SlideShare a Scribd company logo
1 of 21
Implementation and
Comparison of Effective Area
Efficient Architectures for
CSLA
Presented by:
N Venkatesh(13Q91A04A6)
Sunketa Ravi(13Q91A0490)
S Sandeep (13Q91A0491)
Under the Esteemed Guidance Of:
Sri K.RAJESHWAR
CONTENTS
 ABSTRACT
 INTRODUCTION
 EXISTING SYSTEM
 PROPOSED SYSTEM
 COMPARISION
 RTL SCHEMATIC
 SIMULATION RESULT
 ADVANTAGES
 TOOL USED
 CONCLUSION
ABSTRACT
 Carry Select Adder (CSLA) is one of the fastest adders used in
many data-processing processors to perform fast arithmetic
functions.
 By gate level modification of CSLA architecture we can reduce area
and power.
 Based on this modification 16-bit square-root CSLA (SQRT CSLA)
architecture have been developed.
 The proposed design has reduced area and power as compared with
the regular SQRT CSLA .
INTRODUCTION
In electronics, an adder or summer is a digital circuit that performs
addition of numbers.
Adders can be constructed for many numerical representations, such
as BCD or Excess-3, the most common adders operate on binary
numbers.
Adders plays Major role in Multiplications and other advanced
processers designs
EXISTING SYSTEM
The carry-select adder generally consists of two Ripple Carry adders
(RCA) and a Multiplexer .
Adding two n-bit numbers with a carry-select adder is done with two
adders (therefore two RCA).
In order to perform the calculation twice, one time with the
assumption of the carry being zero and the other assuming one.
REGULAR 16BIT SQRT CSLA
AREA EVALUATION METHODOLOGY OF REGULAR 16-b
SQRT CSLA
Gate count=
57(HA+FA+MUX)
FA=39(3*13)
HA=6(1*6)
MUX=12(3*4)
PROBLEMS IN EXISTING SYSTEM
The problem in CSLA design is the number of full adders are increased then
the circuit complexity also increases.
The number of full adder cells are more thereby power consumption of the
design also increases
Number of full adder cells doubles the area of the design also increased.
SOLUTION OF THE PROBLEM
The parallel RCA with Cin=1 is replaced with Binary-Excess 1
converter( BEC).
fig: four-bit BEC
PROPOSED SYSTEM(16-bit CLSA)
 In this system we use the BEC to reduce the RCA circuits
 Here based on the carry input the MUX will be select corresponding
input
 In this design we give the MUX inputs are RCA output and BEC
output
 Compare to regular design the area of the design is less
Modified CLSA
Basic function of CLSA is obtained by using the 4-bit BEC together with the mux.
BEC BLOCK DIAGRAM
 The parallel RCA with Cin=1 is replaced with Binary-Excess 1 converter( BEC).
fig: four-bit BEC
PROPOSED SYSTEM(16-bit CLSA)
AREA EVALUATION METHODOLOGY OF MODIFIED 16-b
SQRT CSLA
GATE COUNT= 43(HA+FA+MUX+BEC)
COMPARISION
GROUP REGULAR MODIFIED
GROUP 2 57 43
GROUP 3 84 61
GROUP 4 117 84
GROUP 5 147 107
RTL SCHEMATIC
SIMULATION RESULT
TOOL USED
 Programming language: VERILOG HDL
 Tool : Xilinx ISE (14.5)
ADVANTAGES
 Low power consumption
 Less area (less complexity)
 More speed compare regular CSLA
CONCLUSION
A simple approach is proposed in this paper to reduce the area and power
of SQRT CSLA architecture. The reduced number of gates of this work
offers the great advantage in the reduction of area and also the power. The
modified CSLA architecture is therefore, low area, low power, simple and
efficient for VLSI hardware implementation.
implementation and comparision of effective area efficient architecture for CSLA

More Related Content

What's hot

128 bit low power and area efficient carry select adder amit bakshi academia
128 bit low power and area efficient carry select adder   amit bakshi   academia128 bit low power and area efficient carry select adder   amit bakshi   academia
128 bit low power and area efficient carry select adder amit bakshi academiagopi448
 
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDLDesign and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDLIJSRD
 
High Speed Carryselect Adder
High Speed Carryselect AdderHigh Speed Carryselect Adder
High Speed Carryselect Adderijsrd.com
 
Implementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select AddersImplementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select AddersKumar Goud
 
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_editedDESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_editedShital Badaik
 
Design of Low Power Energy Efficient Carry Select Adder Using CMOS Technology
Design of Low Power Energy Efficient Carry Select Adder Using CMOS TechnologyDesign of Low Power Energy Efficient Carry Select Adder Using CMOS Technology
Design of Low Power Energy Efficient Carry Select Adder Using CMOS TechnologyAssociate Professor in VSB Coimbatore
 
High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...
High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...
High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...IJERD Editor
 
Project report on design & implementation of high speed carry select adder
Project report on design & implementation of high speed carry select adderProject report on design & implementation of high speed carry select adder
Project report on design & implementation of high speed carry select adderssingh7603
 
Cmos Arithmetic Circuits
Cmos Arithmetic CircuitsCmos Arithmetic Circuits
Cmos Arithmetic Circuitsankitgoel
 
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...IAEME Publication
 
Low power high_speed
Low power high_speedLow power high_speed
Low power high_speednanipandu
 
32-bit unsigned multiplier by using CSLA & CLAA
32-bit unsigned multiplier by using CSLA &  CLAA32-bit unsigned multiplier by using CSLA &  CLAA
32-bit unsigned multiplier by using CSLA & CLAAGanesh Sambasivarao
 
Reverse converter design via parallel prefix adders novel components, methodo...
Reverse converter design via parallel prefix adders novel components, methodo...Reverse converter design via parallel prefix adders novel components, methodo...
Reverse converter design via parallel prefix adders novel components, methodo...jpstudcorner
 

What's hot (20)

128 bit low power and area efficient carry select adder amit bakshi academia
128 bit low power and area efficient carry select adder   amit bakshi   academia128 bit low power and area efficient carry select adder   amit bakshi   academia
128 bit low power and area efficient carry select adder amit bakshi academia
 
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDLDesign and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
Design and Implementation of Low-Power and Area-Efficient 64 bit CSLA using VHDL
 
High Speed Carryselect Adder
High Speed Carryselect AdderHigh Speed Carryselect Adder
High Speed Carryselect Adder
 
Implementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select AddersImplementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select Adders
 
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_editedDESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited
DESIGN AND PERFORMANCE ANALYSIS OF BINARY ADDERS_edited
 
Hybrid Adder
Hybrid AdderHybrid Adder
Hybrid Adder
 
Final ppt
Final pptFinal ppt
Final ppt
 
Design of Low Power Energy Efficient Carry Select Adder Using CMOS Technology
Design of Low Power Energy Efficient Carry Select Adder Using CMOS TechnologyDesign of Low Power Energy Efficient Carry Select Adder Using CMOS Technology
Design of Low Power Energy Efficient Carry Select Adder Using CMOS Technology
 
High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...
High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...
High Speed Time Efficient Reversible ALU Based Logic Gate Structure on Vertex...
 
Project report on design & implementation of high speed carry select adder
Project report on design & implementation of high speed carry select adderProject report on design & implementation of high speed carry select adder
Project report on design & implementation of high speed carry select adder
 
Cmos Arithmetic Circuits
Cmos Arithmetic CircuitsCmos Arithmetic Circuits
Cmos Arithmetic Circuits
 
Survey on Prefix adders
Survey on Prefix addersSurvey on Prefix adders
Survey on Prefix adders
 
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
DESIGN AND IMPLEMENTATION OF LOW POWER ALU USING CLOCK GATING AND CARRY SELEC...
 
Low power high_speed
Low power high_speedLow power high_speed
Low power high_speed
 
Array multiplier
Array multiplierArray multiplier
Array multiplier
 
IMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOG
IMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOGIMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOG
IMPLEMENTATION OF 128-BIT SPARSE KOGGE-STONE ADDER USING VERILOG
 
32-bit unsigned multiplier by using CSLA & CLAA
32-bit unsigned multiplier by using CSLA &  CLAA32-bit unsigned multiplier by using CSLA &  CLAA
32-bit unsigned multiplier by using CSLA & CLAA
 
Bu34437441
Bu34437441Bu34437441
Bu34437441
 
L5 Adders
L5 AddersL5 Adders
L5 Adders
 
Reverse converter design via parallel prefix adders novel components, methodo...
Reverse converter design via parallel prefix adders novel components, methodo...Reverse converter design via parallel prefix adders novel components, methodo...
Reverse converter design via parallel prefix adders novel components, methodo...
 

