SlideShare a Scribd company logo
1 of 1
Download to read offline
 	
  	
  
Hyperon and charmed baryon masses and axial charges from lattice QCD
C. Kallidonis1
[1] Computation-based Science and Technology Research Center, The Cyprus Institute
[2] Department of Physics, University of Cyprus
[3] Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany
In this work we use Lattice Quantum Chromodynamics (LQCD)
simulations with the following two objectives:
•  The study of the masses of the low-lying baryons, comparison of the
results with the experimental values and the evaluation of masses of
baryons not yet determined experimentally. The highlight of this work
are recent results using simulations with two dynamical quarks at the
physical pion mass.
•  The calculation of the axial charges of baryons, that are fundamental
observables probing hadron structure. Reproducing the nucleon axial
charge, which is accurately measured from neutron β – decays, will
pave the way for a reliable evaluation of the axial charges of hyperons
and charmed baryons. We present results for a range of pion masses
from about 400 MeV to about 210 MeV.
References
[1] J. Beringer et al., (PDG), Phys.Rev. D86, 010001 (2012)
[2] H. Na and S. A. Gottlieb, PoS LAT2007, 124 (2007), 0710.1422
[3] H. Na and S. A. Gottlieb, PoS LATTICE2008, 119 (2008), 0812.1235
[4] R.A. Briceno et al., (2011), 1111.1028
[5] L. Liu et al., Phys. Rev. D81, 094505 (2010), 0909.3294










     







The first quantities one calculates before
proceeding with the evaluation of more
complex hadronic observables are the
hadron masses. In this case,
extrapolations are performed to obtain
the masses at the physical pion mass.
In the following figures we compare our
results obtained at the physical pion
mass with experiment [1] as well as
with other calculations [2-5]. Our
estimates for the masses of hadrons not
yet measured experimentally are also
displayed.
with C. Alexandrou1,2, V. Drach3, K. Hadjiyiannakou2, K. Jansen3, G. Koutsou1
	
  
The large time limit of two-point
functions yields the energy of the
low-lying hadrons:
We developed optimized codes to extract all the masses of the 40
particles, which are implemented and running on state-of-the-art
parallel computers, such as the JUQUEEN and the Cy-Tera facilities.
To evaluate the axial charges we need except for two-point functions, also three-
point functions, as the diagram below. Three-point functions are even more
computationally demanding to obtain and optimized codes to
evaluate them are also implemented on high performance
computing facilities.
The large Euclidean time limit of the
ratio of three- and two-point functions
directly yields the value of the axial
charge, as the figure to the right.
-0.05
0
0.05
0.1
0.15
0.2
0.25
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
SU(3)
x
Physical Point
Fit to TMF
Fit to all
TMF
Hybrid
Breaking ~ x2 leads to about 10% at
the physical point xphys=0.33
•  Axial charges of hadrons
at the physical pion mass
We perform extrapolations of our
data to obtain the axial charge of the
baryons at the physical pion mass.
The Ansatz we used is of the form
•  Study of the SU(3) flavour
symmetry breaking for the octet
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
if exact SU(3) symmetry:
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
1
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
1
vs.
•  Our results on hyperons and charmed baryon masses are consistent with results
from other lattice calculations, as well as with the known experimental values.
This enables us to give predictions on the masses that are not yet measured.
•  We provide results on the axial charges of hyperons and charmed baryons and
examine the validity of SU(3) flavour symmetry. We find an SU(3) symmetry
breaking of about 10% for the octet.
•  Future work will concentrate on further studies of the baryon spectrum and
hadron structure at the physical pion mass. This includes the evaluation of the
axial charge as well as other observables concerning the low-lying strange and
charmed baryons using recently developed noise reduction techniques.
check
deviation:
SU(4) representations: baryons are grouped into two 20-plets, one with
spin 1/2 baryons and one with spin 3/2 as shown below:
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
G(tf − ti,Aµ(x,t)) =
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
Gµ(tf − ti,Aµ(x,t)) =
4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ ¯4
gA = lim
tf −ti→∞
t−ti→∞
Gµ(tf − ti,Aµ)
C(tf − ti)
Axial current:
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
Gµ(tf − ti,Aµ(x,t)) =
4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ ¯4
gA = lim
tf −ti→∞
t−ti→∞
Gµ(tf − ti,Aµ)
C(tf − ti)
Aµ(x,t) = ¯q(x) µ 5q(x)
1.8
2
g⌦
A
¯ss
0
0.008
g
⌅0
c
A
¯ss
2.2
(m2
⇡)phys0 0.04 0.08 0.12 0.16
g
⌦⇤+
cc
A
m2
⇡(GeV2
)
¯cc
1.05
1.2
gN
A
¯uu ¯dd
0.4
0.8
g
+
A
¯uu ¯dd
1.3
1.4
1.5
g⌃0
A
¯uu + ¯dd 2¯ss
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
Gµ(tf − ti,Aµ(x,t)) =
4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4
gA = lim
tf −ti→∞
t−ti→∞
Gµ(tf − ti,Aµ)
C(tf − ti)
Aµ(x,t) = ¯q(x) µ 5q(x)
1





