SlideShare a Scribd company logo
1 of 39
Download to read offline
Hyperon and charmed baryon masses from twisted mass Lattice QCD
(Nf = 2 + 1 + 1, Nf = 2 plus clover)
Christos Kallidonis
Computation-based Science and Technology Research Center
The Cyprus Institute
C. Alexandrou et al. arXiv:1406.4310
with
C. Alexandrou, V. Drach, K, Hadjiyiannakou, K. Jansen, G. Koutsou
Rheinische Friedrich-Wilhelms-Universit¨at Bonn
Bonn, Germany
1 April 2015
C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 27
Outline
1 Introduction - Motivation
2 Lattice evaluation
Wilson twisted mass action
Simulation details
Scale setting
Interpolating fields - Effective mass
3 Tuning of the strange and charm quark mass
4 Results
Chiral and continuum extrapolation for Nf = 2 + 1 + 1
Isospin symmetry breaking
5 Comparison
6 Conclusions
C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 27
Introduction - Motivation
Why we want to calculate baryon masses?
easy to calculate
first quantities one calculates before proceeding with more complex observables
large signal to noise ratio
reliable way to study lattice effects
significant for on-going experiments
observation of doubly-charmed Ξ baryons (SELEX, hep-ex/0208014, hep-ex/0209075,
hep-ex/0406033) - interest in charmed baryon spectroscopy (G. Bali et al. arXiv:1503.08440, M.
Padmanath et al. arXiv:1502.01845)
are the experimentally known masses reproduced?
safe and reliable predictions for the rest
C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 27
Lattice evaluation
Wilson twisted mass action for Nf = 2 + 1 + 1
doublet of light quarks: ψ =
u
d
R. Frezzotti et al. arXiv:hep-lat/0306014
Transformation of quark fields:
ψ(x) = 1√
2
11 + iτ3γ5 χ(x)
ψ(x) = χ(x) 1√
2
11 + iτ3γ5



mass term
ψmψ → χiγ5τ3mχ
S
(l)
F = a4
x
χ(x)
1
2
γµ( µ + ∗
µ) −
ar
2
µ
∗
µ + m0,l + iγ5τ3
µ χ(x)
C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27
Lattice evaluation
Wilson twisted mass action for Nf = 2 + 1 + 1
doublet of light quarks: ψ =
u
d
R. Frezzotti et al. arXiv:hep-lat/0306014
Transformation of quark fields:
ψ(x) = 1√
2
11 + iτ3γ5 χ(x)
ψ(x) = χ(x) 1√
2
11 + iτ3γ5



mass term
ψmψ → χiγ5τ3mχ
S
(l)
F = a4
x
χ(x)
1
2
γµ( µ + ∗
µ) −
ar
2
µ
∗
µ + m0,l + iγ5τ3
µ χ(x)
heavy quarks: χh =
s
c
In the sea we use the action: R. Frezzotti et al. arXiv:hep-lat/0311008
S
(h)
F = a4
x
χh(x)
1
2
γµ( µ + ∗
µ) −
ar
2
µ
∗
µ + m0,h + iµσγ5τ1
+ τ3
µδ χh(x)
presence of τ1 introduces mixing of the strange and charm flavors
valence sector: use Osterwalder-Seiler valence heavy quarks χ(s) = (s+, s−) , χ(c) = (c+, c−)
re-tuning of the strange and charm quark masses required
Wilson TM at maximal twist
cut-off effects are automatically O(a) improved
no operator improvement is needed (important for nucleon structure)
C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27
Lattice evaluation
Wilson twisted mass action for Nf = 2 plus clover
S
(l)
F = a4
x
χ(x)
1
2
γµ( µ + ∗
µ) −
ar
2
µ
∗
µ + m0,l + iγ5τ3
µ +
i
4
CSW σµν
Fµν
(U) χ(x)
Clover term
stable simulations
control O(a2) effects
O(a) improvement remains!
CSW = 1.57551
B. Sheikholeslami et al. Nucl.Phys. B259 (1985), S. Aoki et al. hep-lat/0508031
C. Kallidonis (CyI) Baryon Spectrum Bonn University 5 / 27
Lattice evaluation
Simulation details
Total of 10 Nf = 2 + 1 + 1 gauge ensembles produced by ETMC
Nf = 2 plus clover ensemble at the physical pion mass
R. Baron et al. (ETMC) arXiV:1004.5284, A. Abdel-Rehim et al. arXiv:1311.4522
β = 1.90, a = 0.0936(13) fm
323 × 64, L = 3.0 fm
aµ 0.0030 0.0040 0.0050
No. of Confs 200 200 200
mπ (GeV) 0.2607 0.2975 0.3323
mπL 3.97 4.53 5.05
β = 1.95, a = 0.0823(10) fm
323 × 64, L = 2.6 fm
aµ 0.0025 0.0035 0.0055 0.0075
No. of Confs 200 200 200 200
mπ (GeV) 0.2558 0.3018 0.3716 0.4316
mπL 3.42 4.03 4.97 5.77
β = 2.10, a = 0.0646(7) fm
483 × 96, L = 3.1 fm
aµ 0.0015 0.002 0.003
No. of Confs 196 184 200
mπ (GeV) 0.2128 0.2455 0.2984
mπL 3.35 3.86 4.69
β = 2.10, a = 0.0941(12) fm
483 × 96, L = 4.5 fm
aµ 0.0009
No. of Confs 524
mπ (GeV) 0.1303
mπL 2.99
two lattice volumes
pion masses from 210-430 MeV → chiral extrapolations
three values of the lattice spacing → investigation of finite lattice effects
C. Kallidonis (CyI) Baryon Spectrum Bonn University 6 / 27
Lattice evaluation
Scale setting
for baryon masses → physical nucleon mass
dedicated high statistics analysis on 17 Nf = 2 + 1 + 1 ensembles
use HBχPT leading one-loop order result mN = m
(0)
N − 4c1m2
π −
3g2
A
16πf2
π
m3
π
fit simultaneously for Nf = 2 + 1 + 1 and Nf = 2 plus clover for all β values
systematic error due to the chiral extrapolation → use O(p4) HBχPT with explicit ∆-degrees of
freedom
0.8
0.9
1
1.1
1.2
1.3
1.4
0 0.05 0.1 0.15 0.2 0.25
mN(GeV)
mπ
2 (GeV2)
β=1.90, L/a=32, L=3.0fm
β=1.90, L/a=24, L=2.2fm
β=1.90, L/a=20, L=1.9fm
β=1.95, L/a=32, L=2.6fm
β=1.95, L/a=24, L=2.0fm
β=2.10, L/a=48, L=3.1fm
β=2.10, L/a=32, L=2.1fm
β=2.10, CSW=1.57551, L/a=48, L=4.5fm
β a (fm)
1.90 0.0936(13)(35)
1.95 0.0823(10)(35)
2.10 0.0646(7)(25)
2.10 0.0941(12)(2)
fitting for each β separately yields consistent values - negligible cut-off effects for the nucleon case
light σ-term for nucleon σπN = 64.9(1.5)(13.2) MeV
C. Kallidonis (CyI) Baryon Spectrum Bonn University 7 / 27
Lattice evaluation
Effective mass
Effective masses are obtained from two-point correlation
functions
C±
B (t, p = 0) =
xsink
1
4
Tr (1 ± γ0) JB (xsink) ¯JB (xsource) , t = tsink − tsource
Gaussian smearing at source and sink, APE smearing at spatial links
source position chosen randomly
C. Kallidonis (CyI) Baryon Spectrum Bonn University 8 / 27
Lattice evaluation
Effective mass
Effective masses are obtained from two-point correlation
functions
C±
B (t, p = 0) =
xsink
1
4
Tr (1 ± γ0) JB (xsink) ¯JB (xsource) , t = tsink − tsource
Gaussian smearing at source and sink, APE smearing at spatial links
source position chosen randomly
amB
eff(t) = log
CB(t)
CB(t + 1)
0
0.4
0.8
1.2
1.6
2 4 6 8 10 12 14 16 18
ameff
t/a
Σc
*++
Λc
+
Ω
Ξ0
N
C. Kallidonis (CyI) Baryon Spectrum Bonn University 8 / 27
Lattice evaluation
Interpolating fields
constructed such that they have the quantum numbers of the baryon in interest
4 quark flavors
baryons (qqq)



