SlideShare a Scribd company logo
1 of 21
Download to read offline
Christos Kallidonis
JLab Cake Seminar | Feb. 8, 2021
The Nucleon Parton Distribution Functions
from Lattice QCD
An exploratory study of distillation in the pseudo-PDF framework
Outline
lattice
evaluation
PDF results
summary
& outlook
theoretical
framework
intro &
motivation
HadStruct Collaboration
Robert Edwards, C.K., Jianwei Qiu, David Richards, Frank Winter [a]
Balint Joó [b]
Carl Carlson, Colin Egerer, Tanjib Khan, Christopher Monahan,
Kostas Orginos, Eloy Romero [c]
Wayne Morris, Anatoly Radyushkin [d]
Joe Karpie [e]
Savvas Zafeiropoulos [f]
Yan-Qing Ma [g]
[a] Jefferson Lab, [b] Oak Ridge, [c] William & Mary,
[d] Old Dominion University, [e] Columbia University,
[f] Aix Marseille University, [g] Peking University
How can we study hadron structure?
• Hadrons are complicated systems made of quarks, antiquarks, gluons (
• Dynamics of partons encoded in e.g.:
Form factors Parton distribution
functions (PDFs) d
A. Scapellato (Adam Mickiewicz University) Nucleon PDFs and GPDs from lattice QCD
Introduction
Motivation - why the PDFs?
}
Generalized Parton Distributions (GPDs)
Transverse-momentum dependent (TMD) PDFs
complement 3D picture of hadrons
Parton Distribution Functions (PDFs):
‣ part of ongoing efforts for deep understanding of internal quark and gluon structure of hadrons
‣ number density of “partons” with a longitudinal momentum fraction of the nucleon’s momentum
1D object, necessary in 3D imaging of hadrons
‣ accessible in deep inelastic and semi-inclusive deep inelastic scattering
x
→
Important LHC applications
‣ predictions of various cross sections
‣ W-boson mass
‣ Strong coupling constant
‣ Higgs boson couplings and cross-sections (probe BSM physics)
Gao et.al., arXiv: 1709.04922
Introduction
Motivation - why on the lattice?
Hadrons have an immensely rich composition: Experimental extraction of information becomes
more complex the deeper we look
Accessing PDFs from experiments is an intricate procedure
Still, relatively good precision exists for unpolarized PDFs
Kovarik et.al., arXiv: 1905.06957
7
x*f(x,Q)
x
CT18 at 2 GeV
s
g/5
u
d
–
d
–
u
c
0.0
0.5
1.0
1.5
2.0
10
-6
10
-4
10
-3
10
-2
10
-1 0.2 0.5 0.9
x*f(x,Q)
x
CT18 at 100 GeV
s
g/5
u
d
–
d
–
u
c
b
0.0
0.5
1.0
1.5
2.0
10
-6
10
-4
10
-3
10
-2
10
-1 0.2 0.5 0.9
x,Q)
CT18Z at 2 GeV
s
g/5
u
d
–
d
–
1.0
1.5
2.0
x,Q)
CT18Z at 100 GeV
s
g/5
u
d
–
d
–
1.0
1.5
2.0
Hou et.al. arXiv: 1912.10053
Lattice Evaluation
‣ PDFs: “hot” topic, deserve theoretical attention
‣ unpolarized PDFs benchmark quantity
‣ transversity PDFs not well constrained
‣ GPDs and TMDs even more difficult to access
‣ first principles calculation
→
PDFs on the lattice
pseudo-PDF framework
Unpolarized PDF: non-local matrix element on the light-cone in Minkowski space
<latexit sha1_base64="FJ8sLWusYBA9S14q/L9CMSzijNI=">AAACbHicdVHdbtMwGHXC31Z+1gEXoAnJogIlGq2Sai3rBVIlbrhCRaLrpLqpHNfprDlOZjuolZervSF3PAI3PANOGiRA8EmWj8/5jj77OM45UzoIvjnurdt37t7b22/df/Dw0UH78PGZygpJ6JRkPJPnMVaUM0GnmmlOz3NJcRpzOosv31f67AuVimXis97mdJHitWAJI1hbatm+ufI2PnwHERN6abp2S/S2jEwDIEokJmaFNizqluYE5aykkemyzSQ6tmS3RByLNafwozfxr1GMpUG5YqVXO3y0xmmKo+PZ7vwm8CvVC/zrqh/J2rtsd4JeOBqO+n0Y9IK6LBiOTgeDIQwbpgOamizbX9EqI0VKhSYcKzUPg1wvDJaaEU7LFioUzTG5xGs6t1DglKqFqcMq4SvLrGCSSbuEhjX7u8PgVKltGtvOFOsL9bdWkf/S5oVOTheGibzQVJDdoKTgUGewSh6umKRE860FmEhm7wrJBbbxavs/LRvCr5fC/4Ozfi8c9IJPJ53xuIljDxyBl8ADIXgLxuADmIApIOC7c+A8c547P9yn7pH7YtfqOo3nCfij3Nc/ARkpucQ=</latexit>
q(x) =
Z 1
1
d⇠
4⇡
e ixP +
⇠
hN(P)| ¯(⇠ ) +
W(⇠ , 0) (0)|N(P)i
Inaccessible on the lattice!
<latexit sha1_base64="QxkCXaXXpq/dgqIIFLlU2fXxLRI=">AAACD3icdZDLSsNAFIYn9VbrLerSzWBRXJWk2touhIIblxXsBZq2TKaTduhkEmcmhRLyBm58FTcuFHHr1p1v47SNoKI/DPx85xzOnN8NGZXKsj6MzNLyyupadj23sbm1vWPu7jVlEAlMGjhggWi7SBJGOWkoqhhph4Ig32Wk5Y4vZ/XWhAhJA36jpiHp+mjIqUcxUhr1zeNJL3ZCP4EX0PEEwvGkZ0EN4KR3msSOvBUqLiZJ38xbBbtarhaL0CpYc2lTrlZKpTK0U5IHqep9890ZBDjyCVeYISk7thWqboyEopiRJOdEkoQIj9GQdLTlyCeyG8/vSeCRJgPoBUI/ruCcfp+IkS/l1Hd1p4/USP6uzeBftU6kvEo3pjyMFOF4sciLGFQBnIUDB1QQrNhUG4QF1X+FeIR0LEpHmNMhfF0K/zfNYsEuFazrs3ytlsaRBQfgEJwAG5yDGrgCddAAGNyBB/AEno1749F4MV4XrRkjndkHP2S8fQIA1Jyr</latexit>
v±
=
v0
± v3
p
2
: light-cone coordinates
ξ+
, ξ−
x0
x3
ξ+
ξ−
light-cone distances shrink to the
origin in Euclidean space-time
Methods for accessing -dependence on the lattice:
‣ hadronic tensor
‣ auxiliary quarks
‣ “good lattice cross sections”
‣ “OPE without OPE”
‣ quasi-distributions
‣ pseudo-distributions
x
K.F. Liu et.al. arXiv: hep-ph/9306299
U. Aglietti et.al. arXiv: hep-ph/9806277, W. Detmold et al. arXiv: hep-lat/0507007,
V. Braun et. al. arXiv: 0709.1348
Y-Q. Ma and J. Qiu arXiv: 1404.6860,
1412.2688, 1709.03018
A.J. Chambers et.al. arXiv: 1703.01153
X. Ji arXiv: 1305.1539
A. Radyushkin arXiv: 1705.01488, 1612.05170, 1710.08813,
1711.06031, 1801.02427, 1912.04244
Review: K. Cichy, M. Constantinou arXiv: 1811.07248
PDFs on the lattice
pseudo-PDF framework
Matrix element in Euclidean space:
Lorentz decomposition
<latexit sha1_base64="E0sa7DU94HGbw6Z524UrPbuqsVc=">AAACN3icdVDLSgMxFM34tr6qLt0Ei1BRysyg1S4UwY0bpYJVoVPLnTRtg5nMkGSEduhfufE33OnGhSJu/QPTOj7RA4HDOeeSe48fcaa0bd9ZQ8Mjo2PjE5OZqemZ2bns/MKpCmNJaIWEPJTnPijKmaAVzTSn55GkEPicnvmX+33/7IpKxUJxojsRrQXQEqzJCGgj1bNHhxce8KgN+fJ6dxXvYLecCtgLQLcJ8OSwl/dEvN69cFfxGna7aeDTP/ry69mcXXBKxZLrYrtgD2BIsbS9uVnETqrkUIpyPXvrNUISB1RowkGpqmNHupaA1Ixw2st4saIRkEto0aqhAgKqasng7h5eMUoDN0NpntB4oH6fSCBQqhP4JtnfVf32+uJfXjXWze1awkQUayrI+0fNmGMd4n6JuMEkJZp3DAEimdkVkzZIINpUnTElfFyK/yenbsEpFuzjjdzeblrHBFpCyyiPHLSF9tABKqMKIuga3aNH9GTdWA/Ws/XyHh2y0plF9APW6xtvuqqJ</latexit>
