improve productivity.
A study by Love et al. (1996) identified problems and barriers to the implementation of IT.
The most significant problems were the lack of system knowledge, with 68% of contractors
interviewed perceiving this as a problem area, and lack of training associated with the
implementation, with 62% identifying this as a problem.
The lack of knowledge and ignorance of the potential benefits of IT applications was
found to extend to contractor’s existing systems, with more than 50% of contractors unaware
of the capabilities of their existing highly specialised software. Often, tasks that could be
handled by existing systems were externally contracted, as the organization was unaware that
their system was capable of the task. The lack of knowledge was also identified as one of the
main reasons why management had little interest in a commitment to the Internet, e-mail and
advanced applications such as knowledge-based expert systems and simulation.
Laage-Hellman and Gadde (1996) examined the barriers to the implementation of
Electronic Data Interchange (EDI) in the Swedish construction industry. They undertook a
case study with Swedish materials suppliers and discovered four (4) barriers to effective
implementation of EDI. Two the more relevant barriers included:
i) Technical barriers at the industry level
- Small and medium sized contractors do not have suitable
applications to allow standardised transmission solutions to
become commonplace. On the supplier side, most companies lack
suitable order, inventory and invoicing systems.
ii) Technical barriers at the company level
- The lack of IT competence, especially among the personnel on
construction sites, has turned out to be an important problem, which slows
down the spread of EDI within the company.
Lack of knowledge about BIM could contribute to the resistance in implementing
BIM because in the construction industry it involves various parties. Without significant
knowledge about BIM, each party is reluctant to use BIM because they believe that new
technology such as BIM technology is difficult to learn and could increase the operating cost.
The lack of knowledge about BIM in terms of benefit to the operation and
maintenance phase in the project’s life cycle has a significant role on why clients, consultants,
contractors and others parties that are involved in construction projects are reluctant to use
BIM in their construction projects. In addition, lack of measurable data to measure the
benefits and return from the investments in information technologies also plays a major role
to their reluctance.
In relation to the education industry, lecturers or teaching subordinates need to
acquire this knowledge in order to teach the use of BIM to students. Students on the other
hand, with the lack of proper training and guidance, can prove a severe hold back on their
ability to fully understand BIM. Due to the existence of a probability of belittling knowledge
about BIM, most schools or institutions see the solution of implementation as a hassle instead.
Table 2.4 illustrates the relative importance indices and the rank for factors that hinder
the implementation of BIM in the Malaysian construction industry by all respondents. From
Table 2.4, the top five most important factors that hinder the implementation of BIM are (1)
Lack of knowledge about BIM (RII = 0.950), (2) Clients do not request/enforce BIM (RII =
0.950), (3) Reluctance from clients, contractors or consultants to implement BIM (RII =
0.875), (4) BIM is not required by other team members (RII = 0.838) and (5) Lack of data of
Return on Investment of BIM (RII = 0.833).
Table 2.4: Rank for Factors of Barriers (Source: Zahrizan, Nasly, Ahmad, Marshall-Pointing & Zuhairi, 2013)
2.6.4
Driving Factors in Implementing Building Information Modelling (BIM)
Table 2.5 shows a summary of the relative importance indices and the rank of the
variables that could increase the pace of implementing BIM identified by the respondents.
Table 2.5 also shows the relative importance indices of the categories that could increase the
pace of implementing BIM. From here, it can be found that the top ten most important factors
that could increase the pace of implementing BIM are:
1) Support and enforcement in the implementation of BIM by the government (RII =
0.950)
2) BIM training program (RII = 0.950)
3) Leadership of senior management (RII = 0.925)
4) Provide a grant scheme for training BIM (RII = 0.905)
5) Promotion and awareness road show about BIM (RII = 0.892)
6) Collaboration with universities (Research collaboration and curriculum design for
students) (RII = 0.879)
7) Incentive given by client such as tax reduction (RII = 0.842)
8) Outsourcing BIM specialist (RII = 0.842)
9) Technical support (RII = 0.800)
10) Clients demand the application of BIM in their project (RII = 0.792)
According to the study of the table, Zahrizan, Nasly, Ahmad, Marshall-Pointing &
Zuhairi (2013) conclude that, from the different categories of the factors that could increase
the pace of implementation of BIM in the Malaysian construction industry, the respondents
generally agreed that External Push (RII = 0.805) has a more significant role to speed up the
pace of implementation of BIM compared to the Internal Push (RII = 0.755). The most
important factors that could be the driving factors in implementing BIM in the Malaysian
construction industry are:
1) Support and enforcement in the implementation of BIM by the
Government and;
2) BIM training program where both scored RII = 0.950.
The respondents also possess a mutual belief that local universities could play a major
role in promoting BIM by providing curriculums or courses related to BIM, for example. This
is why collaboration with universities (Research collaboration and curriculum designed for
students) is one of the important factors that could increase the pace of implementing BIM
with an RII score of 0.879. Having a specific curriculum or course related to BIM could
portray an idea of what BIM is in the early stage and can efficiently produce students who are
ready with 3D parametric model. As we know, BIM technology in Malaysia is really new,
therefore there are many opportunities for university researchers to conduct research related
to BIM and they could collaborate with the industry to identifying the needs and the area for
exploration.
Table 2.5: Rank for Driving Factors (Source: Zahrizan, Nasly, Ahmad, Marshall-Pointing & Zuhairi, 2013)
Conclusively speaking, there are many hindering factors that slow the pace of
implementation of the BIM platform within the construction industry, let alone applying the
concept within the educational industry. However, to complement these hindrances, the
driving factors of implementation far exceed them and can allow for a smooth
implementation of BIM within the boundaries of the education industry.
2.7 Remedies to address the hindering factors of BIM Implementation
As referred to an article by Neeley (2008) BIM may very well be the most important
event that has ever occurred in AEC/FM (architectural, engineering, construction, and facility
management) and BPM (building project manufacturing) professions. He, similarly as Egan,
insists that these professions has been lagging significantly in automation and increasing
efficiency. Sir Egan (1998, p. 18) lays special emphasis on the improvement of the process
through which industry delivers the product to its clients. He argues that commonly known
assumption that every project in construction is unique is not true. He also emphasised (1998,
p. 18) that the process of construction is in many cases repeated in its basis from one project
to another Egan often holds manufacturing up as an example of successful performance
enhancement.
Neeley (2008) reveals that AEC/FM and BPM represent the world’s largest industry,
comparably larger than automotive, aerospace and oil. Hence every saving in respect to time
and resources make a substantial difference. Therefore, concept of BIM soon started to be
perceived as a possible panacea for all the bottlenecks earlier recognized by Egan.
There are several strategies to minimise, if not resolve, the factors that hinder the
development of BIM within the educational industry.
2.7.1 Idea of Change
The idea of change has always been and will remain as difficult. As can be expected,
organisations will change only if individuals themselves are willing to change, because
people are “instinctively programmed” to resist any change that goes against their natural
belief. Black and Gregersen (2002) argue that to fundamentally adapt within any organisation,
one must first attempt to change the individual beliefs, attitudes and values within the
organisation before the organisation as a whole can benefit from the change.
To take away the “Magic Bullet theory”, users will start to realize that no matter how
efficient the gun or the bullet is programmed, it requires personal skill to actually implement
an idea of realization that nothing is self-automated without the human capability of
manipulating that idea. Abolishing this idea entirely may not solve the problem, but it will
prove as a step closer to understanding the method of grasping the concept of BIM.
2.7.2 Process Change
The primary impact of implementing BIM is the shift in which the work effort occurs
in the process. In her recent book, Epstein (2012) provides an example of architects
demonstrating the redistribution of the work and billing in project phases. Traditionally,
schematic designs (SD) accounted for 15% of the work, design development (DD) being 30%,
and construction documentations (CD), which comprised specifications, 50%, and bidding
5%. With the introduction of BIM, these statistics are now revolving around an entirely
different scale of ratios. The SD phase now accounts for 30% of work time which reflects the
creation of the 3D virtual model. DD stage is approaching 40% and CD is reduced to some
25% of the work.
Contrary to belief, the increased accuracy of information derived from the model enable more
accurate bids with tighter margins, hence being more competitive.
2.7.3 Culture and Environment
Arto Kiviniemi (2013) emphasized some factors inhibiting the change in
implementation of BIM, indicating that there are several reasons including “siloed approach”
and firm hierarchical relationships. In brief, Investopedia defines the silo mentality as an
attitude found in some organizations when individuals or groups are not willing to share
information or knowledge with other individuals. Equally it is the factor of reducing
efficiency and contribution to the failing culture. This goes the same to the educational
industry on its own, where if the students are not willing to share their ability to cope or
understand the BIM platform, the efficiency rate of implementation slowly hinders away.
Vickers (1999) reveals that there are negative effects associated with transition to new
technology such as BIM, comprising of stress and fear in both young and old employees
having to learn demanding automated processes as well as loss of confidence associated with
their ability or incapability to succeed. In general, it needs to be pointed out that construction
is not exactly the sector attracting the brightest minds and the majority of on-site operatives
are not or low-qualified personnel. As such, the construction industry is unattractive to
trained and talented employees, because its learning environment is not competitive.
The intended industry of BIM implementation must become a learning environment,
providing knowledge and lifelong learning. Investing in changing the mind scope of
believing that this sort of knowledge can be acquired in a later stage of the working phase can
allow the growth of a new ideal, where students are allowed to freely understand what BIM
and its functions are entirely about without being subjected to mannerism of a cultural norm
that hinders the growth of any development.
2.7.4 Barriers of Change
In an ideal world a successful industry would embrace new technology which
facilitates efficiency and simplicity of work as soon as it emerges. In reality however, an
industry remains reluctant due to the number of reasons. Firstly, executives or directors
believe that investing in new technology is more of a cost factor rather than a value provider.
There lies the “Invisible Problem” theory, where the initial value of the technology is either
underestimated or overestimated. At the end of the day, the one that so rightfully profits is
entitled to the director or the executive on their own. However, failing to see that the
efficiency factor that BIM brings for students can have major consequences, as this limits the
ability for the educational institution to develop into a much more efficient entity.
Secondly, managers and operatives usually do not care about the potential of new
technology since they are satisfied with the way they work. These boundless possibilities
become stored and undeveloped due to initial satisfaction of the new technology acquired.
There is no visionary upkeep from the managers, to see that this sort of technology can be
upgraded further, mainly for the students’ initiative in adopting BIM.
Thirdly, stakeholders may not drive the change eagerly enough. The ability to make a
decision can be a powerful thing, but being subjected to a certain point of view where change
is not needed, devastates the whole point of making a decision. To resolve this, these barriers
must be abolished to allow for a change in mind set and norm.
2.8 Summary
In a nutshell, this chapter reviews that the studies of other scholars has enhanced a
better understanding on the objectives of this study, which includes factors affecting the
implementation of BIM within the educational industry. Thus, this shall aid to derive the
appropriate research methods for the following chapters.
Findings for first objective
The first objective is to identify the implementation of various types (or a certain
type) of BIM Applications within several schools and its impact on the educational industry.
Based on the literature review there are different types of BIM platforms for students to
endorse themselves in, where the allowance of such implementation and understanding can
lead to
Findings for second objective
The second objective of this study is to determine and analyse the effects of
implementing BIM within the students’ daily learnings compared to the cause from the first
objective. The development of the students pushes their limit to greater heights, expanding
their knowledge before heading out into the working environment. The ability to achieve
before most, allows for efficient work flow as well as cost benefits. Their cognitive mind set
are unequal, being subjected to either being naturally smart or not determines who will
succeed and who will fail. Other than their development in skill which they will eventually
acquire with enough guidance, students will also learn to settle their differences among one
another.
Findings for third objective
The third objective is to identify the students’ skill cap levels in the application of
BIM and how do they intend to use these applications in the future. Outcomes for the
literature review show the competency requirements to fully utilize BIM and what are the sets
of skills needed to achieve before being sent out into the working phase.
Findings for fourth objective
The final objective is to determine why BIM has not been fully utilized within schools.
This objective alone consolidates with the hindrance and driving factors of implementation of
BIM. Outcomes for the literature review show that technical and social interference,
organisational interference and lack of knowledge or skills are the major factors of hindering
the implementation of BIM. Although financial barriers seem like a likely clause, it is too
subjective to be included as a statistical evidence of hindering the implementation of BIM.
The resulting literature review also shows that support and enforcement in the
implementation of BIM by the government, BIM training programs, leadership of senior
management, provision a grant scheme for training, promotion and awareness road of BIM,
collaboration with universities (Research collaboration and curriculum design for students),
incentives given by client, outsourcing BIM specialists, Technical support as well as clients’
demand for BIM application in their projects are major driving factors that promote the
development of BIM.
CHAPTER 3
RESEARCH METHODOLOGY
3.1 Introduction
This chapter aims to provide a review of the methodology adopted in answering the
objectives of this research. The objectives comprise of identifying study the implementation
of BIM and its impact on the prospects of graduates, followed by its effects of its
implementation on the students along with the identification of the students’ skill cap level at
adaptation. This section will further elaborate on the methods and materials that will be used
in data collection and data analysis for this research. Hence, a comprehensive research
process, research design, research framework, research technique, research sample and
method of data analysis will be presented in this chapter.
3.2 ResearchProcess
Figure 3.1 illustrates the research process flowchart that has been carried out
throughout the whole research, from the process of conception to completion in order to
achieve the objectives of the study. (To include the designed process flow)
Figure 3.1: Research Process Flowchart
1 • Identify the area of study of interests
2 • Identify issues, problems and scope of study
3 • Approval of research topic, research objectives and research questions
4 • Write a research proposal
5 • Develop theoretical framework through literature
6 • Develop research design and research technique
7 • Conduct pilot survey questionnaire
8 • Distribute survey questionnaires to sampling frame
9 • Collect the data from survey questionnaires
10 • Analyse data collected, interpret and discuss findings
11 • Write conclusion to summarise the findings and provide future recommendations
12 • Submit final dissertation
13 • Dispatch summary of key findings to interested respondents
As shown in Figure 3.1, the research process consists of multiple steps before the
outcome is achieved. It started off by looking for a topic of interests relating to the migration
of professionals. Along with the reviewing of literatures such as journals and newspaper
articles regarding the selected topic, an in-depth understanding regarding the current issues
began to fall in place. Hence, the research problems are identified in conjunction with the
research objectives as described:
Before proceeding further, the research title, research issues, research questions and
research objectives that have been predetermined is reviewed by the supervisor. The process
continues with the preparation of research proposal which comprises of the introduction
section of the dissertation. Later, reviews on past researchers’ work are conducted according
to the research objectives whereby this provides the theoretical background of the study
which enables integration of findings to existing literature gaps.
Research design and research technique provide a clear path on how the study will be
conducted and key strategies to be undertaken during data collection. The information
collected from the secondary data is incorporated into the questionnaire to be tested.
Modifications on questionnaire survey are made based on the recommendations provided.
The questionnaire survey is distributed via the social platform or emailing to the targeted
audience. The data collected is analysed using quantitative analysis method, followed by an
interpretation of the findings on the issue through graphics such as pie charts, graphs and
tables. Significant findings will be summarised, providing a solid conclusion for the research.
The key findings of this research will be dispatched to interested respondents. Last but not
least, a future recommendation is also included to intensify further study on this topic which
is affecting Malaysia as a developing country.
3.3 ResearchDesign
Table 3.1 represents the research design that aims to outline the necessary procedures
and logistical arrangements for the study and summarise the quality of procedures to ensure
the validity, objectivity and accuracy (Kumar, 2011) in answering the four objectives
aforementioned.
Table 3.1: Research Design
OBJECTIVE TYPES OF DATA SOURCES OF
DATA
METHOD OF
COLLECTION
i) To identify the
implementation of
various types (or a
certain type) of BIM
Applications within
severalschools and its
impact on the
educational industry.
- Types of BIM
Softwares
implemented.
- Different schools
involved in using
BIM.
- Articles
- Books
- Conference papers
- Databases
- Dissertations
- Journals
- Online Resources
- Reports
Primary Data
- Questionnaires
- Pilot Interviews
Secondary Data
- Document analysis
- Reading
ii) To determine and
analyse the effects of
implementing BIM
within the students’
daily learnings.
- Possible negative or
positive effects upon
implementation of
BIM on students.
- Perspective rate of
adoption students
and lecturers
involved.
- Articles
- Books
- Conference papers
- Databases
- Dissertations
- Journals
- Online Resources
- Reports
Primary Data
- Questionnaires
- Pilot Interviews
Secondary Data
- Document analysis
- Reading
3.4 ResearchFramework
Figure 3.2 illustrates a research framework for this study. This model presents a
comprehensive perspective of the ‘External’ and ‘Internal’ push factors that affect the
implementation of BIM in the education industry and the solutions to readdress this issue
which is classified as the independent variables. Furthermore, the risk level associated with
the ‘External’ and ‘Internal’ push factors is the dependent variable for this research, deriving
from the ‘External’ and ‘Internal’ push factors affecting the implementation of BIM in the
education industry.
3.5 ResearchTechniques
Quantitative research approach is the only research technique that has been adopted
for the collection of data.
3.5.1 Quantitative Research
Quantitative research is a survey method that represents data collected numerically or
in terms of quantitative description from the respondents by reviewing a sample of that
particular population (Creswell, 2014). Kumar (2011), states that quantitative research can be
used to quantify a variation, which is the purpose of adoption of this method. Not only that, it
is a faster approach as compared to qualitative research data collection method as
complemented by O’Dwyer and Bermauer (2014) whereby data can either be interpreted in a
simple manner using percentages, averages or other complex methods which requires a
statistical test or mathematical models.
3.5.2 Data Collection Method
Descriptive survey method has been acquired to review the factors affecting the
implementation of BIM in the education industry in terms of ‘External’ and ‘Internal’ push
factors, risk levels associated with the similar ‘External’ and ‘Internal’ push factors causing
the increase or decrease in implementing BIM within the education industry and practical
solutions that should be implemented to address this brain drain issue affecting QS graduates
in order to attain the objectives of this study. Primary data is the data collected personally. In
this research, the main instrument used to collect primary data is self-completion