SU(3) subgroups
of SU(4)
Examples
p (uud) J = abc uT
a Cγ5db uc
Σ0 (uds) J = 1√
2 abc uT
a Cγ5sb dc + dT
a Cγ5sb uc
Ξ+
c (usc) J = abc uT
a Cγ5sb cc
Ξ 0 (uss) Jµ = abc sT
a Cγµub sc
Σ ++
c (uuc) Jµ = 1√
3 abc uT
a Cγµub cc + 2 cT
a Cγµub uc
Ω 0
c (ssc) Jµ = abc sT
a Cγµcb sc
20plet of spin-1/2 baryons
20 = 8 ⊕ 6 ⊕ 3 ⊕ 3
20plet of spin-3/2 baryons
20 = 10 ⊕ 6 ⊕ 3 ⊕ 1
C. Kallidonis (CyI) Baryon Spectrum Bonn University 9 / 27
Lattice evaluation
Interpolating fields
incorporation of spin-3/2 and spin-1/2 projectors
Pµν
3/2 = δµν
−
1
3
γµγν , J µ
B3/2
= Pµν
3/2JνB
Pµν
1/2 = δµν
− Pµν
3/2 , J µ
B1/2
= Pµν
1/2JνB
C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
Lattice evaluation
Interpolating fields
incorporation of spin-3/2 and spin-1/2 projectors
Pµν
3/2 = δµν
−
1
3
γµγν , J µ
B3/2
= Pµν
3/2JνB
Pµν
1/2 = δµν
− Pµν
3/2 , J µ
B1/2
= Pµν
1/2JνB0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 4 8 12 16 20
ame↵⌃⇤++
c
t/a
3/2 projection
1/2 projection
No projection
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 4 8 12 16 20
ame↵⌃⇤+
t/a
3/2 projection
1/2 projection
No projection
C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
Lattice evaluation
Interpolating fields
incorporation of spin-3/2 and spin-1/2 projectors
Pµν
3/2 = δµν
−
1
3
γµγν , J µ
B3/2
= Pµν
3/2JνB
Pµν
1/2 = δµν
− Pµν
3/2 , J µ
B1/2
= Pµν
1/2JνB0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 4 8 12 16 20
ame↵⌃⇤++
c
t/a
3/2 projection
1/2 projection
No projection
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 4 8 12 16 20
ame↵⌃⇤+
t/a
3/2 projection
1/2 projection
No projection
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
2 4 6 8 10 12 14 16
ame↵
t/a
J⌅⇤0 3/2 projection
J⌅⇤0 1/2 projection
J⌅⇤0 No projection
J⌅0
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
2 4 6 8 10 12 14 16
ame↵
t/a
J⌅⇤ 3/2 projection
J⌅⇤ 1/2 projection
J⌅⇤ No projection
J⌅
C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
Tuning of the strange and charm quark mass (Nf = 2 + 1 + 1)
use Ω− for strange quark and Λ+
c for charm quark
fix renormalized strange and charm masses using non-perturbatively determined renormalization
constants (N. Carrasco et al. arXiv:1403.4504) in the MS scheme at 2 GeV
C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27
Tuning of the strange and charm quark mass (Nf = 2 + 1 + 1)
use Ω− for strange quark and Λ+
c for charm quark
fix renormalized strange and charm masses using non-perturbatively determined renormalization
constants (N. Carrasco et al. arXiv:1403.4504) in the MS scheme at 2 GeV
Strange quark mass tuning
use a set of strange quark masses to interpolate the mass of Ω− to a given value of
mR
s and extrapolate to the continuum and physical pion mass using
mΩ = m0
Ω − 4c
(1)
Ω m2
π + da2
match with physical mass of Ω−
mΩ
phys
1.6
1.65
1.7
1.75
1.8
85 90 95 100 105 110 115
mΩ-(GeV)
ms
R (MeV)
ms
R = 92.4(6) MeV
1.5
1.55
1.6
1.65
1.7
1.75
1.8
1.85
0 0.05 0.1 0.15 0.2 0.25
mΩ-(GeV)
mπ
2 (GeV2)
β=1.90, L/a=32
β=1.95, L/a=32
β=2.10, L/a=48
Continuum limit
MS : mR
s (2 GeV) = 92.4(6)(2.0) MeV
C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27
Tuning of the strange and charm quark mass (Nf = 2 + 1 + 1)
Charm quark mass tuning
follow the same procedure using Λ+
c and fit using
mΛc = m0
Λc
+ c1m2
π + c2m3
π + da2
mΛc
phys
2.26
2.28
2.3
2.32
1150 1160 1170 1180 1190 1200
mΛc
+(GeV)
mc
R (MeV)
mc
R = 1173.0(2.4) MeV
2.2
2.25
2.3
2.35
2.4
2.45
2.5
2.55
2.6
0 0.05 0.1 0.15 0.2 0.25
mΛc
+(GeV)
mπ
2 (GeV2)
β=1.90, L/a=32
β=1.95, L/a=32
β=2.10, L/a=48
Continuum limit
MS : mR
c (2 GeV) = 1173.0(2.4)(17.0) MeV
C. Kallidonis (CyI) Baryon Spectrum Bonn University 12 / 27
Tuning of the strange and charm quark mass (Nf = 2 plus clover)
use Ω− for strange quark and Λ+
c for charm quark
use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+
c mass
mphys
Ω
1.6
1.65
1.7
1.75
0.023 0.024 0.025 0.026 0.027 0.028
mΩ(GeV)
aμs
aμs
phys = 0.0264(3)
mphys
Λc
+
2.15
2.2
2.25
2.3
2.35
2.4
0.3 0.31 0.32 0.33 0.34 0.35 0.36
mΛc
+
(GeV)
aμc
aμc
phys = 0.3346(15)
C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27
Tuning of the strange and charm quark mass (Nf = 2 plus clover)
use Ω− for strange quark and Λ+
c for charm quark
use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+
c mass
mphys
Ω
1.6
1.65
1.7
1.75
0.023 0.024 0.025 0.026 0.027 0.028
mΩ(GeV)
aμs
aμs
phys = 0.0264(3)
mphys
Λc
+
2.15
2.2
2.25
2.3
2.35
2.4
0.3 0.31 0.32 0.33 0.34 0.35 0.36
mΛc
+
(GeV)
aμc
aμc
phys = 0.3346(15)
interpolate all the rest hyperons and charmed baryons to the tuned values
of aµs and aµc
C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27
Tuning of the strange and charm quark mass (Nf = 2 plus clover)
Interpolation
Hyperons - Charmed baryons
mass
Mint
μ1 μ2 μt μ3 μ
Charmed baryons with strange quarks
mass μc = μc,1
Ms,1
μs,1 μs,2 μs,t μs,3 μs