M↵
(P, z) = 2P↵
M(⌫, z2
) + 2z↵
N(⌫, z2
)
leading twist
+ 𝒪(z2
Λ2
QCD)
higher twist
kinematics
<latexit sha1_base64="Z4rhREW/zCPOGmLgFgE6s62SfT8=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxCBQlJsbFdKAURXEawD2hDmEwn7dDJg5mJ0IZ+iRsXirj1U9z5N04fgoqey4XDOfcyd46fMCqkaX5ouZXVtfWN/GZha3tnt6jv7bdEnHJMmjhmMe/4SBBGI9KUVDLSSThBoc9I2x9dzfz2PeGCxtGdHCfEDdEgogHFSCrJ04sOvIDl61NTleNNTjy9ZBpW3a5XKtA0zDkUseu1atWG1lIpgSUcT3/v9WOchiSSmCEhupaZSDdDXFLMyLTQSwVJEB6hAekqGqGQCDebHz6Fx0rpwyDmqiMJ5+r3jQyFQoxDX02GSA7Fb28m/uV1UxnU3IxGSSpJhBcPBSmDMoazFGCfcoIlGyuCMKfqVoiHiCMsVVYFFcLXT+H/pFUxLNswb89KjctlHHlwCI5AGVjgHDTADXBAE2CQggfwBJ61ifaovWivi9Gcttw5AD+gvX0CW72Q9g==</latexit>
P = (E, 0, 0, Pz)
<latexit sha1_base64="o9teCzI1S8UPfzt52COtMK7Ui28=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxCBQlJtbFdKAU3LivYB7QhTKaTdujkwcxEaEO/xI0LRdz6Ke78GydtBRU9lwuHc+5l7hwvZlRI0/zQciura+sb+c3C1vbOblHf22+LKOGYtHDEIt71kCCMhqQlqWSkG3OCAo+Rjje+zvzOPeGCRuGdnMTECdAwpD7FSCrJ1YtTeAnL5mlWU/fsxNVLpmHV7XqlAk3DnEMRu16rVm1oLZUSWKLp6u/9QYSTgIQSMyREzzJj6aSIS4oZmRX6iSAxwmM0JD1FQxQQ4aTzw2fwWCkD6EdcdSjhXP2+kaJAiEngqckAyZH47WXiX14vkX7NSWkYJ5KEePGQnzAoI5ilAAeUEyzZRBGEOVW3QjxCHGGpsiqoEL5+Cv8n7Yph2YZ5e15qXC3jyINDcATKwAIXoAFuQBO0AAYJeABP4Fmbao/ai/a6GM1py50D8APa2ydRY5Du</latexit>
z = (0, 0, 0, z3)
<latexit sha1_base64="Vxs8AHWbh2U5ZSw+rgEQCy/P064=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0iKje1BKXjxWMF+YBvKZLttl242YXcjlNB/4cWDIl79N978N27bCCr6YODx3gwz84KYM6Ud58PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kp0AFOVM0KZmmtNOLCmEAaftYHI199v3VCoWiVs9jakfwkiwISOgjXTXAx6PAV9gp18sObZb82rlMnZsZwFDvFq1UvGwmykllKHRL773BhFJQio04aBU13Vi7acgNSOczgq9RNEYyARGtGuogJAqP11cPMMnRhngYSRNCY0X6veJFEKlpmFgOkPQY/Xbm4t/ed1ED6t+ykScaCrIctEw4VhHeP4+HjBJieZTQ4BIZm7FZAwSiDYhFUwIX5/i/0mrbLue7dycleqXWRx5dISO0Sly0Tmqo2vUQE1EkEAP6Ak9W8p6tF6s12VrzspmDtEPWG+fkqmQMg==</latexit>
↵ = 0
vector current: unpolarized PDFs
<latexit sha1_base64="6W/Z/tWVyshbFjpuWYSsvssMUeM=">AAACQXicdVDNa9swHJW7ry7dR7oedxENAxtKkEObNhRKYZddNlJYmkCUhZ8VJRGVZFeSC4mbf22X/Qe77b7LDhtj110mpx5sZXsgeLwPJL0kk8I6Qj4FG3fu3rv/YPNhbevR4ydP69vPzm2aG8Z7LJWpGSRguRSa95xwkg8yw0ElkveTi5el37/ixopUv3WLjI8UzLSYCgbOS+P64PU7CjKbQ9jdW0aY8stcXGEqQc8kx2/CbnRNEzAFzaxYhcuIzkApqDq4Hy73SFR6IYmuyzQ16yY9HtcbpBl32p1WC5MmWcOTdufo4KCN40ppoArdcf0jnaQsV1w7JsHaYUwyNyrAOMEkX9VobnkG7AJmfOipBsXtqFgvsMIvvDLB09T4ox1eq382ClDWLlTikwrc3N72SvFf3jB306NRIXSWO67ZzUXTXGKX4nJOPBGGMycXngAzwr8VszkYYM6PXvMj/P4p/j85bzXjdpOc7TdOT6o5NtFztItCFKNDdIpeoS7qIYbeo8/oK/oWfAi+BN+DHzfRjaDq7KC/EPz8Bap4ro0=</latexit>
M↵
(P, z) ⌘ hN(P)| ¯(z) ↵
W(z, 0) (0)|N(P)i
Wilson line boosted nucleon states
<latexit sha1_base64="zhH9sclxsIgEnWt4RQGNhATEj+I=">AAAC13icdVFdi9NAFJ1EV9f4sV199GWwCBXckkS3bh+UBUF8EavY3ZUmDZPJpB06mYSZibaG4Jv46t/xn/hvvOmmYqVeGOZw7se5cyYuBNfGdX9Z9pWre9eu799wbt66feegc3j3TOelomxMc5Gri5hoJrhkY8ONYBeFYiSLBTuPFy+b/PknpjTP5QezKliYkZnkKafEABV1fgYZMXNKRPWm7gWyfPwlejL1H+HnOODSRNWRV08rr8bJErNpxaECL+s/PaO6t9x0BO/5bG6IUvlnvLMARqaKUJhW+UHB640CXKlZgUwLcNKogNpRK4d37xh1um7fGw6Gvo/dvrsOAIPhyfHxAHst00VtjKJDay9IclpmTBoqiNYTzy1MWBFlOBWsdoJSs4LQBZmxCUBJMqbDam1yjR8Ck+A0V3CkwWv2746KZFqvshgqm3X1v7mG3JWblCY9CSsui9IwSS+F0lJgk+Pmx3DCFaNGrAAQqjjsiumcgJMG/tXZGrUeTlVYsRLs2noQUOD+onYcB4zbuIP/D878vjfou++edk9ftBbuo/voAeohDz1Dp+g1GqExoha2XllvrZH90f5qf7O/X5baVttzD22F/eM3XiPhiQ==</latexit>
M(⌫, z2
3) =
Z 1
1
dxei⌫x
P(x, z2
3) ) P(x, z2
3) =
1
2⇡
Z 1
1
d⌫e i⌫x
M(⌫, z2
3)
pseudo-PDF
FT: Along constant line
z3
<latexit sha1_base64="4hHFANeHviVkkMWgywy+i0Pv3qI=">AAACT3icdVBNj9JAGJ6i7EJ1d0GPXiYSE0gMabsLwmENiRePmMhHQmvzdpjChOmHM1OFbfo//DVe9erRX+LNOGBNls36JJM8eZ533o8nSDmTyrJ+GpUHD6snp7W6+ejx2flFo/lkKpNMEDohCU/EPABJOYvpRDHF6TwVFKKA01mwebP3Z5+okCyJ36tdSr0IVjELGQGlJb/hfGxvO/gau5xFfn7jX7qCrdYKhEg+Y6twI1BrAjwfF+3tS21/cDp+o2V17WF/6DjY6loHaNIfDnq9PrZLpYVKjP2mUXWXCckiGivCQcqFbaXKy0EoRjgtTDeTNAWygRVdaBpDRKWXH44r8AutLHGYCP1ihQ/q7R85RFLuokBX7peVd729eJ+3yFQ48HIWp5miMfk7KMw4VgneJ4WXTFCi+E4TIILpXTFZgwCidJ7mUatDcyK8nGY6rKODtBQK2BSmaerg/qWD/0+mTtfud613V63R6zLCGnqGnqM2stErNEJv0RhNEEFf0Ff0DX03fhi/jN+VsrRilOQpOkKl/geCUbIZ</latexit>
q(x) = lim
z3!0
P(x, z2
3)
PDF
(ignoring divergences)
: “Ioffe time”
<latexit sha1_base64="D8xd+izXgjmnEW04K1HgA1thkBc=">AAACAHicbVDLSgMxFM34rPVVdeHCTbAIroaZVlvdSMGNywr2AZ0yZNJMG5pJxiRTaEs3/oobF4q49TPc+Tem7YBaPXDhcM693HtPEDOqtON8WkvLK6tr65mN7ObW9s5ubm+/rkQiMalhwYRsBkgRRjmpaaoZacaSoChgpBH0r6d+Y0CkooLf6WFM2hHqchpSjLSR/NyhxxPokfuEDmDVH3m4IzQc+UU/l3fs83LhslSEju3M8E3clORBiqqf+/A6AicR4RozpFTLdWLdHiOpKWZkkvUSRWKE+6hLWoZyFBHVHs8emMATo3RgKKQpruFM/TkxRpFSwygwnRHSPbXoTcX/vFaiw4v2mPI40YTj+aIwYVALOE0DdqgkWLOhIQhLam6FuIckwtpkljUhuIsv/yX1gu2WbOf2LF+5SuPIgCNwDE6BC8qgAm5AFdQABhPwCJ7Bi/VgPVmv1tu8dclKZw7AL1jvXxahlhI=</latexit>
⌫ ⌘ Pz · z3
B. Ioffe, Phys.Lett. 30B, 123 (1969)
Ioffe-time distributions
<latexit sha1_base64="7/9HqRNqJrcweS2cOYDmvTJVjbE=">AAACS3icdVBNa9swGJbTdeuyr6w77iIWBjaUIKdr1lAohV16WclgaQpRal4rSioqyUaSB6mb/7fLLrvtT/TSQ0fpoXKSwTa2FwSPng+k90lzKawj5EdQW3uw/vDRxuP6k6fPnr9ovNw8tllhGO+zTGbmJAXLpdC874ST/CQ3HFQq+SA9/1Dpgy/cWJHpz26W85GCqRYTwcB5KmmkVIE7YyDLj/OQ6mLrItk+bUeYWqEwlaCnkuOjsJdcRJc0BVPS3Ip56F0RnYJScErwoLpukaiSQhJdLu3ULMJ0L2k0SSvudrrtNiYtshgPOt3dnZ0OjldME62mlzS+03HGCsW1YxKsHcYkd6MSjBNM8nmdFpbnwM5hyocealDcjspFF3P81jNjPMmMP9rhBft7ogRl7Uyl3lltbv/WKvJf2rBwk91RKXReOK7Z8qFJIbHLcFUsHgvDmZMzD4AZ4f+K2RkYYM7XX/cl/NoU/x8ct1txp0U+vWse7K/q2ECv0RsUohi9RwfoEPVQHzH0FV2hG/Qz+BZcB7fB3dJaC1aZV+iPqa3fA1yOsTQ=</latexit>
M(⌫, z2
3) ⇠ hN(Pz)| ¯(z3) 0
W(z3, 0) (0)|N(Pz)i
Lorentz invariant!