questionnaire. Questionnaire surveys is an effective tool to gather primary data from
respondents spreading over a wide geographical area, in which the data will be collected and
tabulated accordingly for data analysis (Ing & Jackson, 2008). Bryman (2004) also mentioned
that it is a more convenient tool for targeted respondents in terms of flexibility and speed to
complete the survey.
On the contrary, a self-completion questionnaire has its own drawback as well such as
low response rates and consequent biases as highlighted by Oppenheim (1992). In order to
overcome its weaknesses, reasonable steps are undertaken to mitigate the issue by regularly
providing reminders to follow up with the respondents. In addition, self-completion
questionnaire limits the respondents to clarify issues which may, in turn, affect the quality of
the results. In relation to this limitation, clear-cut descriptions are provided in each section for
better understanding and respondents are able to enquire any uncertainty in relation to the
context via the email provided.
3.5.3 Designof Questionnaire
Survey questionnaire is a research instrument that is constructed in a fixed sequence
with similar questions that functions to assist in the data collection (Zikmund et. al., 2010).
Moreover, the questionnaire comprises of both open-ended and closed questions which grants
respondents the freedom of speech while attempting openended questions. Thus, eliminates
the biasness of this research likewise providing in-depth information for the researcher,
instead of answering based on the responses provided (Kumar, 2011). The questionnaire is
designed using two different tools that are Microsoft Words and Google Forms. However,
questionnaires in the form of Google Forms are only distributed via social platforms and
email to ease the targeted respondents to complete them and environmentally friendly
alternative to do so.
Basically, the questionnaire for this research is categorised into four sections as shown:-
i) Section A: Demographic Profile
This section aims to identify the demographic background of the targeted respondents
based on gender, which stage they are currently in within Taylor’s University, working
experiences as well as adaptation and comfort in using BIM in their respective stages. This
section also comprises of an open-ended question to justify the possible reasons why certain
factors affect their comfortability and adaptation in using BIM.
ii) Section B: Factors affecting implementation of BIM within the education industry
In this section, respondents are required to rate on their agreement on the factors
affecting the implementation of BIM within the education industry based on the Likert scale
of ordinal measures as shown in Table 3.2. The factors given are classified into ‘External’
and ‘Internal’ push factors. At the end of the section, an open-ended question is incorporated
to allow respondents to provide their opinion on other factors that should be considered that
is affecting the implementation of BIM within the education industry.
iii) Section C(I): Level of Frequency of Factors
Section C intends to obtain the perception of the respondents on the occurrence of
each factor as stated in Section B. It is compulsory for respondents to rate the level of
frequency of each factor using the Five-point Likert scale as shown in Table 3.3. Likewise,
respondents are able to propose their viewpoints on an alternative factor that happens
frequently which need to be considered in the open-ended question that is integrated.
iv) Section C(II): Level of Impact of Factors
Meanwhile, section C(II) aims to gather the views from respondents on the level of
impact on the similar factors by using the Likert scale as illustrated in Table 3.4. This section
also enables respondents to express their suggestion on different possible factors that have a
severe impact on the implementation of BIM within the education industry.
v) Section D: Practical Solutions to readdress the lack of implementation of BIM
within the education industry
The final section displays several practical solutions to readdress this issue for
respondents to rate on their level of agreement on the solutions provided. A similar approach,
Likert scale will also be used as shown in Table 3.2. Similarly, respondents will have the
opportunity to provide various solutions which are perceived to be appropriate to address
drawbacks that may be hindering the implementation of BIM within the education industry.
3.6 Method of Sampling
3.6.1 Sampling
As identified by Kumar (2011), sampling is a process of choosing a group of sample
from a larger population. This sample shall then serve as a basis for to generalise the outcome
as a whole. It is vital to select a suitable sampling method to conduct the research in order to
maximise the accuracy of the prediction within the sampling size. There is a variety of
sampling strategies which has been subdivided by Kumar (2011) into random sampling, non-
random sampling and mixed sampling as shown in Figure 3.2.
INSERT CHART HEREEEEE
In this research, random sampling has been utilised to obtain the relevant data from
the population. Salkind (2012) also revealed that random sampling distributes any possible
bias among the population which is ideally the choice for selection. Out of the techniques
available for random sampling, stratified random sampling will be carried out whereby the
sample will be randomly selected based on three out of the 19 universities that offer QS
degree courses in Malaysia and only focusing on the University faculties located within the
Kuala Lumpur district. Semester 1 students and Graduates of more than 1 year from their
graduation are excluded as their experience are deemed to be inadequate or adapted as stated
respectively.
3.6.2 Target Population and Sampling Frame
Figure 3.4 shows the scope of this research shall be limited to viewpoints of who are
currently studying in University institutions within the Kuala Lumpur district; those who are
in their first semesters or have graduated for more than one year will be exempted. The
Quantity Surveying course is highly sort after within the districts of Kuala Lumpur as it is
considered as the city centre of Malaysia. The sampling frame only involves those who are
still studying within the 19 universities in Malaysia (Higher Education Advisor, 2017). Based
on Table 3.5, three out of the top 19 universities in Malaysia which are highlighted below are
offering QS Bachelor’s Degree courses.
INSERT TABLE OF UNIVERSITIES afterschool
3.6.3 ResearchSampling Size
The formula generated by Krejcie & Morgan (1970) is adopted for this study in order
to establish the minimum number of respondents needed for the questionnaire survey. The
formula is as shown below: -
Where,
S = required sample size
X2 = the table value of chi-square for 1 degree of freedom at the desired confidence level
(3.841)
N = the population size
P = the population proportion (assumed to be .50 since this would provide the
maximum sample size).
d = the degree of accuracy expressed as a proportion (0.05)
________________________________________________
Calculation of sample size is as follows: -
S = 3.841 x 2900 x 0.5 x ( 1 – 0.5 )
[ ( 0.05 )2
x ( 2900 – 1 ) ] + [ 3.841 x 0.5 ( 1 – 0.5 ) ]
S = 2784.725 / 8.20775
S = 339.280
S = 340 respondents
Based on the total population of 2900 targeted students studying in University
institutions within the Kuala Lumpur district, a total sample size of 340 samples is required to
act as a baseline figure for the questionnaire survey.
3.7 Data Analysis Method
Having collected the data from the questionnaire survey, data that are incomplete and
inconsistent are filtered before the analysis of data takes place. Content analysis and multi-
attribute methods were both used to analyse the data obtained from the questionnaire surveys.
3.7.1 Content Analysis Method
Content analysis method was adopted to sort out the content by using statements to deliver a
system of groupings as claimed by Flick (2011).
3.7.2 Multi-Attribute Method
The followings are the multi-attribute approaches applied in this study: -
i) Descriptive Statistics
According to Fisher and Marshall (2009), descriptive statistics represents the simplest
statistical analysis while summarising the findings. This analysis will be used to interpret the
data from Section A using percentages (%). The formula illustrates the method of percentage
calculation by David and Carole (2011).
Where,
P = Percentage (%)
F = Frequency
N = Total number of respondents
ii) Relative Agreement Index (RAI)
All the data in Section B and D of the questionnaire will be further analysed using
relative importance index. This method is used to derive the significance of each factor
affecting QS graduates to work abroad, based on the five-point Likert scale. The formula is as
shown.
Where,
W = Weighting stated by the respondents and ranging from 1 to 5
A = The highest weight ( i.e 5 in this case )
N = Total number of respondents
iii) Ranking Method
Ranking method is used to identify the ranking of both external and internal factors
which will be carried out in this study. The factors are given rankings to determine their
position based on the findings to allow ease of understanding.
iv) Impact-Frequency Mapping
This method will be used to analyse the data from Section C(I) and C(II). This
analysis requires two dimensions which are mean impact level rating (MR) and the frequency
index which will enable the data to be visualised based on the risk levels of each factor
affecting the implementation of BIM in the Malaysian education industry.
On the vertical axis, the impact levels were established based on a scale 1- 5 whereas
for the horizontal axis the frequency index is plotted on a scale of 0 - 100 percent. The axis of
the mapping is sub-divided into four bands to further distinguish the factors associated with
risk bands.
The calculations for Mean Rating of the impact and frequency index based on the
external and internal factors are as shown in the formula provided. 
a) MeanRating (MR)
Where,
MRj = Mean Rating for Attribute j
Rpjk = Rating Point k (ranging from 1 to 5)
%Rjk = Percentage response to the rating point k, for attribute j
b) Frequency Percentage (FP)
Where,
a = Rating given to each response ranging from 1 to 5
n = Frequency of Response
N = Total number of respondents
3.8 Summary of ResearchMethodology
This chapter describes all applicable methods and implements used for the data
collection and analysis, commencing from the research process and research design. In
addition, a research framework which provides a comprehensive perspective on the study is
established based on the four objectives. The research technique utilised is a questionnaire
survey. It is designed with both open-ended and closed questions, structured according to the
variables derived from the literature review. The population of the targeted respondents are
Quantity Surveying students currently studying in or have graduated from the 3 out of the 19
listed universities that offer Quantity Surveying degree courses in Malaysia as previously
stated earlier and only focusing on those currently studying within the districts of Kuala
Lumpur, which amounts to 2,900. These questionnaires are distributed via social platform
and email. Likewise, a minimum of 340 usable responses must be collected from the
sampling frame to ensure the validity and accuracy of the results. Fortunately, 428 sets were
received. Last but not least, this chapter is enclosed with proposed data analysis method
comprising of both content analysis and multi-attribute analysis method which are relative
importance index, overall suitability score and impact-frequency mapping. These data
findings will be further presented, discussed and analysed in Chapter 4.
CHAPTER 4
DATA ANALYSIS
4.1 Introduction
This chapter is a presentation section where all the relevant data collected through
questionnaire surveys from the targeted population is analysed using the research techniques
as discussed in the previous chapter. Besides analytical texts, the findings are also supported
by the application of visual aid tools such as tables and pie charts to easily convey the results.
Prior to the analysis of the data, response rates shall first be verified. The data analysis is
divided into four sub-sections which include respondents’ demographical profile, respondents’
perception on the agreement of the internal and external factors affecting the implementation
of BIM software within the Malaysian education industry, followed by, the risk levels based
on the impact and frequency levels as perceived by the respondents and respondents’
agreement on the practical solutions to address the hindering factors affecting the
implementation of BIM software within the Malaysian education industry.
Last but not least, a detailed discussion will be comprised at the end of this chapter to
summarise the results based on the literature reviewed whereby all differences and
similarities will be highlighted.
4.2 Response Rate
A total amount of 600 questionnaire surveys were distributed via social platforms and
email. Among the 600 sets distributed, a total of 428 sets are completed within the stipulated
timeframe. All of the set of questionnaire surveys are filtered and there is no incomplete data
or contradicting data found. Therefore, all 428 sets of data are considered valid data which
will be used for the data analysis of this study.
4.3 Demographic Background
4.3.1 Gender of Respondents
Figure 4.1: Gender of Respondents
Based on the 428 sets of questionnaire collected, 53% of the respondents are males
whereas 47% are females.
Male
56.31%
Female
43.69% Male
Female
4.3.2 Age of Respondents
Figure 4.2: Age of Respondents
Based on the 428 sets of questionnaire collected, Figure 4.2 shows that 4.30% of the
respondents belonged to the “17 to 20 year old” category, 72.43 percent belonging to the “21
– 24 year old” category and 3.27 percent of the respondents belonging to the category of
17 - 20 yrs
24.30%
21 - 24 yrs
72.43%
Above 28 yrs
3.27%
17 - 20 yrs
21 - 24 yrs
25 - 28 yrs
Above 28 yrs
“above 28 years old”. There were no respondents recorded to be within the “25 – 28 year old”
category.
4.3.3 University of Respondents
Figure 4.3: University of Respondents
By examining Figure 4.3, the university which has the highest weightage of Quantity
Surveying respondents is INTI International College Subang Jaya (INTI) comprising of
41.36% of the population, followed by Taylor’s Universtity at 35.98% and lastly SEGi
University at 22.66%. All universities stated are listed down as private universities.
TU
35.98%
INTI
41.36%
SEGi
22.66%
TU
INTI
SEGi
4.3.4 SemesterRespondents are Currently in
Figure 4.4: Semester Respondents are Currently in
Based on Figure 4.4, from the total of 428 respondents, the highest percentage of
respondents were within the “Semester 6” category at 51.64%, followed by “Semester 4” at
27.57% and 10.28 percent within “Semester 3”. The categories with the lower respondents’
Sem 3
10.28%
Semester 4
27.57%
Internship
3.74%
Sem 5
4.67%
Semester 6
51.64%
Graduated
2.10%
Semester 1
Semester 2
Semester 3
Semester 4
Internship
Semester 5
Semester 6
Graduated
rate were within the “Semester 5” category at 4.67%, “Internship” category at 3.74% and
lastly, “Graduated” category holding 2.10%. Semesters 1 and 2 had a zero percent response
rate for this analysis but are deemed to not affect the outcome of the study as both semesters
are within the early stages of their University placement and have not been fully exposed to
the internal and external factors as experienced by the later semesters.
4.3.5 Amount of BIM Experience Respondents have Gained
Figure 4.5: Amount of BIM Experience Respondents have Gained
From the total of 428 respondents, Figure 4.5 indicates that 17.29% have gained more
than 1 year of experience using BIM while working in the industry. The remaining 82.71%
had less than 1 year of experience using BIM outside in the industry, as most are still not
fully exposed to the working environment. The respondents needed to fulfil the criteria of not
Less than 1 year
82.71%
More than 1
year
17.29%
working for more than 2 years within the construction industry. However, respondents can
also include their response based on their inclusive experience gained within their period of
practice during their internship, as the practice itself acts as a simulation of a real workplace
in the working industry.
4.3.6 Respondents that Have Studied using BIM During their Studies
Figure 4.6: Respondents that Have Studied using BIM During their Studies
Based on Figure 4.6, a percentage of 77.34% of respondents have studied the use of
BIM during their time in their respective university placements. However, there is a
considerable fraction of respondents at 22.66% have only studied the use of BIM after they
have graduated or do not have access to BIM software in their university institutions. This
indicates the possibility of the non-existence of BIM within one of the schools.
No
22.66%
Yes
77.34%
4.3.7 Provision of BIM Software to Respondents by Universities
Figure 4.7: Provision of BIM Software to Respondents by Universities
Figure 4.7 shows a similar percentage as Figure 4.6; where there 77.34% of the
respondents have had a provision of a mix of both Glodon, Revit and Cost X whiles the
remaining 22.66% had no access to BIM Software within their university placements.
No
22.66%
Yes
77.34%
4.3.8 Respondents’ Ability to Understand the Application of BIM Software
Figure 4.8: Respondents’ Ability to Understand the Application of BIM Software
Referring to Figure 4.8, respondents that understood the application of BIM software
and had no difficulty in coping with the subject or training courses made up 72.43% of the
sampling. However, an astounding percentage of 27.57% had difficulty with understanding
the use of BIM software and had little to no knowledge on the application of BIM software.
The respondents who could not proactively cope with the use of BIM software responded
with reasons related to unfamiliarity of use, over complication, lack of time and level of
technique taught that is not at the industries’ level of competency.
No
72.43%
Yes
27.57%
4.4 Discussion in relation to Objective 1: To study the implementation of various
types of BIM Applications and the primary BIM software, Glodon within several
schools and its impact on the educational industry.
Table 4.1 indicates the Relative Agreement Index (RAI) of factors affecting the
implementation of BIM Software within the Malaysian Education industry. Among all the
factors provided, cost of implementation of BIM holds the highest threshold of RAI at 0.116.
This is justified by Liu, Xie, Tivendal and Liu (2015) where they believe that among the
largest barriers to the implementation of BIM would be the cost of initialization on its own.
Liu, Xie, Tivendal and Liu (2015) also quote that “While BIM is expected to provide
significant benefits to the AEC industry, its implementation requires costs, as with any new
technology. The perceived costs of implementing BIM technology include education and
training costs, administration and start-up costs, and transition and behavioural costs. The
cost of implementation is frequently recognized as a barrier to BIM implementation.”
Other than costs building a barrier over the implementation of BIM software, the
availability of experts in the area of BIM knowledge is the second highest RAI of 0.115. With
the lack of skilled professionals in this area of knowledge, the need for BIM cannot co-exist
with the high cost factor of implementing BIM Software. There must be a line of professional
or skilled trainers or personnel to avoid the back draw of BIM implementation. This can be
reflected through Bercerik-Gerber et al. (2011) where they claim the lack of adequately
trained BIM professionals has hindered BIM implementation and its use in the AEC industry.
Hence, this statement can be strongly supported by a Smith & Tardif (2009) as they opine
that this situation is likely to become worse due to a persistent shortage of capable BIM
professionals over the next 20 years. Its affects have definitely taken its toll and will not stop
deteriorating the chances of lower BIM implementation unless there is a rise in BIM adequate
personnel.
Moving on to the third highest RAI of 0.110 is the level of technological advancement.
There exists an age gap where the seniors tend to have higher reluctance to adopt the
implementation of BIM. This can come from many reasons such as fear of loss of job or the
incapability of increasing skill cap to match the needs of the standard market. This can be
supported by Ruikar et al. (2005) where they believe that senior managers are reluctant to
introduce new technologies and processes to the organization, while management support for
BIM implementation is essential. However true this may be, this problem also rises among
students or the younger ages. As shown in Figure 4.8, it is almost certain that despite the
generation gap, BIM is still at a level where not less than 20% of the younger generation can
comprehend the use of BIM. At this stage, the factor of resistance can fall upon the high level
of advancement of BIM, if not including other factors such as lack of teaching skills shown
by lecturers.
In addition, there were several other factors obtained from the targeted respondents.
However, the factors that have been provided are similar to some of the factors provided such
as requirements for skill levels which have been included as a factor categorised as B1.7 -
Requirements to be deemed as BIM competent and B1.2 - The lack of ability to adapt to
newer software.
Table4.1
4.5 Discussion in relation to Objective 2 and 3: To Determine and Identify the effects
of Implementing BIM within Students’ Daily Learnings and their Required Skill
Cap Levels and How They Intend to use it.
Table 4.2 and 4.3 indicates the level of frequency and level of impact of the factors
affecting the implementation of BIM. According to table 4.2, with the highest frequency of
0.115, the cost of implementation of BIM has led to many disputes between students and
their learning capabilities towards BIM. With the high costs of implementation of BIM, it is
clear that affordability to cater for many students in one seating is very low. If anything, the
cost of BIM has definitely hindered the implementation of an all-out spread of BIM
implementation through the Kuala Lumpur district. Not to mention that Kuala Lumpur is one
of the most diverse in both academic and multi-cultural growth, as shown in QS University
Rankings: Asia 2016, where the top Malaysian universities are mostly within the Kuala
Lumpur district. This goes to show that despite the high gross in education value within the
main city centre, cost of implementing BIM in schools is a tough break, and not many
institutions can do so. With the effects of this alone, students will not be able to get their fair
share of BIM training and will struggle through the course. This then provides a huge impact
as shown in Table 4.3, where cost of implementation of BIM stays at the top. As the primary
cause that relates itself to many other factors, existence of BIM within the education industry
can vary from the high contradicting loads of assignments or the increase in psychological
stress to cope with the training.
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry
Implementation of bim softwares in malaysia possibilities within the education industry