mass μc = μc,2
Ms,2
μs,1 μs,2 μs,t μs,3 μs
...
mass
Mint
μc,1 μc,2 μc,t μc,3 μc
C. Kallidonis (CyI) Baryon Spectrum Bonn University 14 / 27
Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1
fit in the whole pion mass range 210-430 MeV
include all β’s
allow for cut-off effects by including a term ∝ a2
C. Kallidonis (CyI) Baryon Spectrum Bonn University 15 / 27
Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1
fit in the whole pion mass range 210-430 MeV
include all β’s
allow for cut-off effects by including a term ∝ a2
Hyperons
use leading one-loop order continuum HBχPT
systematic error due to the chiral extrapolation → use O(p4) HBχPT
1.05
1.1
1.15
1.2
1.25
1.3
1.35
1.4
1.45
0 0.05 0.1 0.15 0.2 0.25
mΣ0(GeV)
mπ
2 (GeV2)
NLO HBχPT
LO HBχPT
β=2.10, L/a=48
β=1.95, L/a=32
β=1.90, L/a=32
1.4
1.45
1.5
1.55
1.6
1.65
1.7
1.75
1.8
0 0.05 0.1 0.15 0.2 0.25
mΞ*(GeV)
mπ
2 (GeV2)
NLO HBχPT
LO HBχPT
β=2.10, L/a=48
β=1.95, L/a=32
β=1.90, L/a=32
C. Kallidonis (CyI) Baryon Spectrum Bonn University 15 / 27
Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1
Charmed baryons
use Ansatz mB = m
(0)
B + c1m2
π + c2m3
π + da2
systematic error due to the chiral extrapolation → set c2 = 0 and restrict mπ < 300 MeV
2.35
2.4
2.45
2.5
2.55
2.6
0 0.05 0.1 0.15 0.2 0.25
mΞc
0(GeV)
mπ
2 (GeV2)
mπ < 0.300GeV
mπ < 0.432GeV
β=2.10, L/a=48
β=1.95, L/a=32
β=1.90, L/a=32
2.4
2.45
2.5
2.55
2.6
2.65
2.7
2.75
0 0.05 0.1 0.15 0.2 0.25
mΣc
*(GeV)
mπ
2 (GeV2)
mπ < 0.300GeV
mπ < 0.432GeV
β=2.10, L/a=48
β=1.95, L/a=32
β=1.90, L/a=32
C. Kallidonis (CyI) Baryon Spectrum Bonn University 16 / 27
Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1
Charmed baryons
use Ansatz mB = m
(0)
B + c1m2
π + c2m3
π + da2
systematic error due to the chiral extrapolation → set c2 = 0 and restrict mπ < 300 MeV
2.35
2.4
2.45
2.5
2.55
2.6
0 0.05 0.1 0.15 0.2 0.25
mΞc
0(GeV)
mπ
2 (GeV2)
mπ < 0.300GeV
mπ < 0.432GeV
β=2.10, L/a=48
β=1.95, L/a=32
β=1.90, L/a=32
2.4
2.45
2.5
2.55
2.6
2.65
2.7
2.75
0 0.05 0.1 0.15 0.2 0.25
mΣc
*(GeV)
mπ
2 (GeV2)
mπ < 0.300GeV
mπ < 0.432GeV
β=2.10, L/a=48
β=1.95, L/a=32
β=1.90, L/a=32
systematic error due to the tuning for all baryons
finite-a corrections ∼ 1% − 9% - cut-off effects are small
reproduction of experimentally known baryon masses → Predictions
C. Kallidonis (CyI) Baryon Spectrum Bonn University 16 / 27
Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1
Cut-off effects
Baryon d (GeV3)
% correction
β = 1.90 β = 1.95 β = 2.10
Ξcc 1.08(7) 6.3 5.0 3.1
Ξ∗
cc 1.01(10) 5.9 4.6 2.9
Ωcc 1.20(5) 6.9 5.4 3.4
Ω∗
cc 1.10(7) 6.2 4.9 3.0
Ωccc 1.15(5) 5.1 4.1 2.6
1.6
1.65
1.7
1.75
1.8
1.85
1.9
0 0.05 0.1 0.15 0.2 0.25
mΩ(GeV)
a2 (1/GeV2)
mΩ = 1.672(7) + 0.466(4) a2
4.7
4.8
4.9
5
5.1
0 0.05 0.1 0.15 0.2 0.25
mΩccc
(GeV)
a2 (1/GeV2)
mΩccc
= 4.734(9) + 1.154(10) a2
C. Kallidonis (CyI) Baryon Spectrum Bonn University 17 / 27
Results II: Isospin symmetry breaking
Wilson twisted mass action breaks isospin symmetry explicitly to O(a2)
it is expected to be zero in the continuum limit
manifests itself as mass splitting between baryons belonging to the same isospin multiplets due to
lattice artifacts
u ←→ d is a symmetry, e.g. ∆++(uuu), ∆−(ddd) and ∆+(uud), ∆0(ddu) are degenerate
C. Kallidonis (CyI) Baryon Spectrum Bonn University 18 / 27
Results II: Isospin symmetry breaking
∆ baryons
-0.08
-0.04
0
0.04
0.08
0.12
0 0.002 0.004 0.006 0.008 0.01
Δm(GeV)
a2 (fm2)
Δ++,- - Δ+,0
isospin splitting effects are consistent with zero for all lattice spacings and pion masses
C. Kallidonis (CyI) Baryon Spectrum Bonn University 19 / 27
Results II: Isospin symmetry breaking
Hyperons
-0.08
-0.04
0
0.04
0.08
0.12
0 0.002 0.004 0.006 0.008 0.01
Δm(GeV)
a2 (fm2)
Ξ0 - Ξ-
-0.08
-0.04
0
0.04
0.08
0.12
0 0.002 0.004 0.006 0.008 0.01
Δm(GeV)
a2 (fm2)
Ξ*0 - Ξ*-
small mass splittings for the spin-1/2 hyperons - decreased as a −→ 0
splitting is smaller for the Nf = 2 plus clover ensemble
isospin splitting consistent with zero for spin-3/2 hyperons
C. Kallidonis (CyI) Baryon Spectrum Bonn University 20 / 27
Results II: Isospin symmetry breaking
Charmed baryons
-0.08
-0.04
0
0.04
0.08
0.12
0 0.002 0.004 0.006 0.008 0.01
Δm(GeV)
a2 (fm2)
Ξcc
++ - Ξcc
+
-0.08
-0.04
0
0.04
0.08
0.12
0 0.002 0.004 0.006 0.008 0.01
Δm(GeV)
a2 (fm2)
Ξcc
*++ - Ξcc
*+
very small effects for spin-1/2 charmed baryons
no isospin symmetry breaking for spin-3/2 charmed baryons
C. Kallidonis (CyI) Baryon Spectrum Bonn University 21 / 27
Comparison
Lattice results from other schemes
0.6
0.8
1
1.2
1.4
1.6
0 0.05 0.1 0.15 0.2 0.25
mN(GeV)
mπ
2 (GeV2)
ETMC Nf=2+1+1
ETMC Nf=2 with CSW
BMW
LHPC
QCDSF-UKQCD
MILC
PACS-CS
0.9
1
1.1
1.2
1.3
1.4
1.5
0 0.05 0.1 0.15 0.2 0.25
mΛ(GeV)
mπ
2 (GeV2)
ETMC
ETMC Nf=2 with CSW
BMW
PACS-CS
LHPC
BMW: Nf = 2 + 1 clover fermions S. Durr et al. arXiV:0906.3599
PACS-CS: Nf = 2 + 1 O(a) improved clover fermions A. Aoki et al. arXiV:0807.1661
