This paper presents an approach for image restoration in the presence of blur and noise. The image is divided into independent regions modeled with a Gaussian prior. Wavelet-based methods are used for image denoising, while classical Wiener filtering is used for deblurring. The algorithm finds the maximum a posteriori estimate at the intersection of convex sets generated by Wiener filtering. It provides efficient image restoration without sacrificing the simplicity of filtering, and generates a better restored image compared to previous methods.