          







2. Hyperons and charmed baryons
1. Introduction – Motivation 3. Masses of hyperons and charmed baryons
•  Results using simulations with Nf=2+1+1 quark flavours with pion masses
from about 210 MeV to about 475 MeV
•  Results using simulations at the physical pion mass








       














   

  












 
 
 
 
 




4. Evaluation of axial charges
0
2
4
¯uu ¯dd+
1.2
1.4
1.6 ¯uu + ¯dd 2¯ss⌃0
-0.24
-0.2
Ratio
¯uu⌅0
0
0.8 ¯uu + ¯dd 2¯ss⌃⇤0
1.8
2
2.2
0 2 4 6 8 10 12 14 16
time
¯ss⌅⇤0
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
Gµ(t,Aµ) =
4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4
R(tf − ti) =
Gµ(tf − ti,Aµ(x,t))
C(tf − ti)
gA = lim
tf −ti→∞
t−ti→∞
R(tf − ti)
A (x,t) = ¯q(x) q(x)
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
Gµ(t, Aµ) =
4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4
R(tf − ti) =
Gµ(tf − ti, Aµ(x, t))
C(tf − ti)
gA = lim
tf −ti→∞
t−ti→∞
R(tf − ti)
Aµ(x, t) = ¯q(x) µ 5q(x)
gA(m⇡) = a + bm2
⇡
1
5. Results on the axial charges
6. Conclusions and future work
Cy-Tera
The Project Cy-Tera (ΝΕΑ ΥΠΟΔΟΜΗ/ΣΤΡΑΤΗ/0308/31) is co-financed by the European Regional
Development Fund and the Republic of Cyprus through the Research Promotion Foundation.
gN
A = F + D
g⌃
A = 2F
g⌅
A = −D + F
⇒ gN
A − g⌃
A + g⌅
A = 0
SU(3) = gN
A − g⌃
A + g⌅
A
x = (m2
K − m2
⇡)4⇡2
f2
⇡
C(tf − ti) =
me↵(t) = log 
C(t)
C(t + 1)
 →
t→∞
M
Gµ(t,Aµ) =
4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4
R(tf − ti) =
Gµ(tf − ti,Aµ(x,t))
C(tf − ti)
gA = lim
tf −ti→∞
R(tf − ti)
Aµ(x,t) = ¯q(x) µ 5q(x)

More Related Content

What's hot

Errata of Seismic analysis of structures by T.K. Datta
Errata of Seismic analysis of structures by T.K. DattaErrata of Seismic analysis of structures by T.K. Datta
Errata of Seismic analysis of structures by T.K. Dattatushardatta
 
On the Effect of Geometries Simplification on Geo-spatial Link Discovery
On the Effect of Geometries Simplification on Geo-spatial Link DiscoveryOn the Effect of Geometries Simplification on Geo-spatial Link Discovery
On the Effect of Geometries Simplification on Geo-spatial Link DiscoveryAbdullah Ahmed
 
The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...
The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...
The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...National Cheng Kung University
 
Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...
Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...
Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...CRS4 Research Center in Sardinia
 
Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...
Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...
Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...CRS4 Research Center in Sardinia
 
4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2 4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2 Riccardo Rigon
 