More Related Content

What's hot

Application of building information modelling tools for green building design
Application of building information modelling tools for green building designApplication of building information modelling tools for green building design
Application of building information modelling tools for green building design
Nuhu Bamalli Polytechnic Zaria
 
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...Omer Syed
 
Catching Up With BIM: A Curriculum Re-Design Strategy
Catching Up With BIM: A Curriculum Re-Design StrategyCatching Up With BIM: A Curriculum Re-Design Strategy
Catching Up With BIM: A Curriculum Re-Design Strategy
Journal of Contemporary Urban Affairs
 
IRJET- Redevelopment of Structure with the Help of Building Information M...
IRJET-  	  Redevelopment of Structure with the Help of Building Information M...IRJET-  	  Redevelopment of Structure with the Help of Building Information M...
IRJET- Redevelopment of Structure with the Help of Building Information M...
IRJET Journal
 
IRJET- Building Information Modeling (BIM) Survey in Surat,Gujarat
IRJET-  	  Building Information Modeling (BIM) Survey in Surat,GujaratIRJET-  	  Building Information Modeling (BIM) Survey in Surat,Gujarat
IRJET- Building Information Modeling (BIM) Survey in Surat,Gujarat
IRJET Journal
 
Investment Thesis: Construction Technology
Investment Thesis: Construction TechnologyInvestment Thesis: Construction Technology
Investment Thesis: Construction Technology
Jeffrey Bantam
 
Building Information Modeling (BIM) Research Paper
Building Information Modeling (BIM) Research PaperBuilding Information Modeling (BIM) Research Paper
Building Information Modeling (BIM) Research Paper
abhishek chougule
 
A Statistical Analysis of Building Information Modeling in Project Management
A Statistical Analysis of Building Information Modeling in Project ManagementA Statistical Analysis of Building Information Modeling in Project Management
A Statistical Analysis of Building Information Modeling in Project Management
IRJET Journal
 
IRJET- Building Information Modeling in AEC Industry with its Implementation ...
IRJET- Building Information Modeling in AEC Industry with its Implementation ...IRJET- Building Information Modeling in AEC Industry with its Implementation ...
IRJET- Building Information Modeling in AEC Industry with its Implementation ...
IRJET Journal
 
10 points and the benefits of bim
10 points and the benefits of bim10 points and the benefits of bim
10 points and the benefits of bim
Er. Jigar Rana
 
Business value of_bim_in_europe_smr_final
Business value of_bim_in_europe_smr_finalBusiness value of_bim_in_europe_smr_final
Business value of_bim_in_europe_smr_finalMax'me R'got
 
Quicklook technology assessment topmod software_ccchittim
Quicklook technology assessment topmod software_ccchittimQuicklook technology assessment topmod software_ccchittim
Quicklook technology assessment topmod software_ccchittimClaudia Chittim
 
Implementation of Building Information Modelling in Turkish Government Sector...
Implementation of Building Information Modelling in Turkish Government Sector...Implementation of Building Information Modelling in Turkish Government Sector...
Implementation of Building Information Modelling in Turkish Government Sector...
Mohammad Lemar ZALMAİ
 
Prospects of building information modeling (bim) in malaysian construction in...
Prospects of building information modeling (bim) in malaysian construction in...Prospects of building information modeling (bim) in malaysian construction in...
Prospects of building information modeling (bim) in malaysian construction in...
Alexander Decker
 
F1304013139
F1304013139F1304013139
F1304013139
IOSR Journals
 
Exploring the adoption of building information modelling (bim) in the malaysi...
Exploring the adoption of building information modelling (bim) in the malaysi...Exploring the adoption of building information modelling (bim) in the malaysi...
Exploring the adoption of building information modelling (bim) in the malaysi...
eSAT Journals
 
2010 TechTalentBC Labour Study
2010 TechTalentBC Labour Study2010 TechTalentBC Labour Study
2010 TechTalentBC Labour Study
BC Tech Association
 

What's hot (20)

Application of building information modelling tools for green building design
Application of building information modelling tools for green building designApplication of building information modelling tools for green building design
Application of building information modelling tools for green building design
 
Pf71
Pf71Pf71
Pf71
 
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
 
Catching Up With BIM: A Curriculum Re-Design Strategy
Catching Up With BIM: A Curriculum Re-Design StrategyCatching Up With BIM: A Curriculum Re-Design Strategy
Catching Up With BIM: A Curriculum Re-Design Strategy
 
IRJET- Redevelopment of Structure with the Help of Building Information M...
IRJET-  	  Redevelopment of Structure with the Help of Building Information M...IRJET-  	  Redevelopment of Structure with the Help of Building Information M...
IRJET- Redevelopment of Structure with the Help of Building Information M...
 
BIMAS2016Proceedings
BIMAS2016ProceedingsBIMAS2016Proceedings
BIMAS2016Proceedings
 
IRJET- Building Information Modeling (BIM) Survey in Surat,Gujarat
IRJET-  	  Building Information Modeling (BIM) Survey in Surat,GujaratIRJET-  	  Building Information Modeling (BIM) Survey in Surat,Gujarat
IRJET- Building Information Modeling (BIM) Survey in Surat,Gujarat
 
Investment Thesis: Construction Technology
Investment Thesis: Construction TechnologyInvestment Thesis: Construction Technology
Investment Thesis: Construction Technology
 
Global_BIM_Management_catalog
Global_BIM_Management_catalogGlobal_BIM_Management_catalog
Global_BIM_Management_catalog
 
Building Information Modeling (BIM) Research Paper
Building Information Modeling (BIM) Research PaperBuilding Information Modeling (BIM) Research Paper
Building Information Modeling (BIM) Research Paper
 
A Statistical Analysis of Building Information Modeling in Project Management
A Statistical Analysis of Building Information Modeling in Project ManagementA Statistical Analysis of Building Information Modeling in Project Management
A Statistical Analysis of Building Information Modeling in Project Management
 
IRJET- Building Information Modeling in AEC Industry with its Implementation ...
IRJET- Building Information Modeling in AEC Industry with its Implementation ...IRJET- Building Information Modeling in AEC Industry with its Implementation ...
IRJET- Building Information Modeling in AEC Industry with its Implementation ...
 
10 points and the benefits of bim
10 points and the benefits of bim10 points and the benefits of bim
10 points and the benefits of bim
 
Business value of_bim_in_europe_smr_final
Business value of_bim_in_europe_smr_finalBusiness value of_bim_in_europe_smr_final
Business value of_bim_in_europe_smr_final
 
Quicklook technology assessment topmod software_ccchittim
Quicklook technology assessment topmod software_ccchittimQuicklook technology assessment topmod software_ccchittim
Quicklook technology assessment topmod software_ccchittim
 
Implementation of Building Information Modelling in Turkish Government Sector...
Implementation of Building Information Modelling in Turkish Government Sector...Implementation of Building Information Modelling in Turkish Government Sector...
Implementation of Building Information Modelling in Turkish Government Sector...
 
Prospects of building information modeling (bim) in malaysian construction in...
Prospects of building information modeling (bim) in malaysian construction in...Prospects of building information modeling (bim) in malaysian construction in...
Prospects of building information modeling (bim) in malaysian construction in...
 
F1304013139
F1304013139F1304013139
F1304013139
 
Exploring the adoption of building information modelling (bim) in the malaysi...
Exploring the adoption of building information modelling (bim) in the malaysi...Exploring the adoption of building information modelling (bim) in the malaysi...
Exploring the adoption of building information modelling (bim) in the malaysi...
 
2010 TechTalentBC Labour Study
2010 TechTalentBC Labour Study2010 TechTalentBC Labour Study
2010 TechTalentBC Labour Study
 

Similar to Implementation of bim softwares in malaysia possibilities within the education industry

An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...
An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...
An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...
IRJET Journal
 
The editors bookshelf
The editors bookshelfThe editors bookshelf
The editors bookshelf
Glen Alleman
 
Advantages and Challenges of Using BIM: a Cost Consultant's Perspective
Advantages and Challenges of Using BIM: a Cost Consultant's PerspectiveAdvantages and Challenges of Using BIM: a Cost Consultant's Perspective
Advantages and Challenges of Using BIM: a Cost Consultant's Perspective
Michael Cook
 
wong2020.pdf
wong2020.pdfwong2020.pdf
wong2020.pdf
TomCuenca3
 
Northwestern University Building Tech Symposium Summary
Northwestern University Building Tech Symposium  SummaryNorthwestern University Building Tech Symposium  Summary
Northwestern University Building Tech Symposium Summary
Mike Bordenaro
 
A Statistical Analysis Of Building Information Modeling In Project Management
A Statistical Analysis Of Building Information Modeling In Project ManagementA Statistical Analysis Of Building Information Modeling In Project Management
A Statistical Analysis Of Building Information Modeling In Project Management
Crystal Sanchez
 
Introdution to BIM
Introdution to BIMIntrodution to BIM
Introdution to BIM
Syed Qaseem Haider
 
AEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOV
AEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOVAEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOV
AEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOVAlban Thomann
 
Strategic mgmt group
Strategic mgmt groupStrategic mgmt group
Strategic mgmt group
fareezsham
 
Strategic Management Group Report
Strategic Management Group ReportStrategic Management Group Report
Strategic Management Group Report
Farah Sham
 
IRJET- Digital Engineering & Project Management for AEC Industry using BIM
IRJET- Digital Engineering & Project Management for AEC Industry using BIMIRJET- Digital Engineering & Project Management for AEC Industry using BIM
IRJET- Digital Engineering & Project Management for AEC Industry using BIM
IRJET Journal
 
A Research Study Done On The Adaptation Of Building Information Modelling In ...
A Research Study Done On The Adaptation Of Building Information Modelling In ...A Research Study Done On The Adaptation Of Building Information Modelling In ...
A Research Study Done On The Adaptation Of Building Information Modelling In ...
Jessica Henderson
 
Chapter 1-research proposal
Chapter 1-research proposalChapter 1-research proposal
Chapter 1-research proposal
Jessyca Than
 
IRJET - Digital Engineering & Project Management for AEC Industry using BIM
IRJET -  	  Digital Engineering & Project Management for AEC Industry using BIMIRJET -  	  Digital Engineering & Project Management for AEC Industry using BIM
IRJET - Digital Engineering & Project Management for AEC Industry using BIM
IRJET Journal
 
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...Omer Syed
 
Exploring the Adoption of Building Information Modelling In India and Need Fo...
Exploring the Adoption of Building Information Modelling In India and Need Fo...Exploring the Adoption of Building Information Modelling In India and Need Fo...
Exploring the Adoption of Building Information Modelling In India and Need Fo...
IRJET Journal
 
Benefits and Barriers of BIM Adoption in the Iraqi Construction Firms
Benefits and Barriers of BIM Adoption in the Iraqi Construction FirmsBenefits and Barriers of BIM Adoption in the Iraqi Construction Firms
Benefits and Barriers of BIM Adoption in the Iraqi Construction Firms
AM Publications
 
4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf
4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf
4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf
WaliEdwardian1
 
BIM Presentation
BIM PresentationBIM Presentation
BIM PresentationOmer Syed
 
IRJET- Testing Practical Applicability of 5-Dimensional BIM using a Pilot...
IRJET-  	  Testing Practical Applicability of 5-Dimensional BIM using a Pilot...IRJET-  	  Testing Practical Applicability of 5-Dimensional BIM using a Pilot...
IRJET- Testing Practical Applicability of 5-Dimensional BIM using a Pilot...
IRJET Journal
 

Similar to Implementation of bim softwares in malaysia possibilities within the education industry (20)

An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...
An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...
An Analysis of Building Information Modeling (BIM) Usage in Nigerian Construc...
 
The editors bookshelf
The editors bookshelfThe editors bookshelf
The editors bookshelf
 
Advantages and Challenges of Using BIM: a Cost Consultant's Perspective
Advantages and Challenges of Using BIM: a Cost Consultant's PerspectiveAdvantages and Challenges of Using BIM: a Cost Consultant's Perspective
Advantages and Challenges of Using BIM: a Cost Consultant's Perspective
 
wong2020.pdf
wong2020.pdfwong2020.pdf
wong2020.pdf
 
Northwestern University Building Tech Symposium Summary
Northwestern University Building Tech Symposium  SummaryNorthwestern University Building Tech Symposium  Summary
Northwestern University Building Tech Symposium Summary
 
A Statistical Analysis Of Building Information Modeling In Project Management
A Statistical Analysis Of Building Information Modeling In Project ManagementA Statistical Analysis Of Building Information Modeling In Project Management
A Statistical Analysis Of Building Information Modeling In Project Management
 
Introdution to BIM
Introdution to BIMIntrodution to BIM
Introdution to BIM
 
AEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOV
AEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOVAEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOV
AEC-CIVIL-DESIGN-WAVE-2-WP-SMEDI-CIVIL-DESIGN-INNOV
 
Strategic mgmt group
Strategic mgmt groupStrategic mgmt group
Strategic mgmt group
 
Strategic Management Group Report
Strategic Management Group ReportStrategic Management Group Report
Strategic Management Group Report
 
IRJET- Digital Engineering & Project Management for AEC Industry using BIM
IRJET- Digital Engineering & Project Management for AEC Industry using BIMIRJET- Digital Engineering & Project Management for AEC Industry using BIM
IRJET- Digital Engineering & Project Management for AEC Industry using BIM
 
A Research Study Done On The Adaptation Of Building Information Modelling In ...
A Research Study Done On The Adaptation Of Building Information Modelling In ...A Research Study Done On The Adaptation Of Building Information Modelling In ...
A Research Study Done On The Adaptation Of Building Information Modelling In ...
 