, : Lorentz scalars
ν z3
features:
‣ standard log. divergence
‣ power divergence (Wilson line)
‣ mult. renormizable to all orders in PT
<latexit sha1_base64="BM6nsJQsx4bt4aKPHsCNCVauZq4=">AAACM3icdVDLSgMxFM1Uq3V8tQpu3ASLUEHKTLW13UjBjRuhgn1AO5ZMmmlDM5khyQh17M+41a0fI+7Erf9g+hCs6IHA4Zx7b+49bsioVJb1aiSWlpMrq6k1c31jc2s7ndlpyCASmNRxwALRcpEkjHJSV1Qx0goFQb7LSNMdXkz85h0Rkgb8Ro1C4vioz6lHMVJa6qb3Oj5SA4xYfDXOdXh0fN89uS0cddNZK29XSpVCAVp5awpNSpVysViC9lzJgjlq3YyR7PQCHPmEK8yQlG3bCpUTI6EoZmRsdiJJQoSHqE/amnLkE+nE0wPG8FArPegFQj+u4FT92REjX8qR7+rKybrytzcR//LakfLKTkx5GCnC8ewjL2JQBXCSBuxRQbBiI00QFlTvCvEACYSVzsxcGDUdjoUTk0jHtXCQljyBhmPTNHVw3+nA/0mjkLdLeev6NFs9n0eYAvvgAOSADc5AFVyCGqgDDB7AI3gCz8aL8Wa8Gx+z0oQx79kFCzA+vwAoiakW</latexit>
M(⌫, z2
3)
T. Ishikawa et.al. arXiv: 1609.02018
J. W. Chen et. al. arXiv: 1707.03107
PDFs on the lattice
pseudo-PDF framework
Steps towards -dependence
x
i) cancel divergences - renormalization
reduced-ITD
iii) reconstruction of -dependence
x
F. T. in -space:
ν
<latexit sha1_base64="ec+jDU0k1TeZXl/5C2j/fnt2hyI=">AAACWnicdVBdSxtBFJ1sa6urbWPtW18GgxDBht3QxOQhEPCljwqNCtlNmJ3c1SGzs9v5kIRhf01/TV/tU8Ef00lcwZR6YOBw7rn3zj1JwZnSQfCn5r16vfXm7faOv7v37v2H+v7HS5UbSWFEc57L64Qo4EzASDPN4bqQQLKEw1UyP1vVr+5AKpaL73pZQJyRG8FSRol20rQ+iDKibynh9qJsRsKcRJmZtI/xAEdM6Kn9EpYTG5azBYaJZc6AF+WP5qKyTeuNoBX2u/12GwetYA1Huv1ep9PFYaU0UIXz6X5tK5rl1GQgNOVEqXEYFDq2RGpGOZR+ZBQUhM7JDYwdFSQDFdv1nSU+csoMp7l0T2i8Vp93WJIptcwS51xdpf6trcT/1cZGp73YMlEYDYI+LkoNxzrHq9DwjEmgmi8dIVQy91dMb4kkVLto/Y1R6+FUxhaMS3XjICelksxL3/ddcE/p4JfJZbsVdlrBxdfGcFhFuI0+o0PURCE6RUP0DZ2jEaLoJ/qF7tHv2oPneTve7qPVq1U9B2gD3qe/VIO0Yg==</latexit>
Q(⌫, µ2
) =
Z 1
1
dxei⌫x
q(x, µ2
)
<latexit sha1_base64="oT+0KHaIr/RM7hjHKLPJQjIX8Uw=">AAACaXicdVDLattAFB2rTZOoLzvdhGQz1BQcKEYytRMXAoFussgiKXUSsBQxGl8lg0cjZR7BRuin+jXJMt32JzpSVKhLe2Hg3HPuY+6Jc86U9ryHlvPs+dqL9Y1N9+Wr12/etjtb5yozksKEZjyTlzFRwJmAiWaaw2UugaQxh4t4/qXSL+5AKpaJb3qZQ5iSa8ESRom2VNQ+CVKibxJJ5sVXKIOPdUoJL87KXiCMzc3VYA8f4oAJHXlXPp4tcEAzVal4sYdvo7veoimL2l2v749H48EAe32vDgtG44PhcIT9humiJk6jTmstmGXUpCA05USpqe/lOiyI1IxyKN3AKMgJnZNrmFooSAoqLOqzS/zBMjOcZNI+oXHN/tlRkFSpZRrbyuoq9bdWkf/SpkYnB2HBRG40CPq0KDEc6wxXHuIZk0A1X1pAqGT2r5jeEEmotk67K6Pq4VSGBRjr6spBlqp8L13Xtcb9dgf/H5wP+v6w75196h59bizcQLvoPeohH+2jI3SMTtEEUfQd3aNH9KP10+k4287OU6nTanreoZVwur8A/325mA==</latexit>
Re Q(⌫, µ2
) =
Z 1
0
dx cos(⌫x)qv(x, µ2
)
<latexit sha1_base64="7nvsVyySzfeYOANVvx1Y3OQSdK0=">AAACbXicdVBdS+NAFJ1mddXsh3XFJ2UZtixbQUoSttUKguCLvlXYqtDEMJlOdOhkkp0PaQn5W/4XwVd99S84iRG2sl4YOPec+zH3RBmjUjnOXcP6sLD4cWl5xf70+cvX1ebatzOZaoHJEKcsFRcRkoRRToaKKkYuMkFQEjFyHk2OSv38hghJU/5HzTISJOiK05hipAwVNgd+gtR1LNAkP0kKf6dKMWL5adH2uTa5vvS24QH0KVehc+nC8RT6kvJShdNt+DfMbzxZtKd1adhsOR233+t7HnQ6ThUG9Pp73W4PujXTAnUMwrXGoj9OsU4IV5ghKUeuk6kgR0JRzEhh+1qSDOEJuiIjAzlKiAzy6vQC/jTMGMapMI8rWLH/duQokXKWRKayvEy+1Uryf9pIq3gvyCnPtCIcvyyKNYMqhaWPcEwFwYrNDEBYUPNXiK+RQFgZt+25UdVwLIKcaOPs3EGGKr0vbNs2xr26A98HZ17H7Xac09+tw/3awmWwCX6ANnDBLjgEx2AAhgCDW3APHsBj48nasLas7y+lVqPuWQdzYf16BtKku2E=</latexit>
Im Q(⌫, µ2
) =
Z 1
0
dx sin(⌫x)qv2s(x, µ2
)
Inverse problem…!
K. Orginos et.al. arXiv: 1706.05373
J. Karpie et. al. arXiv: 1710.08288
J. Karpie et. al. arXiv: 1807.10933
A. Radyushkin arXiv: 1705.01488
<latexit sha1_base64="ufDO2bwQ0PTVfOHwZZ1L74vdHXM=">AAAC8HicjVFNj9MwEHUCC0v46sKRi0WF1JVWlVPYsj0UrcSFC1KR6O5KTYgc12mtOk5kO0jd4P/BDXHl73Di3zDJBokiVjCSpfF7b8aeN2kphbGE/PD8Gzf3bt3evxPcvXf/wcPewaMzU1Sa8TkrZKEvUmq4FIrPrbCSX5Sa0zyV/DzdvG74849cG1Go93Zb8jinKyUywagFKOl9j3Jq15mmm/qtG0SqOrpMnn8YHeIpjiTP7CACjtWtilHZiGbJJWg6nbue+pTUkEyJc5EWq7U9jKzIufm/vlAM9yk56lr8W+kc7t5Jen0yDCfjyWiEyZC0Acl4cnJ8PMZhh/RRF7PkwNuLlgWrcq4sk9SYRUhKG9dUW8Ekd0FUGV5StqErvoBUUZgjrlv3HX4GyBJnhYajLG7R3ytqmhuzzVNQNjOYP7kG/Bu3qGx2EtdClZXlil09lFUS2wI3q8RLoTmzcgsJZVrAXzFbU7DVwsKDnVZtc6bjmlfg4c5AADXrd0EQgHG/3MHXJ2ejYTgekncv+qevOgv30RP0FA1QiF6iU/QGzdAcMW/iJd7aE772P/tf/K9XUt/rah6jnfC//QTi8OuL</latexit>
M(⌫, z2
3) =
✓
M(Pzz3, z2
3)
M(Pzz3, z2
3)|z3=0
◆
⇥
✓
M(Pzz3, z2
3)|Pz=0,z3=0
M(Pzz3, z2
3)|Pz=0
◆
<latexit sha1_base64="EarU8i0j3TGPacGrbQ6T+iUZP9o=">AAACe3icdZFdS8MwFIaz+l2/pl56ExyCiox2urldCANvvBEmOBXWWtIs1bA0LUkqbLX/zj/hX/BWbwXTWsGJHgicvO85J8kTP2ZUKst6qRgzs3PzC4tL5vLK6tp6dWPzWkaJwKSPIxaJWx9JwignfUUVI7exICj0GbnxR2e5f/NIhKQRv1LjmLghuuc0oBgpLXnVOydE6iEQaJReZHsOTw4n3tFdYx+eQkerOC18jFhu97yJdsuK7H/ryUv1/tTKMq9as+p2p9VpNKBVt4rQSavTbjZb0C6VGiij521U5pxhhJOQcIUZknJgW7FyUyQUxYxkppNIEiM8QvdkoFOOQiLdtACRwV2tDGEQCb24goX6syNFoZTj0NeV+d3lby8X//IGiQrabkp5nCjC8ddBQcKgimBOFQ6pIFixsU4QFlTfFeIHpPkpzd6cGlUMx8JNSaLZTT1IS/lPZKZpanDfdOD/yXWjbrfq1uVxrdstES6CbbAD9oANTkAXnIMe6AMMnsEreAPvlQ+jZhwYh1+lRqXs2QJTYTQ/AYmmwcA=</latexit>
M(⌫, z2
3) =
M(Pzz3, z2
3)
M(Pzz3, z2
3)|Pz=0
renormalization
V0
<latexit sha1_base64="V3t2LdZcGXusZQxUs9iZAc9pXKo=">AAACYXicdZDLattAFIbHatMmSi9OusxmqCnYUIzkNm68CBiaRTcFF2InxFLFaHxkDx5dmDkqOFO9UJ+m22SbF8nIcSEu7YEDP/+5zJwvLqTQ6Hk3DefJ051nz3f33P0XL1+9bh4cTnReKg5jnstcXcZMgxQZjFGghMtCAUtjCRfx8nNdv/gBSos8O8dVAWHK5plIBGdorah5FkhIsH0VTdqj6LpDT2mQKMaNX5kgZbjgTJqvVV27jj68t/m91/kZGStOvaoKlJgvsBM1W17XH/QHvR71ut46rOgPTo6P+9TfOC2yiVF00NgJZjkvU8iQS6b11PcKDA1TKLiEyg1KDQXjSzaHqZUZS0GHZn1uRd9ZZ0aTXNnMkK7dxxOGpVqv0th21ifov2u1+a/atMTkJDQiK0qEjD88lJSSYk5rdnQmFHCUKysYV8L+lfIFs7jQEna3Vq2XcxUaKC3CrYOsZREvK9d1Lbg/dOj/xaTX9ftd79vH1nC4QbhLjshb0iY++USG5AsZkTHh5Bf5TW7IbePO2XOazuFDq9PYzLwhW+Ec3QMavbcb</latexit>
✓
ZV (Pz) =
1
M(Pzz3, z2
3)|z3=0
◆
valence quark
q + q̄
ii) matching to light-cone ITDs
1-loop matching equation:
evolution to common scale 1/z0
conversion to scheme
MS
light-cone ITD