Transverse magnetic plane-wave scattering equations for infinite and semi-inf...
Transverse magnetic plane-wave scattering equations for infinite and semi-inf...Transverse magnetic plane-wave scattering equations for infinite and semi-inf...
Transverse magnetic plane-wave scattering equations for infinite and semi-inf...Yong Heui Cho
 
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsThe Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsAkinola Oyedele
 
Results from WZ, Higgs and Top for the Summer Conferences
Results from WZ, Higgs and Top for the Summer ConferencesResults from WZ, Higgs and Top for the Summer Conferences
Results from WZ, Higgs and Top for the Summer ConferencesMedicineAndHealthNeurolog
 
Unit 6, Lesson 3 - Vectors
Unit 6, Lesson 3 - VectorsUnit 6, Lesson 3 - Vectors
Unit 6, Lesson 3 - Vectorsjudan1970
 

What's hot (20)

Variograms
VariogramsVariograms
Variograms
 
Ijetr011923
Ijetr011923Ijetr011923
Ijetr011923
 
Errata of Seismic analysis of structures by T.K. Datta
Errata of Seismic analysis of structures by T.K. DattaErrata of Seismic analysis of structures by T.K. Datta
Errata of Seismic analysis of structures by T.K. Datta
 
Theorem pappus (1)
Theorem pappus (1)Theorem pappus (1)
Theorem pappus (1)
 
計算材料学
計算材料学計算材料学
計算材料学
 
On the Effect of Geometries Simplification on Geo-spatial Link Discovery
On the Effect of Geometries Simplification on Geo-spatial Link DiscoveryOn the Effect of Geometries Simplification on Geo-spatial Link Discovery
On the Effect of Geometries Simplification on Geo-spatial Link Discovery
 
The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...
The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...
The Turbidity (TB) Varies with Time And Space in The Reservoir Using GWR And ...
 
Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...
Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...
Near Surface Geoscience Conference 2015, Turin - A Spatial Velocity Analysis ...
 
20320130406032
2032013040603220320130406032
20320130406032
 
Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...
Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...
Near Surface Geoscience Conference 2014, Athens - Real-­time or full­‐precisi...
 
Basics1variogram
Basics1variogramBasics1variogram
Basics1variogram
 
ProjectAndersSchreiber
ProjectAndersSchreiberProjectAndersSchreiber
ProjectAndersSchreiber
 
4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2 4 hydrology geostatistics-part_2
4 hydrology geostatistics-part_2
 
CLIM Fall 2017 Course: Statistics for Climate Research, Guest lecture: Data F...
CLIM Fall 2017 Course: Statistics for Climate Research, Guest lecture: Data F...CLIM Fall 2017 Course: Statistics for Climate Research, Guest lecture: Data F...
CLIM Fall 2017 Course: Statistics for Climate Research, Guest lecture: Data F...
 
Transverse magnetic plane-wave scattering equations for infinite and semi-inf...
Transverse magnetic plane-wave scattering equations for infinite and semi-inf...Transverse magnetic plane-wave scattering equations for infinite and semi-inf...
Transverse magnetic plane-wave scattering equations for infinite and semi-inf...
 
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsThe Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
 
Lo3
Lo3Lo3
Lo3
 
Results from WZ, Higgs and Top for the Summer Conferences
Results from WZ, Higgs and Top for the Summer ConferencesResults from WZ, Higgs and Top for the Summer Conferences
Results from WZ, Higgs and Top for the Summer Conferences
 
Unit 6, Lesson 3 - Vectors
Unit 6, Lesson 3 - VectorsUnit 6, Lesson 3 - Vectors
Unit 6, Lesson 3 - Vectors
 
State feedback example
State feedback exampleState feedback example
State feedback example
 

Viewers also liked

séjour en Brochure
séjour en Brochure séjour en Brochure
séjour en Brochure ramdenee
 
Effective Communication & Presentation Skills & Report Writing 04-07 April 20...
Effective Communication & Presentation Skills & Report Writing 04-07 April 20...Effective Communication & Presentation Skills & Report Writing 04-07 April 20...
Effective Communication & Presentation Skills & Report Writing 04-07 April 20...360 BSI
 