Chapter 1-research proposal
Chapter 1-research proposalChapter 1-research proposal
Chapter 1-research proposal
 
IRJET - Digital Engineering & Project Management for AEC Industry using BIM
IRJET -  	  Digital Engineering & Project Management for AEC Industry using BIMIRJET -  	  Digital Engineering & Project Management for AEC Industry using BIM
IRJET - Digital Engineering & Project Management for AEC Industry using BIM
 
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
Omer Syed - The Integration of BIM in Construction Organizations & its Impact...
 
Exploring the Adoption of Building Information Modelling In India and Need Fo...
Exploring the Adoption of Building Information Modelling In India and Need Fo...Exploring the Adoption of Building Information Modelling In India and Need Fo...
Exploring the Adoption of Building Information Modelling In India and Need Fo...
 
Benefits and Barriers of BIM Adoption in the Iraqi Construction Firms
Benefits and Barriers of BIM Adoption in the Iraqi Construction FirmsBenefits and Barriers of BIM Adoption in the Iraqi Construction Firms
Benefits and Barriers of BIM Adoption in the Iraqi Construction Firms
 
4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf
4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf
4058f1cb-2aef-4437-bf32-968325c024e7-160414132040.pdf
 
BIM Presentation
BIM PresentationBIM Presentation
BIM Presentation
 
IRJET- Testing Practical Applicability of 5-Dimensional BIM using a Pilot...
IRJET-  	  Testing Practical Applicability of 5-Dimensional BIM using a Pilot...IRJET-  	  Testing Practical Applicability of 5-Dimensional BIM using a Pilot...
IRJET- Testing Practical Applicability of 5-Dimensional BIM using a Pilot...
 

More from DarrenTofu

Construction lawprint-final-update-21112017
Construction lawprint-final-update-21112017Construction lawprint-final-update-21112017
Construction lawprint-final-update-21112017
DarrenTofu
 
Pm group-compileddd
Pm group-compiledddPm group-compileddd
Pm group-compileddd
DarrenTofu
 
Vm compiled-edited (print)
Vm compiled-edited (print)Vm compiled-edited (print)
Vm compiled-edited (print)
DarrenTofu
 
Strategic Management Individual Part B
Strategic Management Individual Part BStrategic Management Individual Part B
Strategic Management Individual Part B
DarrenTofu
 
Management Science - Krimzen Tech
Management Science - Krimzen TechManagement Science - Krimzen Tech
Management Science - Krimzen Tech
DarrenTofu
 
Management Science - Krimzen Tech
Management Science - Krimzen TechManagement Science - Krimzen Tech
Management Science - Krimzen Tech
DarrenTofu
 
Management Science - Krimzen Tech
Management Science - Krimzen TechManagement Science - Krimzen Tech
Management Science - Krimzen Tech
DarrenTofu
 
Building Services II - Summit USJ
Building Services II - Summit USJBuilding Services II - Summit USJ
Building Services II - Summit USJ
DarrenTofu
 
Final intro to business report
Final intro to business reportFinal intro to business report
Final intro to business reportDarrenTofu
 
Employees and the workplace ethics
Employees and the workplace ethicsEmployees and the workplace ethics
Employees and the workplace ethicsDarrenTofu
 
Math Statistic Report on Game Addiction
Math Statistic Report on Game Addiction Math Statistic Report on Game Addiction
Math Statistic Report on Game Addiction DarrenTofu
 
Mathematics Geometric Lecture
Mathematics Geometric LectureMathematics Geometric Lecture
Mathematics Geometric LectureDarrenTofu
 
Mathematics Calculations
Mathematics CalculationsMathematics Calculations
Mathematics CalculationsDarrenTofu
 
Economics Report FNBE
Economics Report FNBEEconomics Report FNBE
Economics Report FNBEDarrenTofu
 
Contrast of differences_
Contrast of differences_Contrast of differences_
Contrast of differences_DarrenTofu
 
Best char kuey teow stalls (2)
Best char kuey teow stalls (2)Best char kuey teow stalls (2)
Best char kuey teow stalls (2)DarrenTofu
 
Presentation slide (updated) (1)
Presentation slide (updated) (1)Presentation slide (updated) (1)
Presentation slide (updated) (1)DarrenTofu
 

More from DarrenTofu (20)

Construction lawprint-final-update-21112017
Construction lawprint-final-update-21112017Construction lawprint-final-update-21112017
Construction lawprint-final-update-21112017
 
Pm group-compileddd
Pm group-compiledddPm group-compileddd
Pm group-compileddd
 
Vm compiled-edited (print)
Vm compiled-edited (print)Vm compiled-edited (print)
Vm compiled-edited (print)
 
Strategic Management Individual Part B
Strategic Management Individual Part BStrategic Management Individual Part B
Strategic Management Individual Part B
 
Management Science - Krimzen Tech
Management Science - Krimzen TechManagement Science - Krimzen Tech
Management Science - Krimzen Tech
 
Management Science - Krimzen Tech
Management Science - Krimzen TechManagement Science - Krimzen Tech
Management Science - Krimzen Tech
 
Management Science - Krimzen Tech
Management Science - Krimzen TechManagement Science - Krimzen Tech
Management Science - Krimzen Tech
 
Building Services II - Summit USJ
Building Services II - Summit USJBuilding Services II - Summit USJ
Building Services II - Summit USJ
 
Final intro to business report
Final intro to business reportFinal intro to business report
Final intro to business report
 
Big bird
Big birdBig bird
Big bird
 
Pet us
Pet usPet us
Pet us
 
Employees and the workplace ethics
Employees and the workplace ethicsEmployees and the workplace ethics
Employees and the workplace ethics
 
Biznit
BiznitBiznit
Biznit
 
Math Statistic Report on Game Addiction
Math Statistic Report on Game Addiction Math Statistic Report on Game Addiction
Math Statistic Report on Game Addiction
 
Mathematics Geometric Lecture
Mathematics Geometric LectureMathematics Geometric Lecture
Mathematics Geometric Lecture
 
Mathematics Calculations
Mathematics CalculationsMathematics Calculations
Mathematics Calculations
 
Economics Report FNBE
Economics Report FNBEEconomics Report FNBE
Economics Report FNBE
 
Contrast of differences_
Contrast of differences_Contrast of differences_
Contrast of differences_
 
Best char kuey teow stalls (2)
Best char kuey teow stalls (2)Best char kuey teow stalls (2)
Best char kuey teow stalls (2)
 
Presentation slide (updated) (1)
Presentation slide (updated) (1)Presentation slide (updated) (1)
Presentation slide (updated) (1)
 

Recently uploaded

Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Chapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdfChapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdf
Kartik Tiwari
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 

Recently uploaded (20)

Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Chapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdfChapter -12, Antibiotics (One Page Notes).pdf
Chapter -12, Antibiotics (One Page Notes).pdf
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 

Implementation of bim softwares in malaysia possibilities within the education industry