LHPC: domain wall valence quarks on a staggered fermions sea (hybrid) A. Walker-Loud et al. arXiV:0806.4549
MILC: Nf = 2 + 1 + 1 Kogut-Susskind fermion action C.W. Bernard et al. hep/lat 0104002
QCDSF-UKQCD: Nf = 2 Wilson fermions G. Bali et al. arXiV:1206.7034
C. Kallidonis (CyI) Baryon Spectrum Bonn University 22 / 27
Comparison
Experiment
Octet - Decuplet spectrum
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
N Λ Σ Ξ Δ Σ* Ξ* Ω
M(GeV)
ETMC Nf=2+1+1
ETMC Nf=2 with CSW
BMW Nf=2+1
PACS-CS Nf=2+1
QCDSF-UKQCD Nf=2+1
S. Durr et al. arXiV:0906.3599, A. Aoki et al. arXiV:0807.1661, W. Bietenholz et al. arXiV:1102.5300, Particle Data Group
C. Kallidonis (CyI) Baryon Spectrum Bonn University 23 / 27
Comparison
Experiment
Charm baryons, spin-1/2 spectrum
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
Λc Σc Ξc Ξ'
c
Ωc Ξcc Ωcc
M(GeV)
ETMC Nf=2+1+1
ETMC Nf=2 with CSW
PACS-CS Nf=2+1
Na et al. Nf=2+1
Briceno et al. Nf=2+1+1
Liu et al. Nf=2+1
G. Bali et al. Nf=2+1
R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, L. Liu et al.
arXiV:0909.3294, G. Bali et al. arXiv:1503.08440, Particle Data Group
C. Kallidonis (CyI) Baryon Spectrum Bonn University 24 / 27
Comparison
Experiment
Charm baryons, spin-3/2 spectrum
2.5
3
3.5
4
4.5
5
Σc
* Ξc
* Ωc
* Ξcc
* Ωcc
* Ωccc
M(GeV)
ETMC Nf=2+1+1
ETMC Nf=2 with CSW
PACS-CS Nf=2+1
Na et al. Nf=2+1
Briceno et al. Nf=2+1+1
G. Bali et al. Nf=2+1
R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, G. Bali et al.
arXiv:1503.08440, Particle Data Group
C. Kallidonis (CyI) Baryon Spectrum Bonn University 25 / 27
Ongoing - Future work
finalize work on baryon spectrum for the Nf = 2 plus clover ensemble
proceed with calculation of other observables (gA,...)
new implementation in twisted mass CG inverter to accelerate inversions using deflation leads to
large speed-up! (might become even larger...) - Arnoldi algorithm and ARPACK package
more gauge ensembles from ETMC at the physical pion mass / with Nf = 2 plus clover action (?)
C. Kallidonis (CyI) Baryon Spectrum Bonn University 26 / 27
Conclusions
twisted mass formulation with Nf = 2 + 1 + 1 flavors provides a good framework to study baryon
spectrum
promising results from Nf = 2 plus clover ensemble at the physical pion mass
physical nucleon mass appropriate to fix lattice spacing when studying baryon masses
isospin symmetry breaking effects are small and vanish as the continuum limit is approached
cut-off effects are small and under control
good agreement with other lattice calculations and with experiment - reliable predictions of the
Ξ∗
cc, Ωcc, Ω∗
cc and Ωccc masses
C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27
Conclusions
twisted mass formulation with Nf = 2 + 1 + 1 flavors provides a good framework to study baryon
spectrum
promising results from Nf = 2 plus clover ensemble at the physical pion mass
physical nucleon mass appropriate to fix lattice spacing when studying baryon masses
isospin symmetry breaking effects are small and vanish as the continuum limit is approached
cut-off effects are small and under control
good agreement with other lattice calculations and with experiment - reliable predictions of the
Ξ∗
cc, Ωcc, Ω∗
cc and Ωccc masses
Thank you
The Project Cy-Tera (NEA YΠO∆OMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the
Republic of Cyprus through the Research Promotion Foundation
C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27
Lattice evaluation
Effective mass
mB
eff(t) = log
CB(t)
CB(t + 1)
= mB + log
1 + ∞
i=1 cie−∆it
1 + ∞
i=1 cie−∆i(t+1)
−→
t→∞
mB , ∆i = mi − mB
mB
eff(t) ≈ me
B + log
1 + c1e−∆1t
1 + c1e−∆1(t+1)
criterion for plateau selection
mc
B − me
B
1
2(mc
B + me
B)
≤
1
2
σmc
B
0.3
0.4
0.5
0.6
0.7
0 4 8 12 16 20
ameff
t/a
Ξ0
Exponential fit
Constant fit
C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 3
Backup slides
Nucleon σ-term
20 30 40 50 60 70 80 90 100
σπN (MeV)
ETMC Nf = 2 + 1 + 1 (this work)
C. Alexandrou et al. (ETMC) arXiv:0910.2419
G. Bali et al. (QCDSF) arXiv:1111.1600
L. Alvarez-Ruso et al. arXiv:1304.0483
X.-L. Ren et al. arXiv:1404.4799
M.F.M. Lutz et al. arXiv:1401.7805
S. Durr et al. (BMW) arXiv:1109.4265
R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971
C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 3
Backup slides
Hyperon σ-terms
20 40 60 80
Λ
20 40 60 80
σπB (MeV)
Σ
0 10 20 30
Ξ
ETMC Nf = 2 + 1 + 1 (this work)
C. Alexandrou et al. (ETMC) [1]
X.-L. Ren et al. [2]
M.F.M. Lutz et al. [3]
S. Durr et al. (BMW) [4]
R. Horsley et al. (QCDSF-UKQCD) [5]
[1] C. Alexandrou et al. (ETMC) arXiv:0910.2419
[2] X.-L. Ren et al. arXiv:1404.4799
[3] M.F.M. Lutz et al. arXiv:1401.7805
[4] S. Durr et al. (BMW) arXiv:1109.4265
[5] R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971
C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 3