Neo4J Coursework - Sammy Hegab 22-04-2016
Neo4J Coursework - Sammy Hegab  22-04-2016Neo4J Coursework - Sammy Hegab  22-04-2016
Neo4J Coursework - Sammy Hegab 22-04-2016Sammy Hegab
 
الدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليم
الدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليمالدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليم
الدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليمkhalid mechkouri
 
Gestión humana
Gestión humanaGestión humana
Gestión humanaDianavr420
 
Mise en-scene pdf
Mise en-scene pdfMise en-scene pdf
Mise en-scene pdfblanca riga
 
The Role of Silence in the Liturgical Celebrations
The Role of Silence in the Liturgical CelebrationsThe Role of Silence in the Liturgical Celebrations
The Role of Silence in the Liturgical CelebrationsEzra_Arze
 

Viewers also liked (13)

Stress buster constuctive bomb
Stress buster constuctive bombStress buster constuctive bomb
Stress buster constuctive bomb
 
séjour en Brochure
séjour en Brochure séjour en Brochure
séjour en Brochure
 
Sistemas operativos
Sistemas operativosSistemas operativos
Sistemas operativos
 
Effective Communication & Presentation Skills & Report Writing 04-07 April 20...
Effective Communication & Presentation Skills & Report Writing 04-07 April 20...Effective Communication & Presentation Skills & Report Writing 04-07 April 20...
Effective Communication & Presentation Skills & Report Writing 04-07 April 20...
 
Neo4J Coursework - Sammy Hegab 22-04-2016
Neo4J Coursework - Sammy Hegab  22-04-2016Neo4J Coursework - Sammy Hegab  22-04-2016
Neo4J Coursework - Sammy Hegab 22-04-2016
 
Campo laboral-lei
Campo laboral-leiCampo laboral-lei
Campo laboral-lei
 
الدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليم
الدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليمالدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليم
الدليل البيداغوجي لإدماج تكنولوجيا المعلومات والاتصالات في التعليم
 
Gestión humana
Gestión humanaGestión humana
Gestión humana
 
A. Abhijeet.
A. Abhijeet.A. Abhijeet.
A. Abhijeet.
 
Mise en-scene pdf
Mise en-scene pdfMise en-scene pdf
Mise en-scene pdf
 
The Role of Silence in the Liturgical Celebrations
The Role of Silence in the Liturgical CelebrationsThe Role of Silence in the Liturgical Celebrations
The Role of Silence in the Liturgical Celebrations
 
Tarea#2 salas michelle1.docx
Tarea#2 salas michelle1.docxTarea#2 salas michelle1.docx
Tarea#2 salas michelle1.docx
 
Construyo mi-proyecto-de-vida2
Construyo mi-proyecto-de-vida2Construyo mi-proyecto-de-vida2
Construyo mi-proyecto-de-vida2
 

Similar to Hyperon and charmed baryon masses and axial charges from Lattice QCD

Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesbarasActuarial
 
Solucionario serway cap 3
Solucionario serway cap 3Solucionario serway cap 3
Solucionario serway cap 3Carlo Magno
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el apMARCELOCHAVEZ23
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIREditor IJMTER
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdfROCIOMAMANIALATA1
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Alexander Decker
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]Henrique Covatti
 
Ejercicios prueba de algebra de la UTN- widmar aguilar
Ejercicios prueba de algebra de la UTN-  widmar aguilarEjercicios prueba de algebra de la UTN-  widmar aguilar
Ejercicios prueba de algebra de la UTN- widmar aguilarWidmar Aguilar Gonzalez
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 

Similar to Hyperon and charmed baryon masses and axial charges from Lattice QCD (20)

Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tables
 
Solucionario serway cap 3
Solucionario serway cap 3Solucionario serway cap 3
Solucionario serway cap 3
 
Sm chapter3
Sm chapter3Sm chapter3
Sm chapter3
 
Sm chapter3
Sm chapter3Sm chapter3
Sm chapter3
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...Measures of different reliability parameters for a complex redundant system u...
Measures of different reliability parameters for a complex redundant system u...
 