  • 1. TABLE OF CONTENTS TITLE PAGE ABSTRACT DECLARATION ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF APPENDICES CHAPTER 1: INTRODUCTION 1.1 BACKGROUND 1.2 STATEMENT OF RESEARCH PROBLEM 1.3 PREVIOUS SIMILAR STUDIES 1.4 RESEARCH QUESTIONS 1.5 RESEARCH OBJECTIVES 1.6 SCOPE AND LIMITATIONS 1.7 IMPORTANCE OF RESEARCH FINDINGS 1.8 RESEARCH DESIGN 1.9 CHAPTER ORGANIZATIONS 1.10 RESEARCH PROGRAMME 1.11 REFERENCES 2 3 - - 4 4 9 11 12 13 14 15 16 – 17 18 19 20 – 21
  • 2. LIST OF TABLES TITLE PAGE Table 1: BIM usage in construction stages 6 Table 2: Research Design of Proposal 16 – 17 Table 3: Programme Chart for Semester 5 19 Table 4: Programme Chart for Semester 6 19
  • 3. CHAPTER 1 INTRODUCTION 1.1 Background Building Information Modelling (BIM) applications are by and large quickly grasped by the development business to decrease cost, time, and improve quality and also ecological manageability. Accordingly numerous development firms are picking up involvement with these new instruments and forms and changing their desires from college graduates. The same number of development programs endeavour to convey educational modules and research that is important to the business; it is basic to precisely comprehend the effect of BIM on the operations and routine with regards to development organizations. These applications persistently introduce change openings while reinforcing coordinated effort inside the development business. Individuals, process and innovation are to a great extent talked about elements influencing BIM selection over the worldwide development industry. The agitating priority imagined by development experts with the beginning of BIM in Malaysia has earned more research concentrate on these delicate issues to innovation reception.
  • 4. Harris, Adi, Haron, Preece and Husain (2014) all recall back to where that the Director of Public Works Department (PWD) officially introduced the use of BIM within Malaysia in the recent year of 2009 the opening of Infrastructure & Construction Asia’s Building Information Modeling and Sustainable Architecture Conference. The Malaysian government all alone prosperity deals with to urge development players to apply BIM to development ventures since it can conquer run of the mill development venture issues, for example, postponement and conflicts in a plan by various experts and development cost overwhelm. Autodesk devices have been proposed by the administration as a BIM instrument stage. Latiffi, Mohd, Kasim and Fathi (2013) express that it is critical for development players to know about the significance of BIM application in development ventures in light of the fact that BIM can be one of the conditions expected of an organization to fit the bill for government and private tasks, like what is polished in some different nations. BIM can be broken down into numerous applications; most which have been deemed as outdated while a minority of them have claimed a more superior entitlement. Examples of the more renowned applications include Autodesk, Revit and AutoCAD, while the more trending ones include AtlesPro and Glodon. NBS (2016) shows an updated statistical analysis of the cost reduction tendency generated from the use of BIM, proving that through all these applications, all of them have identical characteristics, which is to improve overall productivity and cost reductions. In fact, this is actually the leading reason why most companies embed the use of BIM softwares. A case study has shown that 63% believe BIM will help bring about a 33% reduction in the initial cost of construction and whole life cost of built assets, while 57% believe BIM will help bring about a 50% reduction in the time from inception to completion for new-build and refurbished assets (NBS, 2016).
  • 5. Table 1: BIM usage in construction stages (Source: Latiffi, Mohd, Kasim & Fathi, 2013, p. 3) BIM can be connected to all development venture stages, which are a pre- construction stage, construction stage and post-construction stage. Table 1 demonstrates the application of BIM in a construction venture for each stage, comprising of pre-construction stage, construction stage and post-construction stage. It can be seen that BIM application in a development venture helps in dealing with the task all the more adequately. Latiffi, Mohd, Kasim and Fathi (2013) trust that the capacity of BIM to cultivate joint effort between construction players encourages the design process choice much more adequately. As cited by Latffi, Mohd, Kasim and Fathi (2013), BIM likewise guarantees culmination of a quality construction project since it helps with sorting out exercises and staging amid the planning phase of a project.
  • 6. Under perceptions made by Latffi, Mohd, Kasim and Fathi (2013), the utilization of BIM in pre-construction stage is more evident than during the construction and post-construction stages. This is due to the numerous exercises that are done at this stage, for example, design plan, scheduling and estimating; these activities generally require the utilization of BIM technology. On 27 August 2007, PWD leading group of trustees was set up by the government to pick a suitable BIM platform to ensure interoperability (JKR, 2013). The driving inspiration by working up the leading group of trustees was to perceive development progress of construction projects that included BIM use. Also, the admonitory group masterminded a BIM standard manual documentation for PWD generally speaking for construction players' reference. The board additionally gives BIM preparing and consultative help to broaden bunches in using BIM apparatuses (JKR, 2013). The fundamental projects in Malaysia that incorporated the execution of BIM is the Multipurpose Hall of Universiti Tun Hussein Onn Malaysia (UTHM) in the Southern region of Malaysia (CREAM, 2012). Other BIM projects in Malaysia are National Cancer Institute of Malaysia, which is depended upon to be done on 31 August 2013, Educity Sports Complex in Nusajaya, Johor and Ancasa Hotel in Pekan, Pahang. As far as ease of use, BIM tools, for example, RevitArchitectural and Revit Structural can outline the whole development forms through a propelled 4- Dimensional (4D) reenactment and clash recognition. Evidence has demonstrated that BIM has proven itself through successful projects that have been managed in different nations, for example, the USA, the UK, Hong Kong and Australia (Fernaux and Kivvits, 2008, pp.10 – 31). Cases of such successful projects are One Island East in Hong Kong, Hilton Aquarium Atlanta, Georgia, The Freedom Tower, New York and The Sydney Opera House, Australia.
  • 7. Moreover, the unwavering quality of information trade between any architect and structural engineer must be verified before continuing to build up a model that can facilitate different procedures, for example, mechanical an electrical design, assessments and development stage process. Based on the mentioned features, the PWD recognized that BIM devices from Autodesk and Exactal Cost-X were relevant to the business. The tools serve as an application stage for the Malaysian government. This has been formally proclaimed by the PWD on 25 February 2010. However, through it all, the industries have been focussing the adaptation of BIM applications by their employees. Educational industries however, show the lack of embedment of BIM application skills within students entirely. Redirecting the focus of implementation of BIM applications to the educational industry can allow students to have a better grasp at the usage of these applications. The need to handle all these information as an employee under numerous commitments can be very stressful, thus better for the students to adapt these applications at a much more efficient rate.
  • 8. 1.2 Statement of ResearchProblem The fundamental issue that most organizations look inside the business about BIM is the adjustment level inside representatives. There is strong proof to demonstrate that a creative and productive development industry adds to a stable worldwide economy. Olatunji, Sher and Gu (2009) trusts that the development business is famously traditionalist and ease back to adjust to change as outlined by the way that the development business has stayed one of the slowest adopters of inventive advancements in spite of solid confirmation of the connection between interest in Information Technology (IT) and enhanced execution and is, all things considered, inadequate in encouraging amicable workplaces. Olatunji, Sher and Gu (2009) also quotes “one of the single largest determinants of project failure may be that construction professionals expose themselves to conflicts of interest”. For instance, a disciplined professional may choose to secure their expert intrigue as opposed to acknowledging an obligation of care to ensure the business. Strikingly, such disappointments have expanded the disintegration of train limits, to a great extent because of an expanding interest for multi-gifted experts (Olatunji, Sher & Gu, 2009, p. 67). Ruddock, L (1999) trusts that because of the way that development request is firmly connected to add up to interest for speculation, the industry's future depends to a great extent on the achievement of national governments in animating financial development. Ruddock, L (1999) has developed the investigation including the connection between the GDP levels for those nations and the venture levels in divisions including Non-private development, Civil Engineering, New private development as well as Renovation and modernisation from the year 1991 to 1998. It was demonstrated that the more than an area has been contributed to, the higher the GDP level is achieved. While Ruddock, L (1999) has trusted that there has been a dread, in a few nations, that there may be a long haul drop in development request as
  • 9. populace balances out and as the real framework and lodging needs are fulfilled. In any case, new mechanical, business and social speculation and the updating of natural gauges are creating expanding development needs. The main issue will be to fulfil these necessities. (Ruddock, L, 1999) There is no common intrigue shown between the workers and the organizations all alone. This essentially depicts the representatives have built up a shared dread among each other, and that dread is the over executions of these products. They expect that people will wind up noticeably a far second rate later on and have decided to not adjust to these applications, in the sore trust that BIM won't assume control over these employments if there is no adjustment in any case. Regardless of the expectation that the take-up of BIM in the AEC/FM will be moderate yet unavoidable (Goldberg, 2005), there are some genuine hindrances which should be tended to all together in order for this selection to happen. That is the reason it is essential to enable understudies to get a handle on the enthusiasm for new learning aptitudes within the area of implementation of BIM. In the end, if the students can depict a typical enthusiasm for utilizing BIM, at that point they will be comfortable in securing their employment as graduates later on. Therefore, this paper aims to study the implementation of BIM and its impact on the prospects of graduates.
  • 10. 1.3 Previous Similar Studies A somewhat comparative study "Investigating the Barriers and Driving Factors in Implementing Building Information Modeling (BIM) in the Malaysian Construction Industry: A Preliminary Study" led by Zahrizan, Nasly, Ahmad, Marshall-Pointing and Zuhairi (2013) with the goal to decide the potential obstructions and driven elements of implementation of BIM by taking a gander at three variations of the theme which are the respondents' profiles, conceivable hindrances and the relative significance of the driving components in implementing BIM, all in their individual request. The information was gathered by ordering the distinctive sorts of factors, which for this situation considered 19 of those factors, into two classifications delegated as External Push and Internal Push. Discoveries of the investigation featured conceivable variables to the obstacle or the drive of the application of BIM. Early investigation is proposed to dispose of conflicting elements, for example, the ignorance of the presence of BIM or its capacity. Comfort inspecting technique was utilized in spite of the fact that this approach has its potential for inclination. However, in the wake of considering this is a preparatory report, accommodation inspecting was viewed as suitable (Frey, Botan, Friedman and Kreps, 1991). This examination itself demonstrates the conceivable components influencing the implementation of BIM. In addition to that, a comparative report "Preliminary building information modelling adoption model in Malaysia: A strategic information technology perspective" conducted by Enegbuma, Aliagha and Ali (2014) proposes that the adoption of BIM has more significance to the interaction of the human viewpoint with the regularly developing goals of technology and strategic IT. Enegbuma, Aliagha and Ali (2014) believe that the principal factors that hinder a successful appropriation rate included individuals, process and technology. The discoveries were influenced by a few outer components, fundamentally alluding to the environment where BIM is used. The paper's further discoveries likewise speak to the intervening impact of the coordinated effort for new BIM entrants.
  • 11. 1.4 ResearchQuestions This research is expected to ascertain the following topics: i) What is the implementation of various types (or a certain type) of BIM Applications within several schools and its impact on the educational industry? ii) Why has BIM not been fully utilized and implemented within the students in schools? iii) What are the effects of implementing BIM within the students’ daily learnings? iv) What is the required skill cap that students must achieve to use BIM efficiently and how will this affect their adaptation to BIM?
  • 12. 1.5 ResearchObjectives In particular, this study aims to achieve the following specific objectives: i) To study the implementation of various types of BIM Applications and the primary BIM software, Glodon within several schools and its impact on the educational industry. ii) To determine and analyse the effects of implementing BIM within the students’ daily learnings. iii) To identify the students’ skill cap levels in the application of BIM and how do they intend to use these applications in the future iv) To determine why BIM has not been fully utilized within schools.
  • 13. 1.6 Scope and Limitations The study is executed under the specific parameter as described in the following: i) Respondents to the questionnaire survey shall be limited to the views expressed through any experience in the usage of BIM that they have gained within their years of studying in college. Graduates that have been under employment over 1 year shall be exempted. To fully show their adaptation skills as employees despite knowledge of BIM prior to graduating and how have they adapted. ii) These college or university institutions shall be registered within a range of area as classified within the compounds of Kuala Lumpur, Malaysia. The research shall include undergraduates, post graduates and graduates from the education backgrounds that will potentially lead to future prospects within the construction industry. iii) Limitations envisaged are the difficulties to generate effective responses and low response rate within the few months period of questionnaires survey distribution. To enhance the efficiency and reliability of the study, direct interview methodology is expected to be performed, targeted the students who have been in the education industry within their line of choice for more than one year. Most of the undergraduates who have lesser than one year of college experience are considered freshmen and will probably not have the skill cap to adapt to BIM.
  • 14. 1.7 Importance of ResearchFindings It is denoted that the world will eventually encounter the need to implement BIM into the construction process which permits growth in effectiveness in each part of the construction industry. The implementation of BIM inside the prime era of undergraduates, postgraduates and graduates, preceding the employment phase can help build up the graduates' capabilities of using BIM effectively. Therefore, there is a need to consider the conceivable advantages from the implementation of BIM in the education industry.
  • 15. 1.8 ResearchDesign Table 2: Research Design of Proposal OBJECTIVE TYPES OF DATA SOURCES OF DATA METHOD OF COLLECTION i) To identify the implementation of various types (or a certain type) of BIM Applications within several schools and its impact on the educational industry. - Types of BIM Softwares implemented. - Different schools involved in using BIM. - Articles - Books - Conference papers - Databases - Dissertations - Journals - Online Resources - Reports Primary Data - Questionnaires - Pilot Interviews Secondary Data - Document analysis - Reading ii) To determine and analyse the effects of implementing BIM within the students’ daily learnings. - Possible negative or positive effects upon implementation of BIM on students. - Perspective rate of adoption students and lecturers involved. - Articles - Books - Conference papers - Databases - Dissertations - Journals - Online Resources - Reports Primary Data - Questionnaires - Pilot Interviews Secondary Data - Document analysis - Reading
  • 16. 1.8 ResearchDesign(Cont’d) OBJECTIVE TYPES OF DATA SOURCES OF DATA METHOD OF COLLECTION iii) To identify the students’ skill cap levels in the application of BIM and how do they intend to use these applications in the future. - Expected level information needed to excel in BIM usage compared to the average level. - Different types of BIM applications and which serves to be the most user-friendly. - Articles - Books - Conference papers - Databases - Dissertations - Journals - Online Resources - Reports Primary Data - Questionnaires - Pilot Interviews Secondary Data - Document analysis - Reading iv) To determine why BIM has not been fully utilized within schools. - Possible factors to why BIM is not fully implemented for the sake of students development. - New and outdated software that play their roles of factor. - Articles - Books - Conference papers - Databases - Dissertations - Journals - Online Resources - Reports Primary Data - Questionnaires - Pilot Interviews Secondary Data - Document analysis - Reading
  • 17. 1.9 Chapter Organizations This thesis is comprising of five (5) chapters and organized in the following order: Chapter 1 presents an introduction to the research, which highlights the background, need of study, statement of research problems, research questions, research objectives, scope and limitation, research design, structure of thesis and research program. Chapter 2 is dedicated to the literature reviews associated to the research, which apply the previous relevant research findings as support and basis of an academic context of the study. The chapter provided insights into the implementation of container construction with the criteria, constrains and advantages underpinning in this construction method. Chapter 3 shows the methodological aspects of the study, which outline selected research design, data resources, procedures utilized in the study, data gathering method employed and lastly analytical techniques of data collection. Chapter 4 discussed the analysis of data collected from the questionnaire. Based on the formulated research objectives, it reports the results of the survey in relation to congruence with or divergence from related literature. The analysed data accompanied with charts and tables to indicate the level of satisfactory. Chapter 5 noted as the last chapter which summarizes the research findings with a concrete conclusion with the recommendations for further studies.
  • 18. 1.10 ResearchProgramme Table 3: Programme Chart for Semester 5 1 2 3 4 5 6 7 8 S/B 9 10 11 12 13 14 Identification of Area of Interest Approval of Research Title Identification of Research Objective Submission of Research Proposal Submission of Literature Review Week Activity Table 4: Programme Chart for Semester 6 1 2 3 4 5 6 7 8 S/B 9 10 11 12 13 14 Finalization of Theoritical Framework Submission of Research Methodology Preparation of Questionnaire Distribution of Questionnaire Data Collection and Analysis Conclusion and Recommendation Final Submission of Dissertation Week Activity Completed OutstandingIn Progress
  • 19. CHAPTER 2 LITERATURE REVIEW 2.1 Introduction This chapter aims to provide the review of literature that has been previously carried out by other scholars. It will start off by providing an overview of the Graduate Quantity Surveyor (QS), the Quantity Surveying Education in Malaysia and its recent implementation of BIM software within the education industry. In this chapter, the relevant objectives, as stated in the previous chapter are the factors that either hinder or catalyse the growth of the implementation of BIM Software within colleges or educational institutions. Finally yet importantly, this chapter shall provide remedies to address the lack of awareness among students about implementing BIM professionalism before being exposed to the working environment. Therefore, based on the previous studies proffered by past researchers, it is possible to discover related findings, which shall serve as theories for the subsequent chapters. 2.2 Definition of BIM
  • 20. As per the WSP Online (2013), it is the process of designing a building collaboratively by utilizing one coherent system of computer models rather than as a set of drawings. BIM is converged between technology and an arrangement of work forms that enable the entities to synergize their workforce, resulting in the better effectiveness of the work process. There are several types of BIM software that coincides with the improvement of the construction and the education industry, such as the most trending one, Glodon, Cost X, Atlespro and so forth. BIM all alone can possess entirely different definitions yet there exists a widespread acceptance that it can't solely exist without the incorporation of either technology or the set of work processes. Implementation of BIM within Malaysia was officially presented by the Director of Public Works Department (PWD) in the year 2007. The Malaysian government on its own well-being deals with to encourage construction players to apply BIM to construction projects since it can overcome typical construction project issues, for example, deferral and conflicts in design by different professionals and construction cost overrun. In summary, BIM is an enormous platform on its own that enables users to acquire a better grasp of the insights and details about the project that they are attending to. At the technical core of BIM is the software that enables proficient 3D modelling and information management. Extensive utilization of the software eventually leads to a complete comprehension of the technical core. It additionally goes about as a sociotechnical framework where it is delegated a blend of both man-made technology and the social and institutional results of its implementation in the society. BIM is a 'system' because it could be depicted as a unified element comprising of many interacting parts, some physical, others not. It is 'sociotechnical' on the grounds that it has social segments, complementing the technical core. 2.3 Implementation of BIM in Malaysia