<latexit sha1_base64="2o+yCBDc1TlCsbx2scqzyN2Wt3c=">AAAC6XicdVFbaxNBFJ5drdb10lQffRkMQkpL2F3a2DwIwaL4oNCCaQOZzTI7mU2GzF6YixCH/RG+ia/+Hf+A/8bZi9CIHhj45jvnfHPmO0nJmVS+/8tx79zdu3d//4H38NHjJwe9w6fXstCC0CkpeCFmCZaUs5xOFVOczkpBcZZwepNsLur8zWcqJCvyT2pb0ijDq5yljGBlqbj3E2VYrVOBN+ZjNUC5PvmyCI/ga9jwBHNz1dIo03XiGCJbTAzCvFzjWMKL+F1lQlSyCrFcxf4igEuNTnb69S0BxGmq5ojnLRrY55pMK0sXVmuFswzHb4+DqjKnFRJstVZHjV6SmjfVXEf1GN39Q31va6K41/eHwXg0DkPoD/0mLBiNz8/ORjDomD7o4jI+dPbQsiA6o7kiHEs5D/xSRQYLxQinlYe0pCUmG7yicwtznFEZmcb2Cr60zBKmhbAnV7Bhb3cYnEm5zRJbWQ8r/87V5L9yc63S88iwvNSK5qR9KNUcqgLWO4RLJihRfGsBJoLZWSFZY+ufspv2dqQacSIiQ7Vdxs6HLFXvvfI8zxr3xx34f3AdDoPR0L867U8mnYX74Dl4AQYgAK/ABLwHl2AKiBM6Mwc7ibtxv7rf3O9tqet0Pc/ATrg/fgOsfukf</latexit>
M(⌫, z2
) = Q(⌫, µ2
) +
↵sCF
2⇡
Z 1
0
du Q(u⌫, µ2
)

ln
✓
z2
µ2 e2 E +1
4
◆
B[u] + L[u]
A. Radyushkin arXiv: 1801.02427
J.-H.Zhang et. al. arXiv: 1801.03023
T. Izubuchi et. al. arXiv: 1801.3917
Lattice evaluation
Correlation functions: “Distillation” as a smearing method
Smearing: Increase overlap of hadron interpolating fields with ground state
Distillation: Smearing operator low-rank eigenvector representation
→
<latexit sha1_base64="LNf1EkghLGCuYHBLsx67coqgZvY=">AAACnXicdVFdixMxFM2Mrq7jqt0VffHBYBFaWMtMceuWZaEogg+yrGDbhaYd7mQy3TCZj00yZcsw4N/0D/g7TKezYEUvhNx77jk3yUmQC6606/607Hv39x483H/kPD548vRZ6/BoorJCUjammcjkVQCKCZ6yseZasKtcMkgCwaZB/GnTn66YVDxLv+t1zuYJLFMecQraQH7rB/mY3folWTFa3lbH9b6uqo7uYsJuCr7CRBWJX8bnXrW4wCs/7txxdddUCxLCstPIDITP8cSIJ1tcd8nZMTnD70gKgYBF3ygMgwhzwRD82JR+q+32vOFg2O9jt+fWYZLB8PTkZIC9BmmjJi79Q2uPhBktEpZqKkCpmefmel6C1JwKVjmkUCwHGsOSzUyaQsLUvKytqvBbg4Q4yqRZqcY1+qeihESpdRIYZgL6Wv3d24D/6s0KHZ3OS57mhWYp3R4UFQLrDG98xyGXjGqxNglQyc1dMb0GCVSb33F2RtXDqZyXrKAgdh5koEhCXDmOY4y7cwf/P5n0e96g53573x6NGgv30Sv0BnWQhz6gEfqCLtEYUfTLOrBeWC/t1/Zn+6t9saXaVqN5jnbCnv4Gl83K0Q==</latexit>
⇤~
x,~
y(t) ⌘
N
X
k=1
vk(~
x, t)v†
k(~
y, t) = V (t)V †
(t) , r2
vk = kvk
<latexit sha1_base64="lLuBnZavVOmEY3iLkQOaidYwexs=">AAACWnicdVBdT9swFHXDxyBsUBhvvFhUk4o0VUlFO/qAVLEXHkGigNRElePegFU7CfYNoorya/Zr9ro9TeLHzA1BotO4kuXjc+6H74kyKQx63p+Gs7K6tv5hY9Pd+vhpe6e5u3dt0lxzGPFUpvo2YgakSGCEAiXcZhqYiiTcRLPvC/3mEbQRaXKF8wxCxe4SEQvO0FKT5unDpAi0okaV7eARePFUfsUjekqDs/TJSjVV3fOybOPRQ7t+2LxJs+V1/EF/0O1Sr+NVYUF/cNLr9alfMy1Sx8Vkt7EWTFOeK0iQS2bM2PcyDAumUXAJpRvkBjLGZ+wOxhYmTIEJi2rPkn6xzJTGqbYnQVqxbysKpoyZq8hmKob35l9tQf5PG+cYn4SFSLIcIeEvg+JcUkzpwjQ6FRo4yrkFjGth/0r5PdOMo7XWXWpVNec6LCDnTC4tZKlYs1npuq417tUd+j647nb8Xse7PG4Nh7WFG+SAHJI28ck3MiTn5IKMCCc/yE/yi/xuPDuOs+lsvaQ6jbrmM1kKZ/8vhLu1mA==</latexit>
qsm(~
x, t) = ⇤~
x,~
y(t)q(~
y, t)
<latexit sha1_base64="TFql/Z4y3xzWSgwX8jrRyFS5mAs=">AAAC63icdZFdb9MwFIadwGCEj3VwyY1FhdRJqErStawXSNXGBZdD0K2iSaMT1+msOh+znYkq8q/gbtotf4d7/g1uF9Z2giNZPnrPc47t13HBmVSu+9uyHzzcefR494nz9NnzF3uN/ZdnMi8FoUOS81yMYpCUs4wOFVOcjgpBIY05PY/nJ8v6+RUVkuXZV7UoaJjCLGMJI6CMFDV+BSmoCwK8GunouBVcUVJ91+/UAf6AA1pIxvNsUkFM9B34RUdVINkshcird7/eO7p1h33UkXcZeQdrWE9g44At0r+M/DXp60m8eZX7QztrtKMnZAONGk237fV7fd/HbttdhUl6/aNut4e9WmmiOk6jfWsnmOakTGmmCAcpx55bqLACoRjhVDtBKWkBZA4zOjZpBimVYbUyXuO3RpniJBdmZQqv1M2OClIpF2lsyOUL5P3aUvxXbVyq5CisWFaUimbk9qCk5FjlePmLeMoEJYovTAJEMHNXTC5AAFHmr52tUavhRIQVLY2DWw8yUiJgrh3HMcb9dQf/Pznz21637X4+bA4GtYW76DV6g1rIQ+/RAH1Cp2iIiHVofbOINbVT+4d9bd/corZV97xCW2H//AMpP+wQ</latexit>
XB(~
x, t) = ✏abc
S 1 2 3
(D1q1)a
1
(~
x, t)(D2q2)b
2
(~
x, t)(D1q3)c
3
(~
x, t)
<latexit sha1_base64="9y2zSXOQS1TTlL6Rj9X+owRfsRM=">AAACYnicdZDRShtBFIYn21p11ZrUS70YDEKEEnaDSQ0iBKTFSwuNCWSXMDs5mwyZ2d3MzErDsk/k03ip3vZBOlm3YIoeGPj5/jNn5vxBwpnSjvNYsT583Pi0ubVt7+zufd6v1r7cqjiVFPo05rEcBkQBZxH0NdMchokEIgIOg2B+tfIHdyAVi6NfepmAL8g0YiGjRBs0rn5fjDNPCqxE3vDugGa/86/6FF9iTxA9o4RnP/JR/5V1Uchl7i8apTJwXK07Tbfb6bZa2Gk6RRnR6Z632x3slqSOyroZ1yob3iSmqYBIU06UGrlOov2MSM0oh9z2UgUJoXMyhZGRERGg/KzYN8cnhkxwGEtzIo0L+vpGRoRSSxGYztUW6n9vBd/yRqkOz/2MRUmqIaIvD4UpxzrGq/DwhEmgmi+NIFQy81dMZ0QSqk3E9tqoYjiVfgapSXFtIYNCSea5bdsmuH/p4PfFbavptpvOz7N6r1dGuIUO0TFqIBd9Qz10jW5QH1F0jx7QE3qu/LFsq2YdvLRalfLOAVor6+gvXTO4yA==</latexit>
qsm(~
x, t) = F[U(~
x, t); ~
y]q(~
y, t)
<latexit sha1_base64="HF5ZxH7U+Ine0XsBMepGzMSLNHI=">AAAC4HicdVFNj9MwEHUCC0v42C4cuVhUSK2WVkmhZXtYqRIXbiwS3S1qstHEdVq3zofsyYoqyp0b4srf4Vfwb3C7LdACI1l+em/ejD0T5VJodN0fln3r9sGdu4f3nPsPHj46qh0/vtBZoRgfskxmahSB5lKkfIgCJR/likMSSX4ZLd6s9MtrrrTI0g+4zHmQwDQVsWCAhgpr31t+CpGEq05Y+teclZ+qF+t7WVUNbNIz2vMnXCL8krcqbVFfF0lYzs+86qp8WfmSxzgehvPGthA297wn/gywnP9uQU+oMVz5E5huXa1tzl/u1r7bV2I6wyCs1d221+/1Ox3qtt11GNDrn3a7PeptmDrZxHl4bB34k4wVCU+RSdB67Lk5BiUoFEzyyvELzXNgC5jysYEpJFwH5XraFX1umAmNM2VOinTN/ukoIdF6mUQmMwGc6X1tRf5LGxcYnwalSPMCecpuGsWFpJjR1eroRCjOUC4NAKaEeStlM1DA0CzY2Sm1Ls5UUPKCgdz5kKFiBYvKcRwzuO106P/BRaftddvu+1f1wWAzwkPylDwjDeKR12RA3pJzMiTMalrvrJH10Y7sz/YX++tNqm1tPE/ITtjffgLAe+oM</latexit>
r2
~
x,~
y(t) = 6 ~
x~
y
3
X
j=1
h
Uj(~
x, t) ~
x+ĵ,~
y + U†
j (~
x ĵ, t) ~
x ĵ,~
y
i
”Standard” techniques: Gauge-covariant, based on 3D lattice Laplacian
perambulators:
<latexit sha1_base64="1Gh0B8X7KF3PjWMVVLalM+rUG+8=">AAACTXicdVBdSxtBFJ1N60fXr2gf+zI0CBE0zAaNyYMg+NKXgoUmCsm63J3MxiGzH8zcFcKSv9Ff46u+9tkf4puUzsa0GNEDMxzOuffO3BNmShpk7MGpfPi4tLyy+sldW9/Y3Kpu7/RMmmsuujxVqb4MwQglE9FFiUpcZlpAHCpxEY7PSv/iRmgj0+QnTjLhxzBKZCQ5oJWCKhsg5HUMon0M2B49ob2rwRBGpbL3/ao48Kb/zV69vINqjTW8TqvTbFLWYDNY0uq0j45a1JsrNTLHebDtLA2GKc9jkSBXYEzfYxn6BWiUXImpO8iNyICPYST6liYQC+MXs9WmdNcqQxql2p4E6Ux92VFAbMwkDm1lDHhtXnul+JbXzzFq+4VMshxFwp8finJFMaVlTnQoteCoJpYA19L+lfJr0MDRpukujJoN59ovRM5BLSxkpUjDeOq6rg3uXzr0fdJrNrxWg/04rJ225xGuki/kK6kTjxyTU/KNnJMu4eQXuSV35N757Tw6T86f59KKM+/5TBZQWfkLaACwSA==</latexit>
⌧(tf , t0) = V †
(tf )M 1
(tf , t0)V (t0)
elementals:
<latexit sha1_base64="7Nuc1HuoPJnp5qRYba7d+cW7fpw=">AAACw3icfZHvi9MwGMfT6ulZT93pS98Eh7CDY7TVmxsqHKjgy4nu7mDtytMs3XJN05KkgxH67/g/+d+Y9aq4Q30gPA+f50eefJNWnCnt+z8c987dg3v3Dx94D48ePX7SO356ocpaEjojJS/lVQqKciboTDPN6VUlKRQpp5dp/mGXv9xQqVgpvultReMCVoJljIC2KOl9j6ZrlphIsVUBSdD5sPOvmoVhp9eneTPQJ/g9jmilGC/FwkBKmqgAvSbAzdfmPxMGv8s+NkmwSZgddbKAPRxukusWp7er8xaTpNf3h8FkNAlD7A/91mwwmozPzkY46EgfdTZNjp2DaFmSuqBCEw5KzQO/0rEBqRnhtPGiWtEKSA4rOrehgIKq2LSCNvilJUucldIeoXFL/+wwUCi1LVJbuVtX3c7t4N9y81pn49gwUdWaCnJzUVZzrEu8+x28ZJISzbc2ACKZ3RWTNUgg2v6htzeqHU5kbGht5dp7kEWZhLzxPM8K90sd/O/gIhwGo6H/5XX/fNxJeIieoxdogAL0Bp2jz2iKZog4R07ovHXeuZ/c3JWuvil1na7nGdozt/kJF+/azA==</latexit>