M112rev
M112revM112rev
M112rev
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Ejercicios prueba de algebra de la UTN- widmar aguilar
Ejercicios prueba de algebra de la UTN-  widmar aguilarEjercicios prueba de algebra de la UTN-  widmar aguilar
Ejercicios prueba de algebra de la UTN- widmar aguilar
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 

More from Christos Kallidonis

Nucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDNucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDChristos Kallidonis
 
The Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCDThe Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCDChristos Kallidonis
 
The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...Christos Kallidonis
 
Nucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDANucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDAChristos Kallidonis
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDChristos Kallidonis
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDChristos Kallidonis
 
Probing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulationsProbing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulationsChristos Kallidonis
 
Hyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDHyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDChristos Kallidonis
 

More from Christos Kallidonis (9)

Nucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDNucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCD
 
The Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCDThe Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCD
 
The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...
 
Nucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDANucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDA
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCD
 
Probing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulationsProbing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulations
 
Hyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDHyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCD
 

Recently uploaded

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.k64182334
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 

Recently uploaded (20)

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.Genomic DNA And Complementary DNA Libraries construction.
Genomic DNA And Complementary DNA Libraries construction.
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 

Hyperon and charmed baryon masses and axial charges from Lattice QCD

  • 1.       Hyperon and charmed baryon masses and axial charges from lattice QCD C. Kallidonis1 [1] Computation-based Science and Technology Research Center, The Cyprus Institute [2] Department of Physics, University of Cyprus [3] Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany In this work we use Lattice Quantum Chromodynamics (LQCD) simulations with the following two objectives: •  The study of the masses of the low-lying baryons, comparison of the results with the experimental values and the evaluation of masses of baryons not yet determined experimentally. The highlight of this work are recent results using simulations with two dynamical quarks at the physical pion mass. •  The calculation of the axial charges of baryons, that are fundamental observables probing hadron structure. Reproducing the nucleon axial charge, which is accurately measured from neutron β – decays, will pave the way for a reliable evaluation of the axial charges of hyperons and charmed baryons. We present results for a range of pion masses from about 400 MeV to about 210 MeV. References [1] J. Beringer et al., (PDG), Phys.Rev. D86, 010001 (2012) [2] H. Na and S. A. Gottlieb, PoS LAT2007, 124 (2007), 0710.1422 [3] H. Na and S. A. Gottlieb, PoS LATTICE2008, 119 (2008), 0812.1235 [4] R.A. Briceno et al., (2011), 1111.1028 [5] L. Liu et al., Phys. Rev. D81, 094505 (2010), 0909.3294                        The first quantities one calculates before proceeding with the evaluation of more complex hadronic observables are the hadron masses. In this case, extrapolations are performed to obtain the masses at the physical pion mass. In the following figures we compare our results obtained at the physical pion mass with experiment [1] as well as with other calculations [2-5]. Our estimates for the masses of hadrons not yet measured experimentally are also displayed. with C. Alexandrou1,2, V. Drach3, K. Hadjiyiannakou2, K. Jansen3, G. Koutsou1   The large time limit of two-point functions yields the