  • 21. In the year 2007, the Director of the Public Works Department (PWD) introduced the implementation of BIM into Malaysia. Starting from there, BIM has seen an ascent in its use within the country. Autodesk tools have been proposed by the government as a principle BIM tool platform. It is vital for construction players to know about the significance of BIM application in construction projects. This generally implies that the application of BIM is being focussed towards the employment industry as opposed to its development under the education industry. In this era of modernisation, it has turned into a need for individuals to work productively where there are major time limitations and delays, particularly within the construction industry where these circumstances are quite often unavoidable. The implementation of BIM has prompted numerous breakthroughs of project possibilities. As shown under the National BIM Report (2016), through the implementation of BIM, 63% believe that BIM will help with a 33% diminishment in the underlying expense of construction and whole life cost of built assets, demonstrating that it is a cost-beneficial entity on its own. Adam Matthews (2016) states that there are three patterns that focus public sector minds on investing resources into better approaches for working. Firstly, governments and public agencies across the world are adjusting to the new norm of inclined pressure on public spending. This is being catalyzed by full-scale issues such as cost bearing of an ageing populace, rising social welfare and national debt concerns. These issues are far from unique as governments around the globe are also confronting similar extreme budgetary imperatives. However, despite fiscal challenges, governments must build and fund national infrastructure for the future. Putting framework development on hold devastates future prospects of a region or a country as inadequate infrastructure limits prospects for growth or inward investment. Thirdly, to aggravate the general public challenge, expanding regulation and policy drivers to decrease utilization of natural resources, including non-renewable energy sources, are creating an intense requirement for public procurers to discover better approaches to address this three-sided problem; spend carefully, build more, and build to a higher, more feasible quality standard. The construction sector holds the guarantee of a critical
  • 22. commitment to these three difficulties. Through these trends, it solidifies the undeniable certainty that without a proficient option in construction planning, there will be no space for country development in construction. Henceforth, this focusses on the employees' ability to complete these ideas by adjusting to the recently implemented idea of BIM inside Malaysia on its own. The idea persists as a technique to crystallize the concept of productive development in the construction sector yet paying little heed to any sort of effort to implement its adaptability, Olatunji, Sher and Gu (2009) trust that the industry has remained one of the slowest adopters of innovative technologies in spite of solid evidence of the relationship between investment in Information Technology (IT) and improved performance. On a relative note, there is no significant common interest shown between the employees and the companies on their own. This basically indicates that the employees have built up a shared fear among each other, and that fear is the over implementation of these software. They fear that humans will become far inferior in the future and have decided to not adjust to these applications, in the sore trust that BIM will not assume control over these employments if there is no adjustment in any case. In spite of the expectation that the take-up of BIM in the AEC/FM will be moderately slow but inevitable (Goldberg, 2005), there are some genuine hindrances which should be tended to all together for this adoption to occur. This begs the question for another underlying clause which may improve this adaptability, which is to implement it where reception of new information is at its peak; to implement the full functional use of BIM within students or fresh graduates before or at the early stages of their working environment. That is why it is important to allow students to grasp the interest in new learning skills within the area of implementation of BIM. In the end, if the students are able to portray a common interest in using BIM, then they will be comfortable in securing jobs as graduates in the future.
  • 23. The conceivable effects from the implementation of BIM alongside the arrangement of full comprehension to the students and the lecturers can be satisfying. From the implementation of BIM in such a case, students will have the capacity to comprehend the concept of BIM much better with their perk in cutting-edge technology. Their capabilities of understanding the stage are not hindered by their personal variables, but instead the external factors, such as lecturers possess insufficient teaching materials for BIM or the lack of training periods given to the students of this generation. Their ability can serve a productive protocol when they are in the working stage, where these expectations are already addressed without the need of excessive training. Macdonald and Mills (2011) hypothesize the need to establish BIM education framework to support the adoption of collaborative design and BIM education by Architecture, Engineering and Construction (AEC) schools. Furthermore, Macdonald (2012) built up the Illustration, Manipulation, Application and Collaboration (IMAC) framework to help lecturers benchmark their curriculum to enhance collaborative design education among students of the architecture, engineering and construction (AEC) disciplines. The framework synthesized Bloom et al. (1956) learning taxonomy which classifies learning into cognitive, affective and psychomotor and Krathwohl et al. (1964) which stretched out the classification to incorporate changes in interest, attitude and qualities. The framework aims to redevelop current courses to accommodate BIM competencies for different disciplines. In Malaysia, there are currently five (5) public universities and 13 private universities offering the Bachelor Degree of Quantity Surveying program. The following are as shown in Table 2.1. Table 2.1: List of Public Universities and Private Universities in Malaysia offering Bachelor Degree of Quantity Surveying program (Source: BOARD of QUANTITY SURVEYORS MALAYSIA website)
  • 24. Category Universities Public Universities Universiti Sains Malaysia (USM) University of Malaya (UM) Univeristi Teknologi MARA (UiTM) Universiti Teknologi Malaysia (UTM) International Islamic University of Malaysia (IIUM) Private Universities Taylor’s University INTI International University and Colleges Heriot-Watt University Malaysia Linton University College Infrastructure University Kuala Lumpur (IUKL) University of Reading Malaysia SEGi University University Tunku Abdul Rahman (UTAR) Tunku Abdul Rahman University College Twintech International University College of Technology Lagenda Education Group University College of Technology Sarawak (UCTS) Imperia Institute of Technology 2.4 Ability to Adapt to New Information within Undergraduates, Post Graduates and Graduates Perspectives of knowledge - that is, regardless of whether students see their capabilities as settled or pliant - influence student performance in the classroom (Dweck, 1986). Any student, who considers knowledge to be fixed, is normally demoralized by mistakes and experience barriers while learning. A view some hold is that sciences are saved for the savvy students (Barmby and Defty, 2006); science is an ability that most typical individuals are unequipped for accomplishing normally. This is illustrative of a settled
  • 25. mentality, which can keep individuals down. Then again, understudies, who consider knowledge to be moldable, gain from slip-ups and consider difficulties to be snags to prevail. All subjects, regardless of the trouble, are an arrangement of aptitudes that should be refined. Individuals need to expel themselves from the settled outlook that getting the hang of anything troublesome is a capacity they either have or don't have and start to understand that with exertion they can refine aptitudes and build up that insight. Thus, students ought to receive a development mentality of refining aptitudes and building up their insight. Learning is never completed; difficulties and disappointments need to in the end be grasped. This investigation was a path for understudies to build up a development mentality, a view that has been appealed to enhance scholastic execution from a settled view (Blackwell et al., 2007; Mangels et al., 2006; Birgit, 2001). A development mentality individual trusts that his or her insight can change, either decidedly or contrarily, contingent upon the exertion and training (Blazer, 2011). Students are not all the same, which implies their mentalities, are not all the same. Jones, Byrd, and Lusk (2009) examined secondary school students' convictions about insight and found that "students have a scope of convictions about the meaning of knowledge" (p. 3). Dweck (1999) noticed that students with settled attitudes have a tendency to stay away from challenges since they need to do well. Thusly, fixed mindset students avoid activities where they may fail, basically when completely implementing BIM and its full functions as a sort of new data for students to deal with. These difficulties that the fixed mindset students stay away from are external forces that get in students' way when demonstrating what they know. Individuals with fixed mindsets don't process why they should attempt since they normally don't have the capacity, because it doesn't propel them or roll out a positive improvement for them, so it is viewed as a futile activity. Miele and Molden (2010) found a "propensity for [fixed mindset] theorist to become less confident as they put more exertion into the assignment" (p. 553). For instance, students with a fixed mindset more often than not either disregard feedback or resent it to their
  • 26. knowledge. Since they believe knowledge can't be enhanced, the feedback of insight is seen as a feedback of the students. This apparent feedback of insight isolates students and disheartens them from having a go at anything new, driving them to evade more difficulties after some time. Likewise, other students' success influences the settled personality to make these students look terrible in their psyche. Other students' prosperity is viewed as either luck, objectionable actions, or as tarnish to their own success as it achieves resentful things towards the students. Since the students with fixed mindsets tend to not challenge themselves and would prefer not to attempt, they cannot achieve their maximum potential and it will end up more challenging for them to improve because everything they do or try to learn is who they are. Despite what might be expected, growth mindsets are met with changed qualities (Dweck, 1999). These growth mindset students believe that intelligence can be developed because the brain is a muscle that can be trained over time. This tends to lead these students towards a desire to move forward. Since they know and feel that they can improve, they grasp challenges. This new grasp happens in light of the fact that growth mindset students know they can turn out better on the other side, which raises the confidence of the students. From this, the ability for students to adjust to BIM and its entire functions may seem practically unimaginable, yet eventually, students will have the capacity to get a grasp its concept, given enough endorsement and practice along the process. 2.5 Quantity Surveying Competency Competency is characterized as a widely inclusive desire of a professional in a workplace where the application of skills and knowledge to handle new situations and job scope is required (Golob, 2002; Mohd Derus et al., 2009). These skills over the long haul prompt to an upper hand in competitiveness (Deist and Winterton, 2005). Stewart (2012) suggests that the QS profession aligns with present BIM drive, have more research in quantity take-off IT con Vol. 21 (2016), Ali et al., pg. 143 with BIM and create a new standard, whilst keeping in mind the compatibility of the software. Standard measurement difference, for example, Ireland Agreed Rules of Measurement (ARM), UK New Rules of Measurement (NRM), Malaysian Standard Method of
  • 27. Measurement of Building Works (SMM) and others, create clashing software needs which require modifications for each market (Olatunji et al., 2010; Stewart, 2012; Yusuf et al., 2013). The UK New Rules of Measurement (NRM) is as of late utilized for different phases of development to be specific:  NRM 1: Order of cost estimating and cost planning for capital building works. It caters for the quantification of building works used in preparation of cost estimates and cost plans.  NRM 2: Detailed measurement for building works. It guides the detailed measurement and description of building works used during a tender pricing  NRM 3: Order of cost estimating and cost planning for building maintenance works. This guides quantification and description of maintenance works used in preparing initial order of cost estimates during the preparation stages, cost plans during the design development and preconstruction stages, and detailed, asset-specific cost plans during the pre-construction phases. This new procedure of measurement gives a steady approach to deal with cost management and enhances comprehension of measurement rules by various collaborating professionals (Lee et al., 2011; RICS, 2012). Wu et al., (2014) opined that for measurement utilizing BIM, quantities should be exported to link BIM estimating with design tools and utilize specific BIM measurement tools. Be that as it may, issues of substandard quality of BIM models, inconsistent level of design information, data exchange and conflicting formats utilized for estimating still exists. Current research in Malaysia prescribes the utilization of SMM for preparing BoQ for M&E services rather than schedule of costs to reduce the risk of value vulnerability and enhanced client value. Consequently, estimation utilizing BIM requires the filtration of BIM information to fit in with SMM (Yusuf et al., 2013). Regarding soft skills demanded by employers of quantity surveyors, Shafie et al. (2014) found that having high levels of critical thinking, problem-solving and decision-making abilities ranked highest in priority for
  • 28. employer skill demand. These soft skills are in accordance with that of the Ministry of Higher Education (MOHE) 2006 (see below):  Communication skills (CS)  Critical thinking and problem-solving skills (CTPS)  Teamwork skills (TS)  Lifelong learning and information management skills (LL)  Entrepreneurship skills (ES)  Ethics and professional moral (EM) and;  Leadership skills (LS) Mohd-Derus et al. (2009) posited that organizational environment, job demand, and individual competencies define competency of a QS. 2.5.1 BIM Competencies for Quantity Surveying Students Stanley and Thurnell (2014) suggest that incompetency and lack of protocols relevant to foster effective collaboration within the BIM team forms a limiting factor to BIM usage. Gardner et al. (2014) found similar barriers in BIM competency among graduates in South Australia where its trait is a close parallel to the competency highlighted by Royal Institution of Chartered Surveyors (RICS) BIM manager certification which measures BIM initiation, processes and collaboration and integration including optional competencies of both commercial and technical abilities (White, 2013). Lewis et al. (2015) further found that BIM training improve students’ confidence and perception of utilizing BIM in energy simulation of buildings for improving sustainable designs and construction related courses. Nath et al. (2015) found that among Singapore construction precasters, workflow comparison of current and future BIM utilization revealed an increase in overall productivity improvement of approximately 36% for processing time and 38% for total time.
  • 29. Accordingly, HDB seeks to leverage the BIM capabilities to improve the construction productivity through increased support for standardization of precast elements which eventually leads to error-free generation of shop drawings. Wood et al. (2014) developed a framework to address the need to comprehend the level of development (LOD) of construction professionals in the construction industry. The framework extracts materials information from BIM and subsequently provided an algorithm to fuzzy match BIM objects with cost data for quantity measurements. Morlhon et al. (2014) developed a critical success factor model which integrates capability maturity model (CMM) and critical success factors (CSFs) focusing on BIM impact on project management. The CSFs include business process re-engineering, standardization, stakeholders influence, education to information management, technical education and systems selection process. The implementation of BIM within Quantity Surveying (QS) students allows for development of certain competencies that may serve as a fulfilment expectation under the employers’ line of benchmarks. A summary of such competencies for Quantity Surveying students utilizing BIM is shown in Table 4. Table 2.2: Summary of BIM Competencies for Quantity Surveying Students Competency Skill Set Author Quantity Take-off Ability to utilize BIM for quantity take-off Monteiro and Martins (2013) Energy Modelling (EM) Building element based energy simulation Lewis et al. (2015) Precast Productivity Shop drawing development and quantity take off Nath et al. (2015)
  • 30. Level of Development (LOD) Structural design quantity take-off Wood et al. (2014) Project Management Project monitoring Morlhon et al. (2014) Bill of Quantity Developing BoQ for M&E services Yusuf et al., 2013 Collaboration Adapting to collaborative work environments Gardner et al. (2014) 2.6 Factors Affecting the Implementation of BIM in general There are many benefits that BIM can offer to the Malaysian construction industry, especially in enhancing the communication between different parties in construction projects. BIM is able to streamline and aids clear communication between client, consultant and contractor in construction projects by providing a single respiratory system for exchanging digital information in one or more agreed format. Khanzode & Fisher (2000) and Azhar et al. (2008) believe that, this approach can reduce errors associated with inconsistent and uncoordinated project documents because BIM is capable of carrying information which are related to the building either its physical or functional characteristics. Despite the numerous benefits from the utilisation of BIM, factors impeded the pace in implementing BIM in construction industry have been identified.
  • 31. On top of cost, compatibility and complexity of the technology are also the factors that influence the adoption of new technology. Cost is a more subjective issue because it requires external factors such as regulations imposed by the government or clients. Lederer, Maupin, Sena and Zhuang (2000) believes that to increase the pace of adoption of new IT, higher compatibility and more user-friendly technology are the characteristics that the technology must have because, it is easy for people to accept and use new technology if they are familiar with it. The factors that affect the implementation of BIM shall be further discussed in subcategories in relation with similar studies by other researchers. 2.6.1 Technical and Social Interference Griffith et al. (1999), O’Brien (2000) and Whyte & Bouchlaghem (2002) believe that, the failure to implement new information technology (IT) in construction industry happens because of technical issues rather than social issues such as lack of technical expertise, the complexity of the system and lack of support system. According to Griffith, Raymond and Aiman-Smith, the relative invisibility of the implementation of process for new technologies is a major problem which leads to “The Invisibility Problem” theory. Implementation includes any process undertaken to institutionalize a new technology as a stable part of an organisation and follows the adoption decision and is bounded by institutionalization, in which technology becomes a part of the status quo (Griffith, Raymond & Aiman Smith, 1999, p 30)
  • 32. The invisibility of implementation results in the tendency for decision makers to acquire major new technologies, to overestimate the value of a new technology and the likelihood of successful implementation. Griffith, Raymond and Aiman-Smith (1999) quote that from a superficial perspective, the estimated value of a successful implemented technology may seem easy to establish, and it is almost always not the case. Caterpillar, for example, took more than two years to get its first larger, flexible manufacturing system to effectively function and several more years to actually achieve the full realization of the system’s actual capabilities. M. Lynne Markus and Robert Benjamin make an even stronger statement based on their experiences with information technology specialists and consultants involved in information. Markus and Benjamin note that managers often possess a certain theory suggested as, the “Magic-Bullet Theory”, when it comes to information technology-enabled transformation. They have built a gun and the magic-bullet of information associated to this gun, when fired, cannot do anything but hit its mark. Since the bullet is programmed to always hit its mark, there is almost no reason to worry about who is going to aim this gun and fire it. However, Ruikar et al. and Rojas & Locsin have a more contradicting view where they believe that people actually play a part as the major barrier to implementing new IT in the construction industry. Martinko et al. added that, the failure in changing people behaviour to handle new tools is the most prominent factor of why people are reluctant to adopt new technology. A survey done by Khemlani revealed that the primary obstacles in implementing BIM is the resistance from employees who are reluctant to learn something new and challenges because of their beliefs and complacency with current status. Lack of initiative and training (Bernstein and Pittman 2004), the fragmented nature of AEC industry (Johnson and Laepple 2003), varied market readiness across geographies, and reluctance to change existing work practice (Johnson and Laepple 2003) have been discussed as some of the reasons for slow adoption of BIM. In an industry where most projects are handled in multi-organizational teams the lack of clarity on responsibilities, roles and benefits in using the BIM approach is an important inhibiting factor (Holzer 2007).
  • 33. Some of the surveys conducted recently (Khemlani 2007b, Howard and Bjork 2008) suggest that collaboration is still based on exchange of 2D drawings, even though individual disciplines are working in a 3D environment and the demand for object libraries is growing. These surveys reveal that a tool preference varies with film size, and there is a greater demand for technologies supporting distributed collaborative works across all firm sizes. However, there is a lack of confidence in standards such as IFC (Industry Foundation Class). This shows that regardless of the existence of the latest technology, users are still incapable of adopting these technologies through the belief that there is no existential change in human behaviour that may alter their adoption capabilities. 2.6.2 Organisational Interference Stephenson, P. & Blaza, S. and Love et al. believe that the factors of the failure in implementing new technology originates from organisational problems. Most organisations are reluctant to change their business process because they are afraid that by changing their business process, it involves expenses and jeopardises their established process because they cannot accept the underlying ratio uncertainty of loss. Most employees in these organisations develop the intuition that technology will take over their roles and feel anxiety towards changes especially when new technology is involved and this happens because not many managers understand how to manage technological change. As Taylor, J.E., & Levitt, R. (2007) understand, many organisations believe that implementing BIM will affect their established business processes because implementing new technology will reshape their business processes and during this process, productivity will suffer because the transition process from fragmented to collaborative in nature will put the project outcomes and clients’ expectations at risk.
  • 34. Love, P.E.D., Li, H. Cheng, E.W.L and Tse, R.Y.C (2001) has concluded from a list interviews that the organizational barriers that were identified included the following: • indirect or hidden costs; • inability to quantify (financially) the impact of e-commerce; • inappropriate investment appraisal techniques; • myopic strategic planning; • lack of employee knowledge; • lack of an IT infrastructure; • a reluctance to form collaborative partnerships; and • a general reluctance to change the way business was undertaken. Table 2.3: Details of Firms interviewed (Source: Love, P.E.D., Li, H. Cheng, E.W.L and Tse, R.Y.C, 2001) It was generally perceived that firms did not want to change as they were not able to foresee the benefits that e-commerce offered. In fact, none of the 20 businesses interviewed had begun to embrace business-to-business e-commerce, despite the forthcoming introduction of electronic tendering for Government projects and the goods and services Tax (GST). Seventeen firms considered e-commerce to be simply an interactive web page. In fact, when