i,j,k
1 2 3
(t) = ✏abc
S 1 2 3
(D1vi(t))a
(D2vj(t))b
(D1vk(t))c
gen. perambulators:
<latexit sha1_base64="4C5I9UwcIo+CCLLVGYm4Q4zed3E=">AAACk3icdVFda9swFJW9devcbks39tQXsTBIYAt2WLOEMSjtYHspdLCkhdg117Kciki2ka4LwfiHDvZjJqfpaPZxQeJwzrlX0lFSSmHQ93847oOHO48e7z7x9vafPnveOXgxM0WlGZ+yQhb6MgHDpcj5FAVKfllqDiqR/CJZnrb6xQ3XRhT5d1yVPFKwyEUmGKCl4s5NiEKmvA4RqqaHcfYW4zrUiorcNBb7ffqJzq7CFBat2j+7qt8Ffxn74RdQCnr3qd/O7XGzXrvHna4/CCajyXBI/YG/LgtGk/HR0YgGG6ZLNnUeHzg7YVqwSvEcmQRj5oFfYlSDRsEkb7ywMrwEtoQFn1uYg+ImqtcBNfSNZVKaFdquHOmavd9RgzJmpRLrVIDX5k+tJf+lzSvMxlEt8rJCnrPbg7JKUixomzZNheYM5coCYFrYu1J2DRoY2j/xtkathzMd1bxiILceZKlMw7LxPM8Gd5cO/T+YDQfBaOB/e989Hm8i3CWH5DXpkYB8IMfkKzknU8LIT8d19px995X70T1xP99aXWfT85JslXv2C0gGxms=</latexit>
˜
⌧(tf , tins, t0) = V †
(tf )M 1
(tf , tins) (tins)M 1
(tins, t0)V (t0)
Pros:
‣ factorization of correlation functions
‣ various spin structures without additional inversions
‣ mom. projection at the sink and the source
‣ reusability of building blocks
Cons:
‣ extra step: compute eigenvectors of
‣ big files/storage
∇2
inversions:
<latexit sha1_base64="p5Omw89Ua4LwxSaq1yWeHjMqQ9g=">AAACuHicdVFdb9MwFHUyBiN8dfDIi0WFaCWonK2jGwipEi+8IA1Bt0lNFm5cp7XqfMi+qVSi/BJ+Gf8GJ+2kFY0r2bo+59xz7eu4UNIgY38cd+/e/v0HBw+9R4+fPH3WOXx+YfJSczHhucr1VQxGKJmJCUpU4qrQAtJYict4+bnhL1dCG5lnP3BdiDCFeSYTyQEtFHV+f48CUMUCrque7Ne99UeMWJ9+ol+vq3d+cw5Wgle/6rfYj6qNNIgFQr2KZG/L9YOZUAiWb5h2i1h9A6J1rO90tJ12PK3utmvU6bIBOz4dsRFlg+HZERu+pw1ycjwcUX/A2uiSbZxHh85+MMt5mYoMuQJjpj4rMKxAo+RK1F5QGlEAX8JcTG2aQSpMWLVTrOlri8xokmu7MqQteruigtSYdRpbZQq4MP9yDXgXNy0xOQ0rmRUlioxvGiWlopjT5kvoTGrBUa1tAlxLe1fKF6CBo/04b8eqNec6rETJQe08yEKJhmXteZ4d3M106P+Ti6OBfzJg34bd8Xg7wgPykrwiPeKTERmTL+ScTAh3HOeNwxzf/eD+dOeu3EhdZ1vzguyEq/8CEabWMw==</latexit>
S(i)
↵ (y; t0) = M 1
(y; ~
z, t)↵ vi(~
z) 0 tt0
= M 1
(y; ~
z, t0)↵ 0
vi(~
z)
<latexit sha1_base64="Ec16og68vhuG9SbHwaiiQEtK+LU=">AAACkHicdVFda9swFJW9dU29r7R77ItYGKRQgh2WNHkoy+hL2VMHSxuIjZEVORWRZCPJpUboh/bXbIrjQjO2C0KHc+65ko6yklGlw/DJ81+9Pnhz2DkK3r57/+Fj9/jkVhWVxGSOC1bIRYYUYVSQuaaakUUpCeIZI3fZ5mqr3z0QqWghfum6JAlHa0FzipF2VNpVV6mJJYfDUtu+TvNznYZn8BLGquJOeSDYPNrzZq+tjRkSa0ZgzJG+x4iZhe0/9zjzWZwhaV6IrVrb3dhYNva02wsH0XQ8HQ5hOAibcmA8nYxGYxi1TA+0dZMeewfxqsAVJ0JjhpRaRmGpE4OkppgRG8SVIiXCG7QmSwcF4kQlpknHwi+OWcG8kG4JDRv2pcMgrlTNM9e5vbn6W9uS/9KWlc4niaGirDQReHdQXjGoC7iNGq6oJFiz2gGEJXV3hfgeSYS1+5Bgb1QzHMvEkMolt/cgR+USbWwQBC6453Tg/8HtcBCNBuHPr73ZrI2wA07BZ9AHEbgAM3ANbsAcYPAEfnsd78g/8Sf+N//7rtX3Ws8nsFf+jz8js8k7</latexit>
C2pt(tf , t0) =
X
~
x,~
y
hX(~
x, tf )X̄(~
y, t0)i
t0
tf
t0
tf
tins
W(z3)
<latexit sha1_base64="Umwm2f9JJtZZfaCxTOYf7ULsBnQ=">AAACz3icdVHdbtMwGHUCYyP8rIMbJG4sKqRWmqqksG7VBKq0i+1yk+haqQ6V4zqdVTvJbGcQIiNueR3ehrfBSVNpRfBJkY/Pd3z85TjKOFPa93877oOHO4929x57T54+e77fOnhxrdJcEjomKU/lNMKKcpbQsWaa02kmKRYRp5NodVb1J3dUKpYmn3SR0VDgZcJiRrC21Lz162xeIingu0ybjp7Hh3q9Z4kyFvun6BwLgbvwA0QqF7Z5R0n51RzW67dmLYxBHCdLTiESWN8QzMup6Wy01reLTmcowrK8NWhZOX724QTehp2Nj7aKWnDPoHEo6km6EMn6inmr7feC4WDY70O/59dlwWB4cnQ0gEHDtEFTl/MDZwctUpILmmjCsVKzwM90WGKpGeHUeChXNMNkhZd0ZmGCBVVhWYdr4FvLLGCcSvslGtbs/RMlFkoVIrLKanL1d68i/9Wb5To+CUuWZLmmCVlfFOcc6hRWLwUXTFKieWEBJpLZWSG5wRITbd/T27KqzYkMS5rb5LZ+yFKxxCvjeZ4NbpMO/D+47veCQc+/et8ejZoI98Br8AZ0QACOwQhcgEswBsR55Xx0zp0L98r94n53f6ylrtOceQm2yv35B1j+4NU=</latexit>
C3pt(tf , tins, t0; ) =
X
~
x,~
z,~
y
hX(~
x, tf ) [q̄ 0
Wq](~
z, t) X̄(~
y, t0)i
M. Peardon et. al. arXiv: 0905.2160
<latexit sha1_base64="RbJdi9FM93Q0Ih66kTr/LKalENI=">AAACN3icdVBNSyNBFOxRd9W4H1GPXhqD4LJLmAlrNAchIIgnUTAqZOLwptOTNPb0DN1vhDDMv/Li3/CmFw+KePUf2BPjsrtoQUN11Xt0V4WpFAZd98aZmp759Hl2br6y8OXrt+/VxaVjk2Sa8Q5LZKJPQzBcCsU7KFDy01RziEPJT8LzndI/ueDaiEQd4SjlvRgGSkSCAVopqO77MeCQgcx3iyD3QaZDCMyv/cAUdJv6kke47v30Iw3sj+srCCWcNYq8HPO1GAzxx9n4ElRrbt1rNVuNBnXr7hiWNFtbGxtN6k2UGpngIKhe+/2EZTFXyCQY0/XcFHs5aBRM8qLiZ4anwM5hwLuWKoi56eXj3AVds0qfRom2RyEdq39v5BAbM4pDO1mmNP97pfie180w2urlQqUZcsVeH4oySTGhZYm0LzRnKEeWANPC/pWyIdiO0FZdsSW8JaUfk+NG3WvW3cPftXZ7UsccWSGrZJ14ZJO0yR45IB3CyCW5Jffkwbly7pxH5+l1dMqZ7CyTf+A8vwCBJ62Q</latexit>
F↵s,Ns
=
✓
1 +
↵sr2
Ns
◆Ns
Lattice evaluation
Simulation details
Lattice action / configurations:
‣ Wilson-Clover fermion action,
‣ lattice volume:
‣
‣ ,
‣ ,
Nf = 2 + 1
323
× 64
β = 6.3 , a = 0.091 fm (a−1
= 2.16 GeV)
mπ = 0.350 GeV mN = 1.160 GeV
L = 2.9 fm mπL = 5.15
W&M / JLab
Parameters and statistics:
‣ 350 gauge configurations
‣ distillation vectors:
‣ 6
‣ 4 time sources
‣ boost momentum
‣ displacements
‣ 5600 statistics
Nev = 64
tsep ≡ (tf − t0) = [4a, 6a, …, 14a] → 0.4…1.3 fm
t0/a = [ti
0, + T/4, + T/2, + 3T/4]
Pz = 2π/L × [0, ± 1,…, ± 6] → 0…2.55 GeV
z3 = 0, ± 1a, …, ± 8a → 0…0.73 fm
Runs performed at JLab computer clusters and at
Frontera (TACC) using the Chroma software suite and
in-house analysis packages
t0
tf
tins
W(z3)
<latexit sha1_base64="Umwm2f9JJtZZfaCxTOYf7ULsBnQ=">AAACz3icdVHdbtMwGHUCYyP8rIMbJG4sKqRWmqqksG7VBKq0i+1yk+haqQ6V4zqdVTvJbGcQIiNueR3ehrfBSVNpRfBJkY/Pd3z85TjKOFPa93877oOHO4929x57T54+e77fOnhxrdJcEjomKU/lNMKKcpbQsWaa02kmKRYRp5NodVb1J3dUKpYmn3SR0VDgZcJiRrC21Lz162xeIingu0ybjp7Hh3q9Z4kyFvun6BwLgbvwA0QqF7Z5R0n51RzW67dmLYxBHCdLTiESWN8QzMup6Wy01reLTmcowrK8NWhZOX724QTehp2Nj7aKWnDPoHEo6km6EMn6inmr7feC4WDY70O/59dlwWB4cnQ0gEHDtEFTl/MDZwctUpILmmjCsVKzwM90WGKpGeHUeChXNMNkhZd0ZmGCBVVhWYdr4FvLLGCcSvslGtbs/RMlFkoVIrLKanL1d68i/9Wb5To+CUuWZLmmCVlfFOcc6hRWLwUXTFKieWEBJpLZWSG5wRITbd/T27KqzYkMS5rb5LZ+yFKxxCvjeZ4NbpMO/D+47veCQc+/et8ejZoI98Br8AZ0QACOwQhcgEswBsR55Xx0zp0L98r94n53f6ylrtOceQm2yv35B1j+4NU=</latexit>
C3pt(tf , tins, t0; ) =
X
~
x,~
z,~
y
hX(~
x, tf ) [q̄ 0
Wq](~
z, t) X̄(~
y, t0)i
Pz
Matrix elements: ground state dominance
i) Summation method
ii) Plateau method (ask for more!)