energy of the low-lying hadrons: We developed optimized codes to extract all the masses of the 40 particles, which are implemented and running on state-of-the-art parallel computers, such as the JUQUEEN and the Cy-Tera facilities. To evaluate the axial charges we need except for two-point functions, also three- point functions, as the diagram below. Three-point functions are even more computationally demanding to obtain and optimized codes to evaluate them are also implemented on high performance computing facilities. The large Euclidean time limit of the ratio of three- and two-point functions directly yields the value of the axial charge, as the figure to the right. -0.05 0 0.05 0.1 0.15 0.2 0.25 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 SU(3) x Physical Point Fit to TMF Fit to all TMF Hybrid Breaking ~ x2 leads to about 10% at the physical point xphys=0.33 •  Axial charges of hadrons at the physical pion mass We perform extrapolations of our data to obtain the axial charge of the baryons at the physical pion mass. The Ansatz we used is of the form •  Study of the SU(3) flavour symmetry breaking for the octet gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ if exact SU(3) symmetry: gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ 1 gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ 1 vs. •  Our results on hyperons and charmed baryon masses are consistent with results from other lattice calculations, as well as with the known experimental values. This enables us to give predictions on the masses that are not yet measured. •  We provide results on the axial charges of hyperons and charmed baryons and examine the validity of SU(3) flavour symmetry. We find an SU(3) symmetry breaking of about 10% for the octet. •  Future work will concentrate on further studies of the baryon spectrum and hadron structure at the physical pion mass. This includes the evaluation of the axial charge as well as other observables concerning the low-lying strange and charmed baryons using recently developed noise reduction techniques. check deviation: SU(4) representations: baryons are grouped into two 20-plets, one with spin 1/2 baryons and one with spin 3/2 as shown below: gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M G(tf − ti,Aµ(x,t)) = gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M Gµ(tf − ti,Aµ(x,t)) = 4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ ¯4 gA = lim tf −ti→∞ t−ti→∞ Gµ(tf − ti,Aµ) C(tf − ti) Axial current: gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M Gµ(tf − ti,Aµ(x,t)) = 4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ ¯4 gA = lim tf −ti→∞ t−ti→∞ Gµ(tf − ti,Aµ) C(tf − ti) Aµ(x,t) = ¯q(x) µ 5q(x) 1.8 2 g⌦ A ¯ss 0 0.008 g ⌅0 c A ¯ss 2.2 (m2 ⇡)phys0 0.04 0.08 0.12 0.16 g ⌦⇤+ cc A m2 ⇡(GeV2 ) ¯cc 1.05 1.2 gN A ¯uu ¯dd 0.4 0.8 g + A ¯uu ¯dd 1.3 1.4 1.5 g⌃0 A ¯uu + ¯dd 2¯ss gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M Gµ(tf − ti,Aµ(x,t)) = 4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4 gA = lim tf −ti→∞ t−ti→∞ Gµ(tf − ti,Aµ) C(tf − ti) Aµ(x,t) = ¯q(x) µ 5q(x) 1                        2. Hyperons and charmed baryons 1. Introduction – Motivation 3. Masses of hyperons and charmed baryons •  Results using simulations with Nf=2+1+1 quark flavours with pion masses from about 210 MeV to about 475 MeV •  Results using simulations at the physical pion mass                                                                 4. Evaluation of axial charges 0 2 4 ¯uu ¯dd+ 1.2 1.4 1.6 ¯uu + ¯dd 2¯ss⌃0 -0.24 -0.2 Ratio ¯uu⌅0 0 0.8 ¯uu + ¯dd 2¯ss⌃⇤0 1.8 2 2.2 0 2 4 6 8 10 12 14 16 time ¯ss⌅⇤0 gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M Gµ(t,Aµ) = 4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4 R(tf − ti) = Gµ(tf − ti,Aµ(x,t)) C(tf − ti) gA = lim tf −ti→∞ t−ti→∞ R(tf − ti) A (x,t) = ¯q(x) q(x) g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M Gµ(t, Aµ) = 4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4 R(tf − ti) = Gµ(tf − ti, Aµ(x, t)) C(tf − ti) gA = lim tf −ti→∞ t−ti→∞ R(tf − ti) Aµ(x, t) = ¯q(x) µ 5q(x) gA(m⇡) = a + bm2 ⇡ 1 5. Results on the axial charges 6. Conclusions and future work Cy-Tera The Project Cy-Tera (ΝΕΑ ΥΠΟΔΟΜΗ/ΣΤΡΑΤΗ/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation. gN A = F + D g⌃ A = 2F g⌅ A = −D + F ⇒ gN A − g⌃ A + g⌅ A = 0 SU(3) = gN A − g⌃ A + g⌅ A x = (m2 K − m2 ⇡)4⇡2 f2 ⇡ C(tf − ti) = me↵(t) = log C(t) C(t + 1) → t→∞ M Gµ(t,Aµ) = 4 ⊗ 4 ⊗ 4 = 20 ⊕ 20 ⊕ 20 ⊕ ¯4 R(tf − ti) = Gµ(tf − ti,Aµ(x,t)) C(tf − ti) gA = lim tf −ti→∞ R(tf − ti) Aµ(x,t) = ¯q(x) µ 5q(x)