  • 35. probed about the idea of sharing information and knowledge using the internet there was found to be a general consensus that this would jeopardize their competitive advantage. Figure 2.1: Barriers to adopting e-commerce in construction (Source: Love, P.E.D., Li, H. Cheng, E.W.L and Tse, R.Y.C, 2001) From the survey interviews carried out, only one interviewee stated that they would like to transform their business processes by developing appropriate internal structures, systems and protocols to take advantage of web-based technologies. While the interviewee recognized the urgency to employ such technologies, the degree of change that was required to transform their business was considered to be too dramatic, at least in the short and medium terms. Essentially, this business like all others was heavily reliant on cash flow and thus, could not invest in technologies that would not bring about immediate benefits. In a different perspective, education industries have a similar behaviour to the construction industry. The employees represent the lecturers and the decision makers would represent the higher order in the programme of the school to decide whether it is worth investing into these BIM software. There exist these similar barriers that most educational institutions may encounter, thus allowing only a small fraction of the fulfilment for study of BIM among their students. 2.6.3 Lack of Knowledge and Skill
  • 36. Knowledge is practically a component that every living being needs to process in order to make progress in any activity they are committed in. Stewart and Mohamed (2003) explain that effective IT implementation in construction is essential to improve productivity. A study by Love et al. (1996) identified problems and barriers to the implementation of IT. The most significant problems were the lack of system knowledge, with 68% of contractors interviewed perceiving this as a problem area, and lack of training associated with the implementation, with 62% identifying this as a problem. The lack of knowledge and ignorance of the potential benefits of IT applications was found to extend to contractor’s existing systems, with more than 50% of contractors unaware of the capabilities of their existing highly specialised software. Often, tasks that could be handled by existing systems were externally contracted, as the organization was unaware that their system was capable of the task. The lack of knowledge was also identified as one of the main reasons why management had little interest in a commitment to the Internet, e-mail and advanced applications such as knowledge-based expert systems and simulation. Laage-Hellman and Gadde (1996) examined the barriers to the implementation of Electronic Data Interchange (EDI) in the Swedish construction industry. They undertook a case study with Swedish materials suppliers and discovered four (4) barriers to effective implementation of EDI. Two the more relevant barriers included: i) Technical barriers at the industry level - Small and medium sized contractors do not have suitable applications to allow standardised transmission solutions to become commonplace. On the supplier side, most companies lack suitable order, inventory and invoicing systems. ii) Technical barriers at the company level
  • 37. - The lack of IT competence, especially among the personnel on construction sites, has turned out to be an important problem, which slows down the spread of EDI within the company. Lack of knowledge about BIM could contribute to the resistance in implementing BIM because in the construction industry it involves various parties. Without significant knowledge about BIM, each party is reluctant to use BIM because they believe that new technology such as BIM technology is difficult to learn and could increase the operating cost. The lack of knowledge about BIM in terms of benefit to the operation and maintenance phase in the project’s life cycle has a significant role on why clients, consultants, contractors and others parties that are involved in construction projects are reluctant to use BIM in their construction projects. In addition, lack of measurable data to measure the benefits and return from the investments in information technologies also plays a major role to their reluctance. In relation to the education industry, lecturers or teaching subordinates need to acquire this knowledge in order to teach the use of BIM to students. Students on the other hand, with the lack of proper training and guidance, can prove a severe hold back on their ability to fully understand BIM. Due to the existence of a probability of belittling knowledge about BIM, most schools or institutions see the solution of implementation as a hassle instead. Table 2.4 illustrates the relative importance indices and the rank for factors that hinder the implementation of BIM in the Malaysian construction industry by all respondents. From Table 2.4, the top five most important factors that hinder the implementation of BIM are (1) Lack of knowledge about BIM (RII = 0.950), (2) Clients do not request/enforce BIM (RII = 0.950), (3) Reluctance from clients, contractors or consultants to implement BIM (RII = 0.875), (4) BIM is not required by other team members (RII = 0.838) and (5) Lack of data of Return on Investment of BIM (RII = 0.833). Table 2.4: Rank for Factors of Barriers (Source: Zahrizan, Nasly, Ahmad, Marshall-Pointing & Zuhairi, 2013)
  • 38. 2.6.4 Driving Factors in Implementing Building Information Modelling (BIM) Table 2.5 shows a summary of the relative importance indices and the rank of the variables that could increase the pace of implementing BIM identified by the respondents. Table 2.5 also shows the relative importance indices of the categories that could increase the pace of implementing BIM. From here, it can be found that the top ten most important factors that could increase the pace of implementing BIM are: 1) Support and enforcement in the implementation of BIM by the government (RII = 0.950) 2) BIM training program (RII = 0.950) 3) Leadership of senior management (RII = 0.925) 4) Provide a grant scheme for training BIM (RII = 0.905) 5) Promotion and awareness road show about BIM (RII = 0.892) 6) Collaboration with universities (Research collaboration and curriculum design for students) (RII = 0.879) 7) Incentive given by client such as tax reduction (RII = 0.842) 8) Outsourcing BIM specialist (RII = 0.842) 9) Technical support (RII = 0.800) 10) Clients demand the application of BIM in their project (RII = 0.792)
  • 39. According to the study of the table, Zahrizan, Nasly, Ahmad, Marshall-Pointing & Zuhairi (2013) conclude that, from the different categories of the factors that could increase the pace of implementation of BIM in the Malaysian construction industry, the respondents generally agreed that External Push (RII = 0.805) has a more significant role to speed up the pace of implementation of BIM compared to the Internal Push (RII = 0.755). The most important factors that could be the driving factors in implementing BIM in the Malaysian construction industry are: 1) Support and enforcement in the implementation of BIM by the Government and; 2) BIM training program where both scored RII = 0.950. The respondents also possess a mutual belief that local universities could play a major role in promoting BIM by providing curriculums or courses related to BIM, for example. This is why collaboration with universities (Research collaboration and curriculum designed for students) is one of the important factors that could increase the pace of implementing BIM with an RII score of 0.879. Having a specific curriculum or course related to BIM could portray an idea of what BIM is in the early stage and can efficiently produce students who are ready with 3D parametric model. As we know, BIM technology in Malaysia is really new, therefore there are many opportunities for university researchers to conduct research related to BIM and they could collaborate with the industry to identifying the needs and the area for exploration. Table 2.5: Rank for Driving Factors (Source: Zahrizan, Nasly, Ahmad, Marshall-Pointing & Zuhairi, 2013)
  • 40. Conclusively speaking, there are many hindering factors that slow the pace of implementation of the BIM platform within the construction industry, let alone applying the concept within the educational industry. However, to complement these hindrances, the driving factors of implementation far exceed them and can allow for a smooth implementation of BIM within the boundaries of the education industry. 2.7 Remedies to address the hindering factors of BIM Implementation As referred to an article by Neeley (2008) BIM may very well be the most important event that has ever occurred in AEC/FM (architectural, engineering, construction, and facility management) and BPM (building project manufacturing) professions. He, similarly as Egan, insists that these professions has been lagging significantly in automation and increasing efficiency. Sir Egan (1998, p. 18) lays special emphasis on the improvement of the process through which industry delivers the product to its clients. He argues that commonly known assumption that every project in construction is unique is not true. He also emphasised (1998, p. 18) that the process of construction is in many cases repeated in its basis from one project to another Egan often holds manufacturing up as an example of successful performance enhancement. Neeley (2008) reveals that AEC/FM and BPM represent the world’s largest industry, comparably larger than automotive, aerospace and oil. Hence every saving in respect to time and resources make a substantial difference. Therefore, concept of BIM soon started to be perceived as a possible panacea for all the bottlenecks earlier recognized by Egan. There are several strategies to minimise, if not resolve, the factors that hinder the development of BIM within the educational industry.
  • 41. 2.7.1 Idea of Change The idea of change has always been and will remain as difficult. As can be expected, organisations will change only if individuals themselves are willing to change, because people are “instinctively programmed” to resist any change that goes against their natural belief. Black and Gregersen (2002) argue that to fundamentally adapt within any organisation, one must first attempt to change the individual beliefs, attitudes and values within the organisation before the organisation as a whole can benefit from the change. To take away the “Magic Bullet theory”, users will start to realize that no matter how efficient the gun or the bullet is programmed, it requires personal skill to actually implement an idea of realization that nothing is self-automated without the human capability of manipulating that idea. Abolishing this idea entirely may not solve the problem, but it will prove as a step closer to understanding the method of grasping the concept of BIM. 2.7.2 Process Change The primary impact of implementing BIM is the shift in which the work effort occurs in the process. In her recent book, Epstein (2012) provides an example of architects demonstrating the redistribution of the work and billing in project phases. Traditionally, schematic designs (SD) accounted for 15% of the work, design development (DD) being 30%, and construction documentations (CD), which comprised specifications, 50%, and bidding 5%. With the introduction of BIM, these statistics are now revolving around an entirely
  • 42. different scale of ratios. The SD phase now accounts for 30% of work time which reflects the creation of the 3D virtual model. DD stage is approaching 40% and CD is reduced to some 25% of the work. Contrary to belief, the increased accuracy of information derived from the model enable more accurate bids with tighter margins, hence being more competitive. 2.7.3 Culture and Environment Arto Kiviniemi (2013) emphasized some factors inhibiting the change in implementation of BIM, indicating that there are several reasons including “siloed approach” and firm hierarchical relationships. In brief, Investopedia defines the silo mentality as an attitude found in some organizations when individuals or groups are not willing to share information or knowledge with other individuals. Equally it is the factor of reducing efficiency and contribution to the failing culture. This goes the same to the educational industry on its own, where if the students are not willing to share their ability to cope or understand the BIM platform, the efficiency rate of implementation slowly hinders away. Vickers (1999) reveals that there are negative effects associated with transition to new technology such as BIM, comprising of stress and fear in both young and old employees having to learn demanding automated processes as well as loss of confidence associated with their ability or incapability to succeed. In general, it needs to be pointed out that construction is not exactly the sector attracting the brightest minds and the majority of on-site operatives are not or low-qualified personnel. As such, the construction industry is unattractive to trained and talented employees, because its learning environment is not competitive. The intended industry of BIM implementation must become a learning environment, providing knowledge and lifelong learning. Investing in changing the mind scope of believing that this sort of knowledge can be acquired in a later stage of the working phase can allow the growth of a new ideal, where students are allowed to freely understand what BIM and its functions are entirely about without being subjected to mannerism of a cultural norm that hinders the growth of any development.
  • 43. 2.7.4 Barriers of Change In an ideal world a successful industry would embrace new technology which facilitates efficiency and simplicity of work as soon as it emerges. In reality however, an industry remains reluctant due to the number of reasons. Firstly, executives or directors believe that investing in new technology is more of a cost factor rather than a value provider. There lies the “Invisible Problem” theory, where the initial value of the technology is either underestimated or overestimated. At the end of the day, the one that so rightfully profits is entitled to the director or the executive on their own. However, failing to see that the efficiency factor that BIM brings for students can have major consequences, as this limits the ability for the educational institution to develop into a much more efficient entity. Secondly, managers and operatives usually do not care about the potential of new technology since they are satisfied with the way they work. These boundless possibilities become stored and undeveloped due to initial satisfaction of the new technology acquired. There is no visionary upkeep from the managers, to see that this sort of technology can be upgraded further, mainly for the students’ initiative in adopting BIM. Thirdly, stakeholders may not drive the change eagerly enough. The ability to make a decision can be a powerful thing, but being subjected to a certain point of view where change is not needed, devastates the whole point of making a decision. To resolve this, these barriers must be abolished to allow for a change in mind set and norm. 2.8 Summary
  • 44. In a nutshell, this chapter reviews that the studies of other scholars has enhanced a better understanding on the objectives of this study, which includes factors affecting the implementation of BIM within the educational industry. Thus, this shall aid to derive the appropriate research methods for the following chapters. Findings for first objective The first objective is to identify the implementation of various types (or a certain type) of BIM Applications within several schools and its impact on the educational industry. Based on the literature review there are different types of BIM platforms for students to endorse themselves in, where the allowance of such implementation and understanding can lead to Findings for second objective The second objective of this study is to determine and analyse the effects of implementing BIM within the students’ daily learnings compared to the cause from the first objective. The development of the students pushes their limit to greater heights, expanding their knowledge before heading out into the working environment. The ability to achieve before most, allows for efficient work flow as well as cost benefits. Their cognitive mind set are unequal, being subjected to either being naturally smart or not determines who will succeed and who will fail. Other than their development in skill which they will eventually acquire with enough guidance, students will also learn to settle their differences among one another. Findings for third objective
  • 45. The third objective is to identify the students’ skill cap levels in the application of BIM and how do they intend to use these applications in the future. Outcomes for the literature review show the competency requirements to fully utilize BIM and what are the sets of skills needed to achieve before being sent out into the working phase. Findings for fourth objective The final objective is to determine why BIM has not been fully utilized within schools. This objective alone consolidates with the hindrance and driving factors of implementation of BIM. Outcomes for the literature review show that technical and social interference, organisational interference and lack of knowledge or skills are the major factors of hindering the implementation of BIM. Although financial barriers seem like a likely clause, it is too subjective to be included as a statistical evidence of hindering the implementation of BIM. The resulting literature review also shows that support and enforcement in the implementation of BIM by the government, BIM training programs, leadership of senior management, provision a grant scheme for training, promotion and awareness road of BIM, collaboration with universities (Research collaboration and curriculum design for students), incentives given by client, outsourcing BIM specialists, Technical support as well as clients’ demand for BIM application in their projects are major driving factors that promote the development of BIM.
  • 46. CHAPTER 3 RESEARCH METHODOLOGY 3.1 Introduction This chapter aims to provide a review of the methodology adopted in answering the objectives of this research. The objectives comprise of identifying study the implementation of BIM and its impact on the prospects of graduates, followed by its effects of its implementation on the students along with the identification of the students’ skill cap level at adaptation. This section will further elaborate on the methods and materials that will be used in data collection and data analysis for this research. Hence, a comprehensive research process, research design, research framework, research technique, research sample and method of data analysis will be presented in this chapter. 3.2 ResearchProcess
  • 47. Figure 3.1 illustrates the research process flowchart that has been carried out throughout the whole research, from the process of conception to completion in order to achieve the objectives of the study. (To include the designed process flow) Figure 3.1: Research Process Flowchart 1 • Identify the area of study of interests 2 • Identify issues, problems and scope of study 3 • Approval of research topic, research objectives and research questions 4 • Write a research proposal 5 • Develop theoretical framework through literature 6 • Develop research design and research technique 7 • Conduct pilot survey questionnaire 8 • Distribute survey questionnaires to sampling frame 9 • Collect the data from survey questionnaires 10 • Analyse data collected, interpret and discuss findings 11 • Write conclusion to summarise the findings and provide future recommendations 12 • Submit final dissertation 13 • Dispatch summary of key findings to interested respondents As shown in Figure 3.1, the research process consists of multiple steps before the outcome is achieved. It started off by looking for a topic of interests relating to the migration of professionals. Along with the reviewing of literatures such as journals and newspaper articles regarding the selected topic, an in-depth understanding regarding the current issues began to fall in place. Hence, the research problems are identified in conjunction with the research objectives as described:
  • 48. Before proceeding further, the research title, research issues, research questions and research objectives that have been predetermined is reviewed by the supervisor. The process continues with the preparation of research proposal which comprises of the introduction section of the dissertation. Later, reviews on past researchers’ work are conducted according to the research objectives whereby this provides the theoretical background of the study which enables integration of findings to existing literature gaps. Research design and research technique provide a clear path on how the study will be conducted and key strategies to be undertaken during data collection. The information collected from the secondary data is incorporated into the questionnaire to be tested. Modifications on questionnaire survey are made based on the recommendations provided. The questionnaire survey is distributed via the social platform or emailing to the targeted audience. The data collected is analysed using quantitative analysis method, followed by an interpretation of the findings on the issue through graphics such as pie charts, graphs and tables. Significant findings will be summarised, providing a solid conclusion for the research. The key findings of this research will be dispatched to interested respondents. Last but not least, a future recommendation is also included to intensify further study on this topic which is affecting Malaysia as a developing country. 3.3 ResearchDesign Table 3.1 represents the research design that aims to outline the necessary procedures and logistical arrangements for the study and summarise the quality of procedures to ensure the validity, objectivity and accuracy (Kumar, 2011) in answering the four objectives aforementioned.
  • 49. Table 3.1: Research Design OBJECTIVE TYPES OF DATA SOURCES OF DATA METHOD OF COLLECTION i) To identify the implementation of various types (or a certain type) of BIM Applications within severalschools and its impact on the educational industry. - Types of BIM Softwares implemented. - Different schools involved in using BIM. - Articles - Books - Conference papers - Databases - Dissertations - Journals - Online Resources - Reports Primary Data - Questionnaires - Pilot Interviews Secondary Data - Document analysis - Reading ii) To determine and analyse the effects of implementing BIM within the students’ daily learnings. - Possible negative or positive effects upon implementation of BIM on students. - Perspective rate of adoption students and lecturers involved. - Articles - Books - Conference papers - Databases - Dissertations - Journals - Online Resources - Reports Primary Data - Questionnaires - Pilot Interviews Secondary Data - Document analysis - Reading 3.4 ResearchFramework Figure 3.2 illustrates a research framework for this study. This model presents a comprehensive perspective of the ‘External’ and ‘Internal’ push factors that affect the implementation of BIM in the education industry and the solutions to readdress this issue which is classified as the independent variables. Furthermore, the risk level associated with the ‘External’ and ‘Internal’ push factors is the dependent variable for this research, deriving