Ratio of 3pt/2pt functions:
<latexit sha1_base64="2ky8d8js9KtiZKQAZr1JfrTdLRE=">AAACl3icdZFba9swFMdld5cuu2XrXsZexMIggdbIdtt0G2OBjNGXQTqWthCnRlZkR1S+IB1vS42/0j7M3vZtJqcO7HpA6PA/v8O5RYUUGgj5YdlbN27eur19p3P33v0HD7uPHp/qvFSMT1kuc3UeUc2lyPgUBEh+XihO00jys+hy3MTPPnOlRZ59glXB5ylNMhELRsFIYffbx/4kvNq9Cv3XEFaaF/Wu+UWm6wF+g4NYUVaNwypQKfYLqDcw/ouuN5i3wVpiUAdflUiWQJXKv8xafg9CEiQJpvOq5fbayFqtcZBSWDIqqw91P8jKpuiFNwi7PeJ4vusPfUwc4g33D1zjHLw8JMMj7DpkbT3U2iTsfg8WOStTngGTVOuZSwqYV1SBYJLXnaA0tSm7pAmfGTejKdfzar3XGr8wygLHuTIvA7xWf82oaKr1Ko0M2XSr/4w14r9isxLio7mZtiiBZ+y6UFxKDDlujoQXQnEGcmUcypQwvWK2pOYWYE7ZMUvYTIr/75x6jnvokJP93mjUrmMbPUPPUR+5aIhG6BhN0BQx64n1yhpb7+yn9lv7vX18jdpWm7ODfjP75CdN6sul</latexit>
R(Pz, z3; tsep, tins) =
C3pt(Pz, z3; tsep, tins)
C2pt(Pz, tsep)
tsep tins a
!
tins t0 a
M(⌫, z2
3)
1
2
3
4
5
6
7
Re[R
sum
(P
z
=
2;
z
3
=
2)]
Linear fit tlow
sep = 4
Linear fit tlow
sep = 6
Linear fit tlow
sep = 8
0.46
0.48
0.50
0.52
0.54
0.56
Re[R
r°sum
(P
z
=
2;
z
3
=
2)]
2 4 6 8 10 12 14 16
tsep/a
0.2
0.4
0.6
0.8
1.0
Im[R
sum
(P
z
=
2;
z
3
=
2)]
2 4
0.055
0.060
0.065
0.070
Im[R
r°sum
(P
z
=
2;
z
3
=
2)]
1
2
3
4
5
6
7
Re[R
sum
(P
z
=
2;
z
3
=
2)]
Linear fit tlow
sep = 4
Linear fit tlow
sep = 6
Linear fit tlow
sep = 8
0.46
0.48
0.50
0.52
0.54
0.56
Re[R
r°sum
(P
z
=
2;
z
3
=
2)]
0.6
0.8
1.0
(P
z
=
2;
z
3
=
2)]
0.065
0.070
(P
z
=
2;
z
3
=
2)]
1
2
3
4
5
6
7
Re[R
sum
(P
z
=
2;
z
3
=
2)]
Linear fit tlow
sep = 4
Linear fit tlow
sep = 6
Linear fit tlow
sep = 8
0.46
0.48
0.50
0.52
0.54
0.56
Re[R
r°sum
(P
z
=
2;
z
3
=
2)]
2 4 6 8 10 12 14 16
tsep/a
0.2
0.4
0.6
0.8
1.0
Im[R
sum
(P
z
=
2;
z
3
=
2)] 2 4 6 8 10 12 14
tsep/a
0.055
0.060
0.065
0.070
Im[R
r°sum
(P
z
=
2;
z
3
=
2)]
<latexit sha1_base64="xrvQzIEPHvfGUDzeXrOv1TxZg2A=">AAACd3icdVBdaxNBFJ2sVtv1K7WPfXAwKCnaZTZNmvpQCKjgixjBtMXsusxO7iZDZj+YuSuky/63/g3/gK/66puTNEIjeuHC4dxzv05cKGmQsW8N59btrTt3t3fce/cfPHzU3H18ZvJSCxiJXOX6IuYGlMxghBIVXBQaeBorOI/nr5f186+gjcyzT7goIEz5NJOJFBwtFTU/n1IR+fQFDVKOM8FV9b5uD6PLl5fR0UGAMgVDMaoMFPVN0Yc6UJBgG75Uh8EbUMjp27WspoGW0xkeRM0W8zrs6FWnQ5nH+t2ezyzoHbP+SZf6HltFi6xjGO02toJJLsoUMhSKGzP2WYFhxTVKoaB2g9Iu4GLOpzC2MOP2urBamVDTZ5aZ0CTXNjOkK/ZmR8VTYxZpbJXLL8zftSX5r9q4xOQkrGRWlAiZuF6UlIpiTpeO0onUIFAtLOBCS3srFTOuuUDru7sxajVc6LCC0rq48ZClEs3nteu61rg/7tD/g7OO5/c89rHbGgzWFm6TffKUtIlP+mRA3pEhGRFBrsh38oP8bPxynjjPnfa11Gmse/bIRjj+b3x2wAY=</latexit>
= c1 + M(Pz, z3) ⇥ tsep + O e Etsep
<latexit sha1_base64="MDeB3dEcH/2OyxZi1NTkz+5hqpo=">AAACc3icdVDPS+NAGJ3GH6vR1apHL4NVUNAwqdUqi1DYi8eubKvQZsOX6USHziRhZrJQQ/6z/Uf2ulf3uved1ghW9MHA473vx3wvygTXhpDfNWdhcWn508qqu7b+eWOzvrXd12muKOvRVKTqLgLNBE9Yz3Aj2F2mGMhIsNto/HXq3/5kSvM0+W4mGQsk3Cc85hSMlcJ6/yYshkpincvysBs+Hj+Gp19MWGiWlUf4Cg+tERZW4Ikur6D8UVTmCZT45m3HcVV4FNYbxGuS08tmExOPtFtnPrHk7Jy0L1rY98gMDVShG27VloajlOaSJYYK0Hrgk8wEBSjDqWClO8ztAqBjuGcDSxOQTAfFLIASH1hlhONU2ZcYPFNfdxQgtZ7IyFZKMA/6rTcV3/MGuYkvAntSlhuW0OdFcS6wSfE0TTziilEjJpYAVdz+FdMHUECNzdydGzUbTlVQsJyCmDvISrGCcem6rg3uJR38Mek3Pf/cI99ajU6ninAF7aI9dIh81EYddI26qIco+oX+oCf0t/bP2XX2nP3nUqdW9eygOTgn/wEPBMAB</latexit>
Rsum(Pz, z3; tsep) =
tsep a
X
tins=a
R(Pz, z3; tsep, tins)
Perform linear fits, increase lower value of
until convergence
tsep
L. Maiani et. al. Nucl.Phys. B293 (1987)
Lattice evaluation
0.040
0.042
0.044
0.046
0.048
°8 °6 °4 °2 0 2 4 6 8
[tins ° tsep/2]/a
0.060
0.062
0.064
0.066
0.068
0.070
0.072
0.074
Pz = 2 , z3 = 2
4
Im[R(P
z
,
z
3
)]
0.040
0.042
0.044
0.046
0.048
0.050
Pz = 2 , z3 = 1
tsep = 4a
tsep = 6a
tsep = 8a
tsep = 10a
tsep = 12a
tsep = 14a Plateau fits
°8 °6 °4 °2 0 2 4 6 8
[tins ° tsep/2]/a
0.060
0.062
0.064
0.066
0.068
0.070
0.072
0.074
Pz = 2 , z3 = 2
4 6 8
t
Im[R(P
z
,
z
3
)]
0.040
0.042
0.044
0.046
0.048
0.050
Pz = 2 , z3 = 1
tsep = 4a
tsep = 6a
tsep = 8a
tsep = 10a
tsep = 12a
tsep = 14a Platea
°8 °6 °4 °2 0 2 4 6 8
[tins ° tsep/2]/a
0.060
0.062
0.064
0.066
0.068
0.070
0.072
0.074
Pz = 2 , z3 = 2
4
Im[R(P
z
,
z
3
)]
0.82
0.83
0.84
0.85
0.86
0.87
Pz = 2 , z3 = 0
tsep = 4a
tsep = 6a
tsep = 8a
tsep = 10a
tsep = 12a
tsep = 14a
Summ. linear
0.485
0.490
0.495
0.500
0.505
0.510
0.515
Pz = 2 , z3 = 2
0.112
0.114
0.116
0.118
0.120
0.122
0.124
0.126 Pz = 2 , z3 = 5
°8 °6 °4 °2 0 2 4 6 8
[tins ° tsep/2]/a
0.016
0.018
0.020
0.022
0.024 Pz = 2 , z3 = 8
4 6 8
tlow
sep/a
Re[R(P
z
,
z
3
)]
0.040
0.042
0.044
0.046
0.048
0.050 Pz = 2 , z3 = 1
tsep = 4a
tsep = 6a
tsep = 8a
tsep = 10a
tsep = 12a
tsep = 14a Summ. linear
0.0600
0.0625
0.0650
0.0675
0.0700
0.0725
0.0750
Pz = 2 , z3 = 2
0.042
0.044
0.046
0.048
0.050
0.052
0.054
Pz = 2 , z3 = 5
°8 °6 °4 °2 0 2 4 6 8
[tins ° tsep/2]/a
0.012
0.014
0.016
0.018
Pz = 2 , z3 = 8
4 6 8
tlow
sep/a
Im[R(P
z
,
z
3
)]
Lattice evaluation
Matrix elements: select data
PDF results
Pseudo-ITDs
0 1 2 3 4 5 6 7 8 9 10
∫