More Related Content

What's hot

Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Antenna Paper Solution
Antenna Paper SolutionAntenna Paper Solution
Antenna Paper SolutionHaris Hassan
 
videoMotionTrackingPCA
videoMotionTrackingPCAvideoMotionTrackingPCA
videoMotionTrackingPCAKellen Betts
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motionDhaval Chauhan
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma ediciónSohar Carr
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma ediciónSohar Carr
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3edKadu Brito
 
Capitulo 13, 7ma edición
Capitulo 13, 7ma ediciónCapitulo 13, 7ma edición
Capitulo 13, 7ma ediciónSohar Carr
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsMauritz van den Worm
 
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Kellen Betts
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...qedobose
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma ediciónSohar Carr
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_correctedAndy Hone
 
Learning object 1
Learning object 1Learning object 1
Learning object 1Ina Na
 

What's hot (20)

Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Antenna Paper Solution
Antenna Paper SolutionAntenna Paper Solution
Antenna Paper Solution
 
videoMotionTrackingPCA
videoMotionTrackingPCAvideoMotionTrackingPCA
videoMotionTrackingPCA
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motion
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma edición
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed(Neamen)solution manual for semiconductor physics and devices 3ed
(Neamen)solution manual for semiconductor physics and devices 3ed
 
Capitulo 13, 7ma edición
Capitulo 13, 7ma ediciónCapitulo 13, 7ma edición
Capitulo 13, 7ma edición
 
exceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice modelsexceptionaly long-range quantum lattice models
exceptionaly long-range quantum lattice models
 
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 
Chib paper approval
Chib paper approvalChib paper approval
Chib paper approval
 
Solution manual 13 15
Solution manual 13 15Solution manual 13 15
Solution manual 13 15
 
Solution manual 9
Solution manual 9Solution manual 9
Solution manual 9
 
dhirota_hone_corrected
dhirota_hone_correcteddhirota_hone_corrected
dhirota_hone_corrected
 
Learning object 1
Learning object 1Learning object 1
Learning object 1
 

Similar to Hyperon and charm baryons masses from twisted mass Lattice QCD

Probing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulationsProbing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulationsChristos Kallidonis
 
On approximating the Riemannian 1-center
On approximating the Riemannian 1-centerOn approximating the Riemannian 1-center
On approximating the Riemannian 1-centerFrank Nielsen
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011waddling
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixturesChristian Robert
 
First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...Maxim Eingorn
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Solutions modern particlephysics
Solutions modern particlephysicsSolutions modern particlephysics
Solutions modern particlephysicsitachikaleido
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezEscalante Supertramp
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDChristos Kallidonis
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematicsZainonie Ma'arof
 
amer.math.monthly.124.2.179.pdf
amer.math.monthly.124.2.179.pdfamer.math.monthly.124.2.179.pdf
amer.math.monthly.124.2.179.pdfxohovaf
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...Cristian Randieri PhD
 
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions ManualEngineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions Manualxoreq
 

Similar to Hyperon and charm baryons masses from twisted mass Lattice QCD (20)

Probing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulationsProbing nucleon structure from Lattice QCD simulations
Probing nucleon structure from Lattice QCD simulations
 
On approximating the Riemannian 1-center
On approximating the Riemannian 1-centerOn approximating the Riemannian 1-center
On approximating the Riemannian 1-center
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
計算材料学
計算材料学計算材料学
計算材料学
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Solutions modern particlephysics
Solutions modern particlephysicsSolutions modern particlephysics
Solutions modern particlephysics
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCD
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
 
amer.math.monthly.124.2.179.pdf
amer.math.monthly.124.2.179.pdfamer.math.monthly.124.2.179.pdf
amer.math.monthly.124.2.179.pdf
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
hone_durham
hone_durhamhone_durham
hone_durham
 
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions ManualEngineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
 
MM2020-AV
MM2020-AVMM2020-AV
MM2020-AV
 

More from Christos Kallidonis

Nucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDNucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDChristos Kallidonis
 
The Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCDThe Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCDChristos Kallidonis
 
The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...Christos Kallidonis
 
Nucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDANucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDAChristos Kallidonis
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDChristos Kallidonis
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDChristos Kallidonis
 
Hyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDHyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDChristos Kallidonis
 

More from Christos Kallidonis (7)

Nucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDNucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCD
 
The Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCDThe Nucleon Parton Distribution Functions from Lattice QCD
The Nucleon Parton Distribution Functions from Lattice QCD
 
The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...
 
Nucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDANucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDA
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCD
 
Hyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDHyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCD
 

Recently uploaded

Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 

Recently uploaded (20)

Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 

Hyperon and charm baryons masses from twisted mass Lattice QCD

  • 1. Hyperon and charmed baryon masses from twisted mass Lattice QCD (Nf = 2 + 1 + 1, Nf = 2 plus clover) Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute C. Alexandrou et al. arXiv:1406.4310 with C. Alexandrou, V. Drach, K, Hadjiyiannakou, K. Jansen, G. Koutsou Rheinische Friedrich-Wilhelms-Universit¨at Bonn Bonn, Germany 1 April 2015 C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 27
  • 2. Outline 1 Introduction - Motivation 2 Lattice evaluation Wilson twisted mass action Simulation details Scale setting Interpolating fields - Effective mass 3 Tuning of the strange and charm quark mass 4 Results Chiral and continuum extrapolation for Nf = 2 + 1 + 1 Isospin symmetry breaking 5 Comparison 6 Conclusions C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 27
  • 3. Introduction - Motivation Why we want to calculate baryon masses? easy to calculate first quantities one calculates before proceeding with more complex observables large signal to noise ratio reliable way to study lattice effects significant for on-going experiments observation of doubly-charmed Ξ baryons (SELEX, hep-ex/0208014, hep-ex/0209075, hep-ex/0406033) - interest in charmed baryon spectroscopy (G. Bali et al. arXiv:1503.08440, M. Padmanath et al. arXiv:1502.01845) are the experimentally known masses reproduced? safe and reliable predictions for the rest C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 27
  • 4. Lattice evaluation Wilson twisted mass action for Nf = 2 + 1 + 1 doublet of light quarks: ψ = u d R. Frezzotti et al. arXiv:hep-lat/0306014 Transformation of quark fields: ψ(x) = 1√ 2 11 + iτ3γ5 χ(x) ψ(x) = χ(x) 1√ 2 11 + iτ3γ5    mass term ψmψ → χiγ5τ3mχ S (l) F = a4 x χ(x) 1 2 γµ( µ + ∗ µ) − ar 2 µ ∗ µ + m0,l + iγ5τ3 µ χ(x) C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27
  • 5. Lattice evaluation Wilson twisted mass action for Nf = 2 + 1 + 1 doublet of light quarks: ψ = u d R. Frezzotti et al. arXiv:hep-lat/0306014 Transformation of quark fields: ψ(x) = 1√ 2 11 + iτ3γ5 χ(x) ψ(x) = χ(x) 1√ 2 11 + iτ3γ5    mass term ψmψ → χiγ5τ3mχ S (l) F = a4 x χ(x) 1 2 γµ( µ + ∗ µ) − ar 2 µ ∗ µ + m0,l + iγ5τ3 µ χ(x) heavy quarks: χh = s c In the sea we use the action: R. Frezzotti et al. arXiv:hep-lat/0311008 S (h) F = a4 x χh(x) 1 2 γµ( µ + ∗ µ) − ar 2 µ ∗ µ + m0,h + iµσγ5τ1 + τ3 µδ χh(x) presence of τ1 introduces mixing of the strange and charm flavors valence sector: use Osterwalder-Seiler valence heavy quarks χ(s) = (s+, s−) , χ(c) = (c+, c−) re-tuning of the strange and charm quark masses required Wilson TM at maximal twist cut-off effects are automatically O(a) improved no operator improvement is needed (important for nucleon structure) C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27
  • 6. Lattice evaluation Wilson twisted mass action for Nf = 2 plus clover S (l) F = a4 x χ(x) 1 2 γµ( µ + ∗ µ) − ar 2 µ ∗ µ + m0,l + iγ5τ3 µ + i 4 CSW σµν Fµν (U) χ(x) Clover term stable simulations control O(a2) effects O(a) improvement remains! CSW = 1.57551 B. Sheikholeslami et al. Nucl.Phys. B259 (1985), S. Aoki et al. hep-lat/0508031 C. Kallidonis (CyI) Baryon Spectrum Bonn University 5 / 27
  • 7. Lattice evaluation Simulation details Total of 10 Nf = 2 + 1 + 1 gauge ensembles produced by ETMC Nf = 2 plus clover ensemble at the physical pion mass R. Baron et al. (ETMC) arXiV:1004.5284, A. Abdel-Rehim et al. arXiv:1311.4522 β = 1.90, a = 0.0936(13) fm 323 × 64, L = 3.0 fm aµ 0.0030 0.0040 0.0050 No. of Confs 200 200 200 mπ (GeV) 0.2607 0.2975 0.3323 mπL 3.97 4.53 5.05 β = 1.95, a = 0.0823(10) fm 323 × 64, L = 2.6 fm aµ 0.0025 0.0035 0.0055 0.0075 No. of Confs 200 200 200 200 mπ (GeV) 0.2558 0.3018 0.3716 0.4316 mπL 3.42 4.03 4.97 5.77 β = 2.10, a = 0.0646(7) fm 483 × 96, L = 3.1 fm aµ 0.0015 0.002 0.003 No. of Confs 196 184 200 mπ (GeV) 0.2128 0.2455 0.2984 mπL 3.35 3.86 4.69 β = 2.10, a = 0.0941(12) fm 483 × 96, L = 4.5 fm aµ 0.0009 No. of Confs 524 mπ (GeV) 0.1303 mπL 2.99 two lattice volumes pion masses from 210-430 MeV → chiral extrapolations three values of the lattice spacing → investigation of finite lattice effects C. Kallidonis (CyI) Baryon Spectrum Bonn University 6 / 27
  • 8. Lattice evaluation Scale setting for baryon masses → physical nucleon mass dedicated high statistics analysis on 17 Nf = 2 + 1 + 1 ensembles use HBχPT leading one-loop order result mN = m (0) N − 4c1m2 π − 3g2 A 16πf2 π m3 π fit simultaneously for Nf = 2 + 1 + 1 and Nf = 2 plus clover for all β values systematic error due to the chiral extrapolation → use O(p4) HBχPT with explicit ∆-degrees of freedom 0.8 0.9 1 1.1 1.2 1.3 1.4 0 0.05 0.1 0.15 0.2 0.25 mN(GeV) mπ 2 (GeV2) β=1.90, L/a=32, L=3.0fm β=1.90, L/a=24, L=2.2fm β=1.90, L/a=20, L=1.9fm β=1.95, L/a=32, L=2.6fm β=1.95, L/a=24, L=2.0fm β=2.10, L/a=48, L=3.1fm β=2.10, L/a=32, L=2.1fm β=2.10, CSW=1.57551, L/a=48, L=4.5fm β a (fm) 1.90 0.0936(13)(35) 1.95 0.0823(10)(35) 2.10 0.0646(7)(25) 2.10 0.0941(12)(2) fitting for each β separately yields consistent values - negligible cut-off effects for the nucleon case light σ-term for nucleon σπN = 64.9(1.5)(13.2) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 7 / 27
  • 9. Lattice evaluation Effective mass Effective masses are obtained from two-point correlation functions C± B (t, p = 0) = xsink 1 4 Tr (1 ± γ0) JB (xsink) ¯JB (xsource) , t = tsink − tsource Gaussian smearing at source and sink, APE smearing at spatial links source position chosen randomly C. Kallidonis (CyI) Baryon Spectrum Bonn University 8 / 27
  • 10. Lattice evaluation Effective mass Effective masses are obtained from two-point correlation functions C± B (t, p = 0) = xsink 1 4 Tr (1 ± γ0) JB (xsink) ¯JB (xsource) , t = tsink − tsource Gaussian smearing at source and sink, APE smearing at spatial links source position chosen randomly amB eff(t) = log CB(t) CB(t + 1) 0 0.4 0.8 1.2 1.6 2 4 6 8 10 12 14 16 18 ameff t/a Σc *++ Λc + Ω Ξ0 N C. Kallidonis (CyI) Baryon Spectrum Bonn University 8 / 27
  • 11. Lattice evaluation Interpolating fields constructed such that they have the quantum numbers of the baryon in interest 4 quark flavors baryons (qqq)    SU(3) subgroups of SU(4) Examples p (uud) J = abc uT a Cγ5db uc Σ0 (uds) J = 1√ 2 abc uT a Cγ5sb dc + dT a Cγ5sb uc Ξ+ c (usc) J = abc uT a Cγ5sb cc Ξ 0 (uss) Jµ = abc sT a Cγµub sc Σ ++ c (uuc) Jµ = 1√ 3 abc uT a Cγµub cc + 2 cT a Cγµub uc Ω 0 c (ssc) Jµ = abc sT a Cγµcb sc 20plet of spin-1/2 baryons 20 = 8 ⊕ 6 ⊕ 3 ⊕ 3 20plet of spin-3/2 baryons 20 = 10 ⊕ 6 ⊕ 3 ⊕ 1 C. Kallidonis (CyI) Baryon Spectrum Bonn University 9 / 27
  • 12. Lattice evaluation Interpolating fields incorporation of spin-3/2 and spin-1/2 projectors Pµν 3/2 = δµν − 1 3 γµγν , J µ B3/2 = Pµν 3/2JνB Pµν 1/2 = δµν − Pµν 3/2 , J µ B1/2 = Pµν 1/2JνB C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