  • 50. from the ‘External’ and ‘Internal’ push factors affecting the implementation of BIM in the education industry. 3.5 ResearchTechniques Quantitative research approach is the only research technique that has been adopted for the collection of data. 3.5.1 Quantitative Research Quantitative research is a survey method that represents data collected numerically or in terms of quantitative description from the respondents by reviewing a sample of that particular population (Creswell, 2014). Kumar (2011), states that quantitative research can be used to quantify a variation, which is the purpose of adoption of this method. Not only that, it is a faster approach as compared to qualitative research data collection method as complemented by O’Dwyer and Bermauer (2014) whereby data can either be interpreted in a simple manner using percentages, averages or other complex methods which requires a statistical test or mathematical models. 3.5.2 Data Collection Method Descriptive survey method has been acquired to review the factors affecting the implementation of BIM in the education industry in terms of ‘External’ and ‘Internal’ push factors, risk levels associated with the similar ‘External’ and ‘Internal’ push factors causing the increase or decrease in implementing BIM within the education industry and practical solutions that should be implemented to address this brain drain issue affecting QS graduates
  • 51. in order to attain the objectives of this study. Primary data is the data collected personally. In this research, the main instrument used to collect primary data is self-completion questionnaire. Questionnaire surveys is an effective tool to gather primary data from respondents spreading over a wide geographical area, in which the data will be collected and tabulated accordingly for data analysis (Ing & Jackson, 2008). Bryman (2004) also mentioned that it is a more convenient tool for targeted respondents in terms of flexibility and speed to complete the survey. On the contrary, a self-completion questionnaire has its own drawback as well such as low response rates and consequent biases as highlighted by Oppenheim (1992). In order to overcome its weaknesses, reasonable steps are undertaken to mitigate the issue by regularly providing reminders to follow up with the respondents. In addition, self-completion questionnaire limits the respondents to clarify issues which may, in turn, affect the quality of the results. In relation to this limitation, clear-cut descriptions are provided in each section for better understanding and respondents are able to enquire any uncertainty in relation to the context via the email provided. 3.5.3 Designof Questionnaire Survey questionnaire is a research instrument that is constructed in a fixed sequence with similar questions that functions to assist in the data collection (Zikmund et. al., 2010). Moreover, the questionnaire comprises of both open-ended and closed questions which grants respondents the freedom of speech while attempting openended questions. Thus, eliminates the biasness of this research likewise providing in-depth information for the researcher, instead of answering based on the responses provided (Kumar, 2011). The questionnaire is
  • 52. designed using two different tools that are Microsoft Words and Google Forms. However, questionnaires in the form of Google Forms are only distributed via social platforms and email to ease the targeted respondents to complete them and environmentally friendly alternative to do so. Basically, the questionnaire for this research is categorised into four sections as shown:- i) Section A: Demographic Profile This section aims to identify the demographic background of the targeted respondents based on gender, which stage they are currently in within Taylor’s University, working experiences as well as adaptation and comfort in using BIM in their respective stages. This section also comprises of an open-ended question to justify the possible reasons why certain factors affect their comfortability and adaptation in using BIM. ii) Section B: Factors affecting implementation of BIM within the education industry In this section, respondents are required to rate on their agreement on the factors affecting the implementation of BIM within the education industry based on the Likert scale of ordinal measures as shown in Table 3.2. The factors given are classified into ‘External’ and ‘Internal’ push factors. At the end of the section, an open-ended question is incorporated to allow respondents to provide their opinion on other factors that should be considered that is affecting the implementation of BIM within the education industry.
  • 53. iii) Section C(I): Level of Frequency of Factors Section C intends to obtain the perception of the respondents on the occurrence of each factor as stated in Section B. It is compulsory for respondents to rate the level of frequency of each factor using the Five-point Likert scale as shown in Table 3.3. Likewise, respondents are able to propose their viewpoints on an alternative factor that happens frequently which need to be considered in the open-ended question that is integrated. iv) Section C(II): Level of Impact of Factors Meanwhile, section C(II) aims to gather the views from respondents on the level of impact on the similar factors by using the Likert scale as illustrated in Table 3.4. This section also enables respondents to express their suggestion on different possible factors that have a severe impact on the implementation of BIM within the education industry. v) Section D: Practical Solutions to readdress the lack of implementation of BIM within the education industry
  • 54. The final section displays several practical solutions to readdress this issue for respondents to rate on their level of agreement on the solutions provided. A similar approach, Likert scale will also be used as shown in Table 3.2. Similarly, respondents will have the opportunity to provide various solutions which are perceived to be appropriate to address drawbacks that may be hindering the implementation of BIM within the education industry. 3.6 Method of Sampling 3.6.1 Sampling As identified by Kumar (2011), sampling is a process of choosing a group of sample from a larger population. This sample shall then serve as a basis for to generalise the outcome as a whole. It is vital to select a suitable sampling method to conduct the research in order to maximise the accuracy of the prediction within the sampling size. There is a variety of sampling strategies which has been subdivided by Kumar (2011) into random sampling, non- random sampling and mixed sampling as shown in Figure 3.2. INSERT CHART HEREEEEE
  • 55. In this research, random sampling has been utilised to obtain the relevant data from the population. Salkind (2012) also revealed that random sampling distributes any possible bias among the population which is ideally the choice for selection. Out of the techniques available for random sampling, stratified random sampling will be carried out whereby the sample will be randomly selected based on three out of the 19 universities that offer QS degree courses in Malaysia and only focusing on the University faculties located within the Kuala Lumpur district. Semester 1 students and Graduates of more than 1 year from their graduation are excluded as their experience are deemed to be inadequate or adapted as stated respectively. 3.6.2 Target Population and Sampling Frame Figure 3.4 shows the scope of this research shall be limited to viewpoints of who are currently studying in University institutions within the Kuala Lumpur district; those who are in their first semesters or have graduated for more than one year will be exempted. The Quantity Surveying course is highly sort after within the districts of Kuala Lumpur as it is considered as the city centre of Malaysia. The sampling frame only involves those who are still studying within the 19 universities in Malaysia (Higher Education Advisor, 2017). Based on Table 3.5, three out of the top 19 universities in Malaysia which are highlighted below are offering QS Bachelor’s Degree courses. INSERT TABLE OF UNIVERSITIES afterschool
  • 56. 3.6.3 ResearchSampling Size The formula generated by Krejcie & Morgan (1970) is adopted for this study in order to establish the minimum number of respondents needed for the questionnaire survey. The formula is as shown below: - Where, S = required sample size X2 = the table value of chi-square for 1 degree of freedom at the desired confidence level (3.841) N = the population size P = the population proportion (assumed to be .50 since this would provide the maximum sample size). d = the degree of accuracy expressed as a proportion (0.05)
  • 57. ________________________________________________ Calculation of sample size is as follows: - S = 3.841 x 2900 x 0.5 x ( 1 – 0.5 ) [ ( 0.05 )2 x ( 2900 – 1 ) ] + [ 3.841 x 0.5 ( 1 – 0.5 ) ] S = 2784.725 / 8.20775 S = 339.280 S = 340 respondents Based on the total population of 2900 targeted students studying in University institutions within the Kuala Lumpur district, a total sample size of 340 samples is required to act as a baseline figure for the questionnaire survey. 3.7 Data Analysis Method Having collected the data from the questionnaire survey, data that are incomplete and inconsistent are filtered before the analysis of data takes place. Content analysis and multi- attribute methods were both used to analyse the data obtained from the questionnaire surveys. 3.7.1 Content Analysis Method Content analysis method was adopted to sort out the content by using statements to deliver a system of groupings as claimed by Flick (2011).
  • 58. 3.7.2 Multi-Attribute Method The followings are the multi-attribute approaches applied in this study: - i) Descriptive Statistics According to Fisher and Marshall (2009), descriptive statistics represents the simplest statistical analysis while summarising the findings. This analysis will be used to interpret the data from Section A using percentages (%). The formula illustrates the method of percentage calculation by David and Carole (2011). Where, P = Percentage (%)
  • 59. F = Frequency N = Total number of respondents ii) Relative Agreement Index (RAI) All the data in Section B and D of the questionnaire will be further analysed using relative importance index. This method is used to derive the significance of each factor affecting QS graduates to work abroad, based on the five-point Likert scale. The formula is as shown. Where, W = Weighting stated by the respondents and ranging from 1 to 5 A = The highest weight ( i.e 5 in this case ) N = Total number of respondents iii) Ranking Method
  • 60. Ranking method is used to identify the ranking of both external and internal factors which will be carried out in this study. The factors are given rankings to determine their position based on the findings to allow ease of understanding. iv) Impact-Frequency Mapping This method will be used to analyse the data from Section C(I) and C(II). This analysis requires two dimensions which are mean impact level rating (MR) and the frequency index which will enable the data to be visualised based on the risk levels of each factor affecting the implementation of BIM in the Malaysian education industry. On the vertical axis, the impact levels were established based on a scale 1- 5 whereas for the horizontal axis the frequency index is plotted on a scale of 0 - 100 percent. The axis of the mapping is sub-divided into four bands to further distinguish the factors associated with risk bands. The calculations for Mean Rating of the impact and frequency index based on the external and internal factors are as shown in the formula provided. a) MeanRating (MR)
  • 61. Where, MRj = Mean Rating for Attribute j Rpjk = Rating Point k (ranging from 1 to 5) %Rjk = Percentage response to the rating point k, for attribute j b) Frequency Percentage (FP) Where, a = Rating given to each response ranging from 1 to 5 n = Frequency of Response N = Total number of respondents
  • 62. 3.8 Summary of ResearchMethodology This chapter describes all applicable methods and implements used for the data collection and analysis, commencing from the research process and research design. In addition, a research framework which provides a comprehensive perspective on the study is established based on the four objectives. The research technique utilised is a questionnaire survey. It is designed with both open-ended and closed questions, structured according to the variables derived from the literature review. The population of the targeted respondents are Quantity Surveying students currently studying in or have graduated from the 3 out of the 19 listed universities that offer Quantity Surveying degree courses in Malaysia as previously stated earlier and only focusing on those currently studying within the districts of Kuala Lumpur, which amounts to 2,900. These questionnaires are distributed via social platform and email. Likewise, a minimum of 340 usable responses must be collected from the sampling frame to ensure the validity and accuracy of the results. Fortunately, 428 sets were received. Last but not least, this chapter is enclosed with proposed data analysis method comprising of both content analysis and multi-attribute analysis method which are relative importance index, overall suitability score and impact-frequency mapping. These data findings will be further presented, discussed and analysed in Chapter 4.
  • 63. CHAPTER 4 DATA ANALYSIS 4.1 Introduction This chapter is a presentation section where all the relevant data collected through questionnaire surveys from the targeted population is analysed using the research techniques as discussed in the previous chapter. Besides analytical texts, the findings are also supported
  • 64. by the application of visual aid tools such as tables and pie charts to easily convey the results. Prior to the analysis of the data, response rates shall first be verified. The data analysis is divided into four sub-sections which include respondents’ demographical profile, respondents’ perception on the agreement of the internal and external factors affecting the implementation of BIM software within the Malaysian education industry, followed by, the risk levels based on the impact and frequency levels as perceived by the respondents and respondents’ agreement on the practical solutions to address the hindering factors affecting the implementation of BIM software within the Malaysian education industry. Last but not least, a detailed discussion will be comprised at the end of this chapter to summarise the results based on the literature reviewed whereby all differences and similarities will be highlighted. 4.2 Response Rate A total amount of 600 questionnaire surveys were distributed via social platforms and email. Among the 600 sets distributed, a total of 428 sets are completed within the stipulated timeframe. All of the set of questionnaire surveys are filtered and there is no incomplete data or contradicting data found. Therefore, all 428 sets of data are considered valid data which will be used for the data analysis of this study.
  • 65. 4.3 Demographic Background 4.3.1 Gender of Respondents Figure 4.1: Gender of Respondents Based on the 428 sets of questionnaire collected, 53% of the respondents are males whereas 47% are females. Male 56.31% Female 43.69% Male Female
  • 66. 4.3.2 Age of Respondents Figure 4.2: Age of Respondents Based on the 428 sets of questionnaire collected, Figure 4.2 shows that 4.30% of the respondents belonged to the “17 to 20 year old” category, 72.43 percent belonging to the “21 – 24 year old” category and 3.27 percent of the respondents belonging to the category of 17 - 20 yrs 24.30% 21 - 24 yrs 72.43% Above 28 yrs 3.27% 17 - 20 yrs 21 - 24 yrs 25 - 28 yrs Above 28 yrs
  • 67. “above 28 years old”. There were no respondents recorded to be within the “25 – 28 year old” category. 4.3.3 University of Respondents Figure 4.3: University of Respondents By examining Figure 4.3, the university which has the highest weightage of Quantity Surveying respondents is INTI International College Subang Jaya (INTI) comprising of 41.36% of the population, followed by Taylor’s Universtity at 35.98% and lastly SEGi University at 22.66%. All universities stated are listed down as private universities. TU 35.98% INTI 41.36% SEGi 22.66% TU INTI SEGi
  • 68. 4.3.4 SemesterRespondents are Currently in Figure 4.4: Semester Respondents are Currently in Based on Figure 4.4, from the total of 428 respondents, the highest percentage of respondents were within the “Semester 6” category at 51.64%, followed by “Semester 4” at 27.57% and 10.28 percent within “Semester 3”. The categories with the lower respondents’ Sem 3 10.28% Semester 4 27.57% Internship 3.74% Sem 5 4.67% Semester 6 51.64% Graduated 2.10% Semester 1 Semester 2 Semester 3 Semester 4 Internship Semester 5 Semester 6 Graduated
  • 69. rate were within the “Semester 5” category at 4.67%, “Internship” category at 3.74% and lastly, “Graduated” category holding 2.10%. Semesters 1 and 2 had a zero percent response rate for this analysis but are deemed to not affect the outcome of the study as both semesters are within the early stages of their University placement and have not been fully exposed to the internal and external factors as experienced by the later semesters. 4.3.5 Amount of BIM Experience Respondents have Gained Figure 4.5: Amount of BIM Experience Respondents have Gained From the total of 428 respondents, Figure 4.5 indicates that 17.29% have gained more than 1 year of experience using BIM while working in the industry. The remaining 82.71% had less than 1 year of experience using BIM outside in the industry, as most are still not fully exposed to the working environment. The respondents needed to fulfil the criteria of not Less than 1 year 82.71% More than 1 year 17.29%
  • 70. working for more than 2 years within the construction industry. However, respondents can also include their response based on their inclusive experience gained within their period of practice during their internship, as the practice itself acts as a simulation of a real workplace in the working industry. 4.3.6 Respondents that Have Studied using BIM During their Studies Figure 4.6: Respondents that Have Studied using BIM During their Studies Based on Figure 4.6, a percentage of 77.34% of respondents have studied the use of BIM during their time in their respective university placements. However, there is a considerable fraction of respondents at 22.66% have only studied the use of BIM after they have graduated or do not have access to BIM software in their university institutions. This indicates the possibility of the non-existence of BIM within one of the schools. No 22.66% Yes 77.34%
  • 71. 4.3.7 Provision of BIM Software to Respondents by Universities Figure 4.7: Provision of BIM Software to Respondents by Universities Figure 4.7 shows a similar percentage as Figure 4.6; where there 77.34% of the respondents have had a provision of a mix of both Glodon, Revit and Cost X whiles the remaining 22.66% had no access to BIM Software within their university placements. No 22.66% Yes 77.34%
  • 72. 4.3.8 Respondents’ Ability to Understand the Application of BIM Software Figure 4.8: Respondents’ Ability to Understand the Application of BIM Software Referring to Figure 4.8, respondents that understood the application of BIM software and had no difficulty in coping with the subject or training courses made up 72.43% of the sampling. However, an astounding percentage of 27.57% had difficulty with understanding the use of BIM software and had little to no knowledge on the application of BIM software. The respondents who could not proactively cope with the use of BIM software responded with reasons related to unfamiliarity of use, over complication, lack of time and level of technique taught that is not at the industries’ level of competency. No 72.43% Yes 27.57%
  • 73. 4.4 Discussion in relation to Objective 1: To study the implementation of various types of BIM Applications and the primary BIM software, Glodon within several schools and its impact on the educational industry. Table 4.1 indicates the Relative Agreement Index (RAI) of factors affecting the implementation of BIM Software within the Malaysian Education industry. Among all the factors provided, cost of implementation of BIM holds the highest threshold of RAI at 0.116. This is justified by Liu, Xie, Tivendal and Liu (2015) where they believe that among the largest barriers to the implementation of BIM would be the cost of initialization on its own. Liu, Xie, Tivendal and Liu (2015) also quote that “While BIM is expected to provide significant benefits to the AEC industry, its implementation requires costs, as with any new technology. The perceived costs of implementing BIM technology include education and training costs, administration and start-up costs, and transition and behavioural costs. The cost of implementation is frequently recognized as a barrier to BIM implementation.” Other than costs building a barrier over the implementation of BIM software, the availability of experts in the area of BIM knowledge is the second highest RAI of 0.115. With the lack of skilled professionals in this area of knowledge, the need for BIM cannot co-exist with the high cost factor of implementing BIM Software. There must be a line of professional or skilled trainers or personnel to avoid the back draw of BIM implementation. This can be reflected through Bercerik-Gerber et al. (2011) where they claim the lack of adequately trained BIM professionals has hindered BIM implementation and its use in the AEC industry. Hence, this statement can be strongly supported by a Smith & Tardif (2009) as they opine that this situation is likely to become worse due to a persistent shortage of capable BIM professionals over the next 20 years. Its affects have definitely taken its toll and will not stop
  • 74. deteriorating the chances of lower BIM implementation unless there is a rise in BIM adequate personnel. Moving on to the third highest RAI of 0.110 is the level of technological advancement. There exists an age gap where the seniors tend to have higher reluctance to adopt the implementation of BIM. This can come from many reasons such as fear of loss of job or the incapability of increasing skill cap to match the needs of the standard market. This can be supported by Ruikar et al. (2005) where they believe that senior managers are reluctant to introduce new technologies and processes to the organization, while management support for BIM implementation is essential. However true this may be, this problem also rises among students or the younger ages. As shown in Figure 4.8, it is almost certain that despite the generation gap, BIM is still at a level where not less than 20% of the younger generation can comprehend the use of BIM. At this stage, the factor of resistance can fall upon the high level of advancement of BIM, if not including other factors such as lack of teaching skills shown by lecturers. In addition, there were several other factors obtained from the targeted respondents. However, the factors that have been provided are similar to some of the factors provided such as requirements for skill levels which have been included as a factor categorised as B1.7 - Requirements to be deemed as BIM competent and B1.2 - The lack of ability to adapt to newer software.
  • 76. 4.5 Discussion in relation to Objective 2 and 3: To Determine and Identify the effects of Implementing BIM within Students’ Daily Learnings and their Required Skill Cap Levels and How They Intend to use it. Table 4.2 and 4.3 indicates the level of frequency and level of impact of the factors affecting the implementation of BIM. According to table 4.2, with the highest frequency of 0.115, the cost of implementation of BIM has led to many disputes between students and their learning capabilities towards BIM. With the high costs of implementation of BIM, it is clear that affordability to cater for many students in one seating is very low. If anything, the cost of BIM has definitely hindered the implementation of an all-out spread of BIM implementation through the Kuala Lumpur district. Not to mention that Kuala Lumpur is one of the most diverse in both academic and multi-cultural growth, as shown in QS University Rankings: Asia 2016, where the top Malaysian universities are mostly within the Kuala Lumpur district. This goes to show that despite the high gross in education value within the main city centre, cost of implementing BIM in schools is a tough break, and not many institutions can do so. With the effects of this alone, students will not be able to get their fair share of BIM training and will struggle through the course. This then provides a huge impact as shown in Table 4.3, where cost of implementation of BIM stays at the top. As the primary cause that relates itself to many other factors, existence of BIM within the education industry can vary from the high contradicting loads of assignments or the increase in psychological stress to cope with the training.