°0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Re[M
Lsumm
(∫,
z
2
3
)]
Pz = 0
Pz = 1
Pz = 2
Pz = 3
Pz = 4
Pz = 5
Pz = 6
<latexit
sha1_base64="x4YNioFrma8b5rW3tPEcqbq+dPo=">AAACSXicbVBNT9tAEF2HAsF8NKHHXlaNkEBCkR0q4BiJC5dKtGpIpNhE6804WWW9tnbHSMHyn+DXcKXX/gJ+BreqJ9Yhhwb6pJWe3puZnXlRJoVBz3tyamsf1jc261vu9s7u3sdGc//apLnm0OOpTPUgYgakUNBDgRIGmQaWRBL60eyi8vu3oI1I1U+cZxAmbKJELDhDK40ax0WgE/oDykBCjMMgYTiNNZsV38rDQOXHd6OTm85RoMVkiuGo0fLa3gL0PfGXpEWWuBo1nfVgnPI8AYVcMmOGvpdhWDCNgkso3SA3kDE+YxMYWqpYAiYsFmeV9MAqYxqn2j6FdKH+21GwxJh5EtnKam3z1qvE/3nDHOPzsBAqyxEUf/0oziXFlFYZ0bHQwFHOLWFcC7sr5VOmGUebpLsyajGc67CAnDO5cpCVqiRL13VtcP7bmN6T607bP21737+2up1lhHXymXwhh8QnZ6RLLskV6RFO7skDeSS/nN/Os/PH+ftaWnOWPZ/ICmprL/mEsVo=</latexit>
Re
⇥
M(⌫,
z
2
3
)
⇤
0 1 2 3 4 5 6 7 8 9 10
∫
°0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Im[M
Lsumm
(∫,
z
2
3
)]
Pz = 0
Pz = 1
Pz = 2
Pz = 3
Pz = 4
Pz = 5
Pz = 6
<latexit
sha1_base64="Ytv6KAbYVi9nG4xqfS7e/mR/+z0=">AAACSXicbVBNSyNBEO2J667Ofhj16KUxLChImImyehS86EFQMCpkxtDTqUmadPcM3TVCHOZP+Gu8utf9Bfsz9iae7Ik5GN0HDY/3qqqrXpJLYTEI/nqNhU+Ln78sLftfv33/sdJcXbu0WWE4dHkmM3OdMAtSaOiiQAnXuQGmEglXyfio9q9uwViR6Quc5BArNtQiFZyhk/rNnTIyip6oKpKQYi9SDEepYePytNqKdLFz19+96WxHRgxHGPebraAdTEE/knBGWmSGs/6qtxgNMl4o0Mgls7YXBjnGJTMouITKjwoLOeNjNoSeo5opsHE5PauiP50yoGlm3NNIp+rbjpIpaycqcZX12va9V4v/83oFpgdxKXReIGj++lFaSIoZrTOiA2GAo5w4wrgRblfKR8wwji5Jf27UdDg3cQkFZ3LuICfVSVa+77vgwvcxfSSXnXb4qx2c77UOO7MIl8gG2SRbJCT75JAckzPSJZzckwfySH57f7x/3pP3/Fra8GY962QOjYUX956xWQ==</latexit>
Im
⇥
M(⌫,
z
2
3
)
⇤
‣ get rid of logarithmic divergences
‣ renormalization of vector current
‣ higher-twist contaminations partially suppressed
𝒪(z2
3Λ2
QCD)
<latexit sha1_base64="ufDO2bwQ0PTVfOHwZZ1L74vdHXM=">AAAC8HicjVFNj9MwEHUCC0v46sKRi0WF1JVWlVPYsj0UrcSFC1KR6O5KTYgc12mtOk5kO0jd4P/BDXHl73Di3zDJBokiVjCSpfF7b8aeN2kphbGE/PD8Gzf3bt3evxPcvXf/wcPewaMzU1Sa8TkrZKEvUmq4FIrPrbCSX5Sa0zyV/DzdvG74849cG1Go93Zb8jinKyUywagFKOl9j3Jq15mmm/qtG0SqOrpMnn8YHeIpjiTP7CACjtWtilHZiGbJJWg6nbue+pTUkEyJc5EWq7U9jKzIufm/vlAM9yk56lr8W+kc7t5Jen0yDCfjyWiEyZC0Acl4cnJ8PMZhh/RRF7PkwNuLlgWrcq4sk9SYRUhKG9dUW8Ekd0FUGV5StqErvoBUUZgjrlv3HX4GyBJnhYajLG7R3ytqmhuzzVNQNjOYP7kG/Bu3qGx2EtdClZXlil09lFUS2wI3q8RLoTmzcgsJZVrAXzFbU7DVwsKDnVZtc6bjmlfg4c5AADXrd0EQgHG/3MHXJ2ejYTgekncv+qevOgv30RP0FA1QiF6iU/QGzdAcMW/iJd7aE772P/tf/K9XUt/rah6jnfC//QTi8OuL</latexit>
M(⌫, z2
3) =
✓
M(Pzz3, z2
3)
M(Pzz3, z2
3)|z3=0
◆
⇥
✓
M(Pzz3, z2
3)|Pz=0,z3=0
M(Pzz3, z2
3)|Pz=0
◆
Evolution and matching to : Light-cone ITDs
MS
evolution to common scale 1/z0
conversion to scheme
MS
light-cone ITD
<latexit sha1_base64="6I2IXBKK/mWdKBImIj3ojFH7TM8=">AAACRXicdZDdahNBFMdnq9W69SOtl94MhkKkuMyuiakXhaA3vaxg2kJ2DbOTs8mQ2Q9mzhTCsq/g03hbb30GH8K70ls7SSMY0QMDf/7na84vrZQ0yNgPb+ve/e0HD3ce+buPnzx91trbPzOl1QKGolSlvki5ASULGKJEBReVBp6nCs7T+Ydl/vwStJFl8QkXFSQ5nxYyk4Kjs8atzvuOfUWPaawgw1GcaS7q8NB+jpo6fG0bGms5nWEyPhy32iyI2Jt3UURZwPrdXsic6L1l/aMuDQO2ijZZx+l4z9uOJ6WwORQoFDdmFLIKk5prlEJB48fWQMXFnE9h5GTBczBJvTqpoQfOmdCs1O4VSFfunx01z41Z5KmrzDnOzN+5pfmv3MhidpTUsqgsQiHuFmVWUSzpkg+dSA0C1cIJLrR0f6Vixh0WdBT9jVGr4UInNVjB1cZBznIo543v+w7cbzr0/+IsCsJewD5224PBGuEOeUFekg4JSZ8MyAk5JUMiyBfylVyRb95376d37d3clW55657nZCO8X7cxNa95</latexit>
B(u) =

1 + u2
1 u +
<latexit sha1_base64="+3l2zM+HYCOdXsduRi0NJzyHHwI=">AAACUXicdZBNa9swGMdlb107dy9pd9xFLAxSRo3sOU17GAR22WGHDpa2EJsgK3IiIstGelQIxl9kn6bX7brTPspuU9wMlrE9IPHX/3mR9MtrKQwQ8sPzHzzce7R/8Dg4fPL02fPe0fGVqaxmfMIqWembnBouheITECD5Ta05LXPJr/PV+03++pZrIyr1GdY1z0q6UKIQjIKzZr3k48Ce4Hc4lbyAaZIWmrImlWoQndqTtnF7i0/j7oRTLRZLyGZvZr0+CWPy9iKOMQnJKBlGxInhGRmdJzgKSRd9tI3L2ZG3l84rZkuugElqzDQiNWQN1SCY5G2QWsNrylZ0wadOKlpykzXd91r82jlzXFTaLQW4c//saGhpzLrMXWVJYWn+zm3Mf+WmForzrBGqtsAVu7+osBJDhTes8FxozkCunaBMC/dWzJbUEQJHNNgZ1Q1nOmu4ZVTufMhZjuqqDYLAgftNB/9fXMVhNAzJp6Q/Hm8RHqCX6BUaoAiN0Bh9QJdoghj6gu7QV/TN++799JHv35f63rbnBdoJ//AXOmCvzg==</latexit>
L(u) =

4
ln(1 u)
1 u
2(1 u)
+
‣ treat each independently
‣ need polynomial parametrization w.r.t.
‣ evolution/matching processes separately or combined
can give rise to different systematics
‣ 1-loop matching: ~10% effect to pseudo-ITD data
‣ small higher-twist effects
z3
ν
<latexit sha1_base64="bUpnZ+DHs1y67TuCAYb3jWu66Ow=">AAACQHicdVBNa9tAEF25dZKqbeI0x16WmkIKRawUO05vhl5yKaRQJwZLNaP1yl68Won9SDDCP6C/ptf2mn+Rf5Bb6LWnrhwX6tA8WHi8NzM789JScG0IufEaT542t7Z3nvnPX7zc3WvtvzrXhVWUDWghCjVMQTPBJRsYbgQblopBngp2kc4/1v7FJVOaF/KLWZQsyWEqecYpGCeNW+04BzPLFMyrT8tDG0v7Ps7t1+hdrPh0ZkCp4spVkSAiRx+iCJOA9DrdkDjSPSa9kw4OA7JCG61xNt73mvGkoDZn0lABWo9CUpqkAmU4FWzpx1azEugcpmzkqISc6aRaXbPEb50ywVmh3JMGr9R/OyrItV7kqausd9cPvVr8nzeyJjtJKi5La5ik9x9lVmBT4DoaPOGKUSMWjgBV3O2K6QwUUOMC9DdGrYZTlVTMUhAbBzmpjnPp+74L7m86+HFyHgVhNyCfO+1+fx3hDnqN3qBDFKIe6qNTdIYGiKJv6Dv6gX56196td+f9ui9teOueA7QB7/cfeYSvVg==</latexit>
M(u⌫, µ2
) !