  • 13. Lattice evaluation Interpolating fields incorporation of spin-3/2 and spin-1/2 projectors Pµν 3/2 = δµν − 1 3 γµγν , J µ B3/2 = Pµν 3/2JνB Pµν 1/2 = δµν − Pµν 3/2 , J µ B1/2 = Pµν 1/2JνB0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 4 8 12 16 20 ame↵⌃⇤++ c t/a 3/2 projection 1/2 projection No projection 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 4 8 12 16 20 ame↵⌃⇤+ t/a 3/2 projection 1/2 projection No projection C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
  • 14. Lattice evaluation Interpolating fields incorporation of spin-3/2 and spin-1/2 projectors Pµν 3/2 = δµν − 1 3 γµγν , J µ B3/2 = Pµν 3/2JνB Pµν 1/2 = δµν − Pµν 3/2 , J µ B1/2 = Pµν 1/2JνB0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 4 8 12 16 20 ame↵⌃⇤++ c t/a 3/2 projection 1/2 projection No projection 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 4 8 12 16 20 ame↵⌃⇤+ t/a 3/2 projection 1/2 projection No projection 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 2 4 6 8 10 12 14 16 ame↵ t/a J⌅⇤0 3/2 projection J⌅⇤0 1/2 projection J⌅⇤0 No projection J⌅0 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 2 4 6 8 10 12 14 16 ame↵ t/a J⌅⇤ 3/2 projection J⌅⇤ 1/2 projection J⌅⇤ No projection J⌅ C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
  • 15. Tuning of the strange and charm quark mass (Nf = 2 + 1 + 1) use Ω− for strange quark and Λ+ c for charm quark fix renormalized strange and charm masses using non-perturbatively determined renormalization constants (N. Carrasco et al. arXiv:1403.4504) in the MS scheme at 2 GeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27
  • 16. Tuning of the strange and charm quark mass (Nf = 2 + 1 + 1) use Ω− for strange quark and Λ+ c for charm quark fix renormalized strange and charm masses using non-perturbatively determined renormalization constants (N. Carrasco et al. arXiv:1403.4504) in the MS scheme at 2 GeV Strange quark mass tuning use a set of strange quark masses to interpolate the mass of Ω− to a given value of mR s and extrapolate to the continuum and physical pion mass using mΩ = m0 Ω − 4c (1) Ω m2 π + da2 match with physical mass of Ω− mΩ phys 1.6 1.65 1.7 1.75 1.8 85 90 95 100 105 110 115 mΩ-(GeV) ms R (MeV) ms R = 92.4(6) MeV 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 0 0.05 0.1 0.15 0.2 0.25 mΩ-(GeV) mπ 2 (GeV2) β=1.90, L/a=32 β=1.95, L/a=32 β=2.10, L/a=48 Continuum limit MS : mR s (2 GeV) = 92.4(6)(2.0) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27
  • 17. Tuning of the strange and charm quark mass (Nf = 2 + 1 + 1) Charm quark mass tuning follow the same procedure using Λ+ c and fit using mΛc = m0 Λc + c1m2 π + c2m3 π + da2 mΛc phys 2.26 2.28 2.3 2.32 1150 1160 1170 1180 1190 1200 mΛc +(GeV) mc R (MeV) mc R = 1173.0(2.4) MeV 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 0 0.05 0.1 0.15 0.2 0.25 mΛc +(GeV) mπ 2 (GeV2) β=1.90, L/a=32 β=1.95, L/a=32 β=2.10, L/a=48 Continuum limit MS : mR c (2 GeV) = 1173.0(2.4)(17.0) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 12 / 27
  • 18. Tuning of the strange and charm quark mass (Nf = 2 plus clover) use Ω− for strange quark and Λ+ c for charm quark use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+ c mass mphys Ω 1.6 1.65 1.7 1.75 0.023 0.024 0.025 0.026 0.027 0.028 mΩ(GeV) aμs aμs phys = 0.0264(3) mphys Λc + 2.15 2.2 2.25 2.3 2.35 2.4 0.3 0.31 0.32 0.33 0.34 0.35 0.36 mΛc + (GeV) aμc aμc phys = 0.3346(15) C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27
  • 19. Tuning of the strange and charm quark mass (Nf = 2 plus clover) use Ω− for strange quark and Λ+ c for charm quark use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+ c mass mphys Ω 1.6 1.65 1.7 1.75 0.023 0.024 0.025 0.026 0.027 0.028 mΩ(GeV) aμs aμs phys = 0.0264(3) mphys Λc + 2.15 2.2 2.25 2.3 2.35 2.4 0.3 0.31 0.32 0.33 0.34 0.35 0.36 mΛc + (GeV) aμc aμc phys = 0.3346(15) interpolate all the rest hyperons and charmed baryons to the tuned values of aµs and aµc C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27
  • 20. Tuning of the strange and charm quark mass (Nf = 2 plus clover) Interpolation Hyperons - Charmed baryons mass Mint μ1 μ2 μt μ3 μ Charmed baryons with strange quarks mass μc = μc,1 Ms,1 μs,1 μs,2 μs,t μs,3 μs mass μc = μc,2 Ms,2 μs,1 μs,2 μs,t μs,3 μs ... mass Mint μc,1 μc,2 μc,t μc,3 μc C. Kallidonis (CyI) Baryon Spectrum Bonn University 14 / 27
  • 21. Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1 fit in the whole pion mass range 210-430 MeV include all β’s allow for cut-off effects by including a term ∝ a2 C. Kallidonis (CyI) Baryon Spectrum Bonn University 15 / 27
  • 22. Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1 fit in the whole pion mass range 210-430 MeV include all β’s allow for cut-off effects by including a term ∝ a2 Hyperons use leading one-loop order continuum HBχPT systematic error due to the chiral extrapolation → use O(p4) HBχPT 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 0 0.05 0.1 0.15 0.2 0.25 mΣ0(GeV) mπ 2 (GeV2) NLO HBχPT LO HBχPT β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 0 0.05 0.1 0.15 0.2 0.25 mΞ*(GeV) mπ 2 (GeV2) NLO HBχPT LO HBχPT β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 C. Kallidonis (CyI) Baryon Spectrum Bonn University 15 / 27
  • 23. Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1 Charmed baryons use Ansatz mB = m (0) B + c1m2 π + c2m3 π + da2 systematic error due to the chiral extrapolation → set c2 = 0 and restrict mπ < 300 MeV 2.35 2.4 2.45 2.5 2.55 2.6 0 0.05 0.1 0.15 0.2 0.25 mΞc 0(GeV) mπ 2 (GeV2) mπ < 0.300GeV mπ < 0.432GeV β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 0 0.05 0.1 0.15 0.2 0.25 mΣc *(GeV) mπ 2 (GeV2) mπ < 0.300GeV mπ < 0.432GeV β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 C. Kallidonis (CyI) Baryon Spectrum Bonn University 16 / 27
  • 24. Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1 Charmed baryons use Ansatz mB = m (0) B + c1m2 π + c2m3 π + da2 systematic error due to the chiral extrapolation → set c2 = 0 and restrict mπ < 300 MeV 2.35 2.4 2.45 2.5 2.55 2.6 0 0.05 0.1 0.15 0.2 0.25 mΞc 0(GeV) mπ 2 (GeV2) mπ < 0.300GeV mπ < 0.432GeV β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 0 0.05 0.1 0.15 0.2 0.25 mΣc *(GeV) mπ 2 (GeV2) mπ < 0.300GeV mπ < 0.432GeV β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 systematic error due to the tuning for all baryons finite-a corrections ∼ 1% − 9% - cut-off effects are small reproduction of experimentally known baryon masses → Predictions C. Kallidonis (CyI) Baryon Spectrum Bonn University 16 / 27
  • 25. Results I: Chiral and continuum extrapolation for Nf = 2 + 1 + 1 Cut-off effects Baryon d (GeV3) % correction β = 1.90 β = 1.95 β = 2.10 Ξcc 1.08(7) 6.3 5.0 3.1 Ξ∗ cc 1.01(10) 5.9 4.6 2.9 Ωcc 1.20(5) 6.9 5.4 3.4 Ω∗ cc 1.10(7) 6.2 4.9 3.0 Ωccc 1.15(5) 5.1 4.1 2.6 1.6 1.65 1.7 1.75 1.8 1.85 1.9 0 0.05 0.1 0.15 0.2 0.25 mΩ(GeV) a2 (1/GeV2) mΩ = 1.672(7) + 0.466(4) a2 4.7 4.8 4.9 5 5.1 0 0.05 0.1 0.15 0.2 0.25 mΩccc (GeV) a2 (1/GeV2) mΩccc = 4.734(9) + 1.154(10) a2 C. Kallidonis (CyI) Baryon Spectrum Bonn University 17 / 27