Similar to implementation and comparision of effective area efficient architecture for CSLA

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Area-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCAArea-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCAIJERA Editor
 
FPGA Implementation of High Speed Architecture of CSLA using D-Latches
FPGA Implementation of High Speed Architecture of CSLA using D-LatchesFPGA Implementation of High Speed Architecture of CSLA using D-Latches
FPGA Implementation of High Speed Architecture of CSLA using D-LatchesEditor IJMTER
 
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...CSCJournals
 
Design and Implementation of Different types of Carry skip adder
Design and Implementation of Different types of Carry skip adderDesign and Implementation of Different types of Carry skip adder
Design and Implementation of Different types of Carry skip adderIRJET Journal
 
A Comparative Analysis on Parameters of Different Adder Topologies
A Comparative Analysis on Parameters of Different Adder TopologiesA Comparative Analysis on Parameters of Different Adder Topologies
A Comparative Analysis on Parameters of Different Adder TopologiesIRJET Journal
 
Design and Implementation of an Efficient Carry Skip Adder
Design and Implementation of an Efficient Carry Skip AdderDesign and Implementation of an Efficient Carry Skip Adder
Design and Implementation of an Efficient Carry Skip AdderIRJET Journal
 
Implementation of Low Power and Area-Efficient Carry Select Adder
Implementation of Low Power and Area-Efficient Carry Select AdderImplementation of Low Power and Area-Efficient Carry Select Adder
Implementation of Low Power and Area-Efficient Carry Select AdderIJMTST Journal
 
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select AdderA Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select AdderIJERD Editor
 
12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-ChipSheila Sinclair
 
VLSI projects 2014
VLSI projects 2014VLSI projects 2014
VLSI projects 2014Senthilvel S
 
Optimization MVSIS vs AIG Rewriting (ABC)
Optimization MVSIS vs AIG Rewriting (ABC)Optimization MVSIS vs AIG Rewriting (ABC)
Optimization MVSIS vs AIG Rewriting (ABC)IJEEE
 

Similar to implementation and comparision of effective area efficient architecture for CSLA (20)

M367578
M367578M367578
M367578
 
J43015355
J43015355J43015355
J43015355
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Iaetsd 128-bit area
Iaetsd 128-bit areaIaetsd 128-bit area
Iaetsd 128-bit area
 
Eq36876880
Eq36876880Eq36876880
Eq36876880
 
Area-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCAArea-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCA
 
FPGA Implementation of High Speed Architecture of CSLA using D-Latches
FPGA Implementation of High Speed Architecture of CSLA using D-LatchesFPGA Implementation of High Speed Architecture of CSLA using D-Latches
FPGA Implementation of High Speed Architecture of CSLA using D-Latches
 
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
 
Design and Implementation of Different types of Carry skip adder
Design and Implementation of Different types of Carry skip adderDesign and Implementation of Different types of Carry skip adder
Design and Implementation of Different types of Carry skip adder
 
A Comparative Analysis on Parameters of Different Adder Topologies
A Comparative Analysis on Parameters of Different Adder TopologiesA Comparative Analysis on Parameters of Different Adder Topologies
A Comparative Analysis on Parameters of Different Adder Topologies
 
PPT.pptx
PPT.pptxPPT.pptx
PPT.pptx
 
Design and Implementation of an Efficient Carry Skip Adder
Design and Implementation of an Efficient Carry Skip AdderDesign and Implementation of an Efficient Carry Skip Adder
Design and Implementation of an Efficient Carry Skip Adder
 
Implementation of Low Power and Area-Efficient Carry Select Adder
Implementation of Low Power and Area-Efficient Carry Select AdderImplementation of Low Power and Area-Efficient Carry Select Adder
Implementation of Low Power and Area-Efficient Carry Select Adder
 
Cq25550554
Cq25550554Cq25550554
Cq25550554
 
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select AdderA Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
A Novel Efficient VLSI Architecture Modified 16-B SQRT Carry Select Adder
 