  • 26. Results II: Isospin symmetry breaking Wilson twisted mass action breaks isospin symmetry explicitly to O(a2) it is expected to be zero in the continuum limit manifests itself as mass splitting between baryons belonging to the same isospin multiplets due to lattice artifacts u ←→ d is a symmetry, e.g. ∆++(uuu), ∆−(ddd) and ∆+(uud), ∆0(ddu) are degenerate C. Kallidonis (CyI) Baryon Spectrum Bonn University 18 / 27
  • 27. Results II: Isospin symmetry breaking ∆ baryons -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm(GeV) a2 (fm2) Δ++,- - Δ+,0 isospin splitting effects are consistent with zero for all lattice spacings and pion masses C. Kallidonis (CyI) Baryon Spectrum Bonn University 19 / 27
  • 28. Results II: Isospin symmetry breaking Hyperons -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm(GeV) a2 (fm2) Ξ0 - Ξ- -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm(GeV) a2 (fm2) Ξ*0 - Ξ*- small mass splittings for the spin-1/2 hyperons - decreased as a −→ 0 splitting is smaller for the Nf = 2 plus clover ensemble isospin splitting consistent with zero for spin-3/2 hyperons C. Kallidonis (CyI) Baryon Spectrum Bonn University 20 / 27
  • 29. Results II: Isospin symmetry breaking Charmed baryons -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm(GeV) a2 (fm2) Ξcc ++ - Ξcc + -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm(GeV) a2 (fm2) Ξcc *++ - Ξcc *+ very small effects for spin-1/2 charmed baryons no isospin symmetry breaking for spin-3/2 charmed baryons C. Kallidonis (CyI) Baryon Spectrum Bonn University 21 / 27
  • 30. Comparison Lattice results from other schemes 0.6 0.8 1 1.2 1.4 1.6 0 0.05 0.1 0.15 0.2 0.25 mN(GeV) mπ 2 (GeV2) ETMC Nf=2+1+1 ETMC Nf=2 with CSW BMW LHPC QCDSF-UKQCD MILC PACS-CS 0.9 1 1.1 1.2 1.3 1.4 1.5 0 0.05 0.1 0.15 0.2 0.25 mΛ(GeV) mπ 2 (GeV2) ETMC ETMC Nf=2 with CSW BMW PACS-CS LHPC BMW: Nf = 2 + 1 clover fermions S. Durr et al. arXiV:0906.3599 PACS-CS: Nf = 2 + 1 O(a) improved clover fermions A. Aoki et al. arXiV:0807.1661 LHPC: domain wall valence quarks on a staggered fermions sea (hybrid) A. Walker-Loud et al. arXiV:0806.4549 MILC: Nf = 2 + 1 + 1 Kogut-Susskind fermion action C.W. Bernard et al. hep/lat 0104002 QCDSF-UKQCD: Nf = 2 Wilson fermions G. Bali et al. arXiV:1206.7034 C. Kallidonis (CyI) Baryon Spectrum Bonn University 22 / 27
  • 31. Comparison Experiment Octet - Decuplet spectrum 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 N Λ Σ Ξ Δ Σ* Ξ* Ω M(GeV) ETMC Nf=2+1+1 ETMC Nf=2 with CSW BMW Nf=2+1 PACS-CS Nf=2+1 QCDSF-UKQCD Nf=2+1 S. Durr et al. arXiV:0906.3599, A. Aoki et al. arXiV:0807.1661, W. Bietenholz et al. arXiV:1102.5300, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 23 / 27
  • 32. Comparison Experiment Charm baryons, spin-1/2 spectrum 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 Λc Σc Ξc Ξ' c Ωc Ξcc Ωcc M(GeV) ETMC Nf=2+1+1 ETMC Nf=2 with CSW PACS-CS Nf=2+1 Na et al. Nf=2+1 Briceno et al. Nf=2+1+1 Liu et al. Nf=2+1 G. Bali et al. Nf=2+1 R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, L. Liu et al. arXiV:0909.3294, G. Bali et al. arXiv:1503.08440, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 24 / 27
  • 33. Comparison Experiment Charm baryons, spin-3/2 spectrum 2.5 3 3.5 4 4.5 5 Σc * Ξc * Ωc * Ξcc * Ωcc * Ωccc M(GeV) ETMC Nf=2+1+1 ETMC Nf=2 with CSW PACS-CS Nf=2+1 Na et al. Nf=2+1 Briceno et al. Nf=2+1+1 G. Bali et al. Nf=2+1 R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, G. Bali et al. arXiv:1503.08440, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 25 / 27
  • 34. Ongoing - Future work finalize work on baryon spectrum for the Nf = 2 plus clover ensemble proceed with calculation of other observables (gA,...) new implementation in twisted mass CG inverter to accelerate inversions using deflation leads to large speed-up! (might become even larger...) - Arnoldi algorithm and ARPACK package more gauge ensembles from ETMC at the physical pion mass / with Nf = 2 plus clover action (?) C. Kallidonis (CyI) Baryon Spectrum Bonn University 26 / 27
  • 35. Conclusions twisted mass formulation with Nf = 2 + 1 + 1 flavors provides a good framework to study baryon spectrum promising results from Nf = 2 plus clover ensemble at the physical pion mass physical nucleon mass appropriate to fix lattice spacing when studying baryon masses isospin symmetry breaking effects are small and vanish as the continuum limit is approached cut-off effects are small and under control good agreement with other lattice calculations and with experiment - reliable predictions of the Ξ∗ cc, Ωcc, Ω∗ cc and Ωccc masses C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27
  • 36. Conclusions twisted mass formulation with Nf = 2 + 1 + 1 flavors provides a good framework to study baryon spectrum promising results from Nf = 2 plus clover ensemble at the physical pion mass physical nucleon mass appropriate to fix lattice spacing when studying baryon masses isospin symmetry breaking effects are small and vanish as the continuum limit is approached cut-off effects are small and under control good agreement with other lattice calculations and with experiment - reliable predictions of the Ξ∗ cc, Ωcc, Ω∗ cc and Ωccc masses Thank you The Project Cy-Tera (NEA YΠO∆OMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27
  • 37. Lattice evaluation Effective mass mB eff(t) = log CB(t) CB(t + 1) = mB + log 1 + ∞ i=1 cie−∆it 1 + ∞ i=1 cie−∆i(t+1) −→ t→∞ mB , ∆i = mi − mB mB eff(t) ≈ me B + log 1 + c1e−∆1t 1 + c1e−∆1(t+1) criterion for plateau selection mc B − me B 1 2(mc B + me B) ≤ 1 2 σmc B 0.3 0.4 0.5 0.6 0.7 0 4 8 12 16 20 ameff t/a Ξ0 Exponential fit Constant fit C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 3
  • 38. Backup slides Nucleon σ-term 20 30 40 50 60 70 80 90 100 σπN (MeV) ETMC Nf = 2 + 1 + 1 (this work) C. Alexandrou et al. (ETMC) arXiv:0910.2419 G. Bali et al. (QCDSF) arXiv:1111.1600 L. Alvarez-Ruso et al. arXiv:1304.0483 X.-L. Ren et al. arXiv:1404.4799 M.F.M. Lutz et al. arXiv:1401.7805 S. Durr et al. (BMW) arXiv:1109.4265 R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971 C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 3
  • 39. Backup slides Hyperon σ-terms 20 40 60 80 Λ 20 40 60 80 σπB (MeV) Σ 0 10 20 30 Ξ ETMC Nf = 2 + 1 + 1 (this work) C. Alexandrou et al. (ETMC) [1] X.-L. Ren et al. [2] M.F.M. Lutz et al. [3] S. Durr et al. (BMW) [4] R. Horsley et al. (QCDSF-UKQCD) [5] [1] C. Alexandrou et al. (ETMC) arXiv:0910.2419 [2] X.-L. Ren et al. arXiv:1404.4799 [3] M.F.M. Lutz et al. arXiv:1401.7805 [4] S. Durr et al. (BMW) arXiv:1109.4265 [5] R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971 C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 3