12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip12-Bit 1MSps SAR ADC For System-On-Chip
12-Bit 1MSps SAR ADC For System-On-Chip
 
Introduction
IntroductionIntroduction
Introduction
 
Bl044389393
Bl044389393Bl044389393
Bl044389393
 
VLSI projects 2014
VLSI projects 2014VLSI projects 2014
VLSI projects 2014
 
Optimization MVSIS vs AIG Rewriting (ABC)
Optimization MVSIS vs AIG Rewriting (ABC)Optimization MVSIS vs AIG Rewriting (ABC)
Optimization MVSIS vs AIG Rewriting (ABC)
 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 

Recently uploaded (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 

implementation and comparision of effective area efficient architecture for CSLA

  • 1. Implementation and Comparison of Effective Area Efficient Architectures for CSLA Presented by: N Venkatesh(13Q91A04A6) Sunketa Ravi(13Q91A0490) S Sandeep (13Q91A0491) Under the Esteemed Guidance Of: Sri K.RAJESHWAR
  • 2. CONTENTS  ABSTRACT  INTRODUCTION  EXISTING SYSTEM  PROPOSED SYSTEM  COMPARISION  RTL SCHEMATIC  SIMULATION RESULT  ADVANTAGES  TOOL USED  CONCLUSION
  • 3. ABSTRACT  Carry Select Adder (CSLA) is one of the fastest adders used in many data-processing processors to perform fast arithmetic functions.  By gate level modification of CSLA architecture we can reduce area and power.  Based on this modification 16-bit square-root CSLA (SQRT CSLA) architecture have been developed.  The proposed design has reduced area and power as compared with the regular SQRT CSLA .
  • 4. INTRODUCTION In electronics, an adder or summer is a digital circuit that performs addition of numbers. Adders can be constructed for many numerical representations, such as BCD or Excess-3, the most common adders operate on binary numbers. Adders plays Major role in Multiplications and other advanced processers designs
  • 5. EXISTING SYSTEM The carry-select adder generally consists of two Ripple Carry adders (RCA) and a Multiplexer . Adding two n-bit numbers with a carry-select adder is done with two adders (therefore two RCA). In order to perform the calculation twice, one time with the assumption of the carry being zero and the other assuming one.
  • 7. AREA EVALUATION METHODOLOGY OF REGULAR 16-b SQRT CSLA Gate count= 57(HA+FA+MUX) FA=39(3*13) HA=6(1*6) MUX=12(3*4)
  • 8. PROBLEMS IN EXISTING SYSTEM The problem in CSLA design is the number of full adders are increased then the circuit complexity also increases. The number of full adder cells are more thereby power consumption of the design also increases Number of full adder cells doubles the area of the design also increased.
  • 9. SOLUTION OF THE PROBLEM The parallel RCA with Cin=1 is replaced with Binary-Excess 1 converter( BEC). fig: four-bit BEC
  • 10. PROPOSED SYSTEM(16-bit CLSA)  In this system we use the BEC to reduce the RCA circuits  Here based on the carry input the MUX will be select corresponding input  In this design we give the MUX inputs are RCA output and BEC output  Compare to regular design the area of the design is less
  • 11. Modified CLSA Basic function of CLSA is obtained by using the 4-bit BEC together with the mux.
  • 12. BEC BLOCK DIAGRAM  The parallel RCA with Cin=1 is replaced with Binary-Excess 1 converter( BEC). fig: four-bit BEC
  • 14. AREA EVALUATION METHODOLOGY OF MODIFIED 16-b SQRT CSLA GATE COUNT= 43(HA+FA+MUX+BEC)
  • 15. COMPARISION GROUP REGULAR MODIFIED GROUP 2 57 43 GROUP 3 84 61 GROUP 4 117 84 GROUP 5 147 107
  • 18. TOOL USED  Programming language: VERILOG HDL  Tool : Xilinx ISE (14.5)
  • 19. ADVANTAGES  Low power consumption  Less area (less complexity)  More speed compare regular CSLA
  • 20. CONCLUSION A simple approach is proposed in this paper to reduce the area and power of SQRT CSLA architecture. The reduced number of gates of this work offers the great advantage in the reduction of area and also the power. The modified CSLA architecture is therefore, low area, low power, simple and efficient for VLSI hardware implementation.