<latexit sha1_base64="n3hk3Z2isDnt98tfGQCNOjveN/w=">AAAC6HicdVHdbtMwGHUCgxF+1sElNxYVUqeNKqnWsl4gVUxMXIC0SXSdVKfBcZ3W1HEi/yCVKO/AHeKW1+EJ9jY4SYcogk+KdHzO9x0754tzzpT2/WvHvXV7587d3Xve/QcPH+219h9fqsxIQsck45m8irGinAk61kxzepVLitOY00m8Oq30yWcqFcvEB73OaZjihWAJI1hbKmr9RCnWS4J5cVF2kDBHKDWz3gF8BWshkXhVvG+ULxX/AiLLkQJhni9xpOBpdFYWPZSzEjGhI38WwLlBR9vj5vc84jTRU8RFgzqWrG9sXOnMWi1wmuLozWFQlsVxiSRbLPVBbRcnxetyakJ4CG/O76pz0xNGrbbfDYaDYa8H/a5flwWD4Um/P4DBhmmDTZ1H+84OmmfEpFRowrFS08DPdVhgqRnhtPSQUTTHZIUXdGqhwClVYVGnXsLnlpnDJJP2ExrW7J8TBU6VWqex7aweq/7WKvJf2tTo5CQsmMiNpoI0FyWGQ53BaoVwziQlmq8twEQy+1ZIltjmp+2ivS2r2pzIsKDG7njrhyxVraf0PM8Gd5MO/D+47HWDfte/OG6PRpsId8FT8Ax0QABeghF4C87BGBAncCbORwe7n9yv7jf3e9PqOpuZJ2Cr3B+/ALS46MI=</latexit>
Q(⌫, µ2
) = M(⌫, z2
)
↵sCF
2⇡
Z 1
0
du M(u⌫, z2
)

ln
✓
z2
µ2 e2 E +1
4
◆
B[u] + L[u]
<latexit sha1_base64="30bquwHjvCKgXjdaoVM2+yOL7uY=">AAACgnicdVFdixMxFE3HXV3Hj+3qoy/BIrSKJdNt7QoKBV98EVawuwudccikd9rQTGZIboQy9Bf6C/wZvuqLmW5F68eFwOHcc09uTrJKSYuMfWkFNw4Ob946uh3euXvv/nH75MGFLZ0RMBWlKs1Vxi0oqWGKEhVcVQZ4kSm4zFZvmv7lJzBWlvoDritICr7QMpeCo6fSNsRSY8o+RjQuOC5zw1f1u03Xxdr16Czvul6SPqOv6S+Zghy7f4uf71ENExu5WGKv8UjbHdYfsNOXgwFlfTYejiLmwegFG58NadRn2+qQXZ2nJ63DeF4KV4BGobi1s4hVmNTcoBQKNmHsLFRcrPgCZh5qXoBN6m0eG/rEM3Oal8YfjXTL/j5R88LadZF5ZbO0/bPXkP/qzRzmZ0ktdeUQtLi+KHeKYkmbcOlcGhCo1h5wYaTflYolN1yg/4Jwz2prLkxSgxNc7T3IU02OmzAMfXA/06H/BxeDfjTqs/fDzmSyi/CIPCKPSZdEZEwm5C05J1MiyGfylXwj34OD4GkQBafX0qC1m3lI9ip49QMeP8LD</latexit>
Z 1
0
M(u⌫)[f(u)]+ =
Z 1
0
(M(u⌫) M(⌫)) f(u)
Common scale:
<latexit sha1_base64="2wZvWsh4IXg2kLWFd/Nh6LwksVQ=">AAAChnicdVFda9swFFW8dcu8r3R73ItYGHSQerZpnIaREhhje+xgSQuxZ2RFTkUk20hyIRX6jX3uD+nrNsX1xjK2C4LDufecKx1lFaNS+f5Nx7l3f+/Bw+4j9/GTp8+e9/ZfzGVZC0xmuGSlOM+QJIwWZKaoYuS8EgTxjJGzbP1h2z+7JELSsviqNhVJOFoVNKcYKUulPXqV+gcxryehjgWHn8jcvIUTGOcCYR2Sb/owXiHOUfoRHgbvQmO0HTYT3/OjUTxoNDk38WAQv29FgdHW01iT0Bsfwd+2aa/ve8E4GochtPKmLIjGx8NhBIOW6YO2TtP9zl68LHHNSaEwQ1IuAr9SiUZCUcyIceNakgrhNVqRhYUF4kQmusnEwDeWWcK8FPYUCjbsnwqNuJQbntlJjtSF/Lu3Jf/VW9QqP040LapakQLfLcprBlUJtwHDJRUEK7axAGFB7V0hvkA2GWW/wd2xasyxSDSpMWI7D7KUTXNtXNe1wf1KB/4fzEMviDz/y1F/etJG2AWvwGtwAAIwAlPwGZyCGcDgGtyC7+CH03U8Z+iM7kadTqt5CXbKmf4EyRrBsw==</latexit>
z0(µ = 2GeV) =
2e E 1/2
µ
= 0.067 fm ,
1
z0
= 2.94GeV
PDF results
0 1 2 3 4 5 6 7 8 9 10
∫
°0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Re[Q(∫,
µ
2
)]
M(∫, z2
3)
Pz = 0
Pz = 1
Pz = 2
Pz = 3
Pz = 4
Pz = 5
Pz = 6
<latexit sha1_base64="kck6YtsZYdhnTQsjPFVQMizaNeQ=">AAACNHicbVDLSsNAFJ1UqzW+Wl24cBMsQgUpSRV1WXDjRqhgH9DEMJlO2qGTSZiZCDXka9zq1n8R3Ilbv8FJmoWtHhg4nHPvnXuPF1EipGm+a6WV1fLaemVD39za3tmt1vZ6Iow5wl0U0pAPPCgwJQx3JZEUDyKOYeBR3Pem15nff8RckJDdy1mEnQCOGfEJglJJbvXADqCc+BxOk9u0YbP49Mk9e2iduNW62TRzGH+JVZA6KNBxa1rZHoUoDjCTiEIhhpYZSSeBXBJEcarbscARRFM4xkNFGQywcJL8gtQ4VsrI8EOuHpNGrv7uSGAgxCzwVGW2r1j2MvE/bxhL/8pJCItiiRmaf+TH1JChkcVhjAjHSNKZIhBxonY10ARyiKQKTV8YlQ9H3ElwjCBdOEhJWYSprusqOGs5pr+k12paF03z7rzebhURVsAhOAINYIFL0AY3oAO6AIEUPIMX8Kq9aR/ap/Y1Ly1pRc8+WID2/QOrbqlE</latexit>
M(⌫, z2
3)
Evolution and matching to : Light-cone ITDs
MS
evolution to common scale 1/z0
conversion to scheme
MS
light-cone ITD
<latexit sha1_base64="6I2IXBKK/mWdKBImIj3ojFH7TM8=">AAACRXicdZDdahNBFMdnq9W69SOtl94MhkKkuMyuiakXhaA3vaxg2kJ2DbOTs8mQ2Q9mzhTCsq/g03hbb30GH8K70ls7SSMY0QMDf/7na84vrZQ0yNgPb+ve/e0HD3ce+buPnzx91trbPzOl1QKGolSlvki5ASULGKJEBReVBp6nCs7T+Ydl/vwStJFl8QkXFSQ5nxYyk4Kjs8atzvuOfUWPaawgw1GcaS7q8NB+jpo6fG0bGms5nWEyPhy32iyI2Jt3UURZwPrdXsic6L1l/aMuDQO2ijZZx+l4z9uOJ6WwORQoFDdmFLIKk5prlEJB48fWQMXFnE9h5GTBczBJvTqpoQfOmdCs1O4VSFfunx01z41Z5KmrzDnOzN+5pfmv3MhidpTUsqgsQiHuFmVWUSzpkg+dSA0C1cIJLrR0f6Vixh0WdBT9jVGr4UInNVjB1cZBznIo543v+w7cbzr0/+IsCsJewD5224PBGuEOeUFekg4JSZ8MyAk5JUMiyBfylVyRb95376d37d3clW55657nZCO8X7cxNa95</latexit>
B(u) =

1 + u2
1 u +
<latexit sha1_base64="+3l2zM+HYCOdXsduRi0NJzyHHwI=">AAACUXicdZBNa9swGMdlb107dy9pd9xFLAxSRo3sOU17GAR22WGHDpa2EJsgK3IiIstGelQIxl9kn6bX7brTPspuU9wMlrE9IPHX/3mR9MtrKQwQ8sPzHzzce7R/8Dg4fPL02fPe0fGVqaxmfMIqWembnBouheITECD5Ta05LXPJr/PV+03++pZrIyr1GdY1z0q6UKIQjIKzZr3k48Ce4Hc4lbyAaZIWmrImlWoQndqTtnF7i0/j7oRTLRZLyGZvZr0+CWPy9iKOMQnJKBlGxInhGRmdJzgKSRd9tI3L2ZG3l84rZkuugElqzDQiNWQN1SCY5G2QWsNrylZ0wadOKlpykzXd91r82jlzXFTaLQW4c//saGhpzLrMXWVJYWn+zm3Mf+WmForzrBGqtsAVu7+osBJDhTes8FxozkCunaBMC/dWzJbUEQJHNNgZ1Q1nOmu4ZVTufMhZjuqqDYLAgftNB/9fXMVhNAzJp6Q/Hm8RHqCX6BUaoAiN0Bh9QJdoghj6gu7QV/TN++799JHv35f63rbnBdoJ//AXOmCvzg==</latexit>
L(u) =

4
ln(1 u)
1 u
2(1 u)
+
<latexit sha1_base64="n3hk3Z2isDnt98tfGQCNOjveN/w=">AAAC6HicdVHdbtMwGHUCgxF+1sElNxYVUqeNKqnWsl4gVUxMXIC0SXSdVKfBcZ3W1HEi/yCVKO/AHeKW1+EJ9jY4SYcogk+KdHzO9x0754tzzpT2/WvHvXV7587d3Xve/QcPH+219h9fqsxIQsck45m8irGinAk61kxzepVLitOY00m8Oq30yWcqFcvEB73OaZjihWAJI1hbKmr9RCnWS4J5cVF2kDBHKDWz3gF8BWshkXhVvG+ULxX/AiLLkQJhni9xpOBpdFYWPZSzEjGhI38WwLlBR9vj5vc84jTRU8RFgzqWrG9sXOnMWi1wmuLozWFQlsVxiSRbLPVBbRcnxetyakJ4CG/O76pz0xNGrbbfDYaDYa8H/a5flwWD4Um/P4DBhmmDTZ1H+84OmmfEpFRowrFS08DPdVhgqRnhtPSQUTTHZIUXdGqhwClVYVGnXsLnlpnDJJP2ExrW7J8TBU6VWqex7aweq/7WKvJf2tTo5CQsmMiNpoI0FyWGQ53BaoVwziQlmq8twEQy+1ZIltjmp+2ivS2r2pzIsKDG7njrhyxVraf0PM8Gd5MO/D+47HWDfte/OG6PRpsId8FT8Ax0QABeghF4C87BGBAncCbORwe7n9yv7jf3e9PqOpuZJ2Cr3B+/ALS46MI=</latexit>
Q(⌫, µ2
) = M(⌫, z2
)
↵sCF
2⇡
Z 1
0
du M(u⌫, z2
)

ln
✓
z2
µ2 e2 E +1
4
◆
B[u] + L[u]
<latexit sha1_base64="30bquwHjvCKgXjdaoVM2+yOL7uY=">AAACgnicdVFdixMxFE3HXV3Hj+3qoy/BIrSKJdNt7QoKBV98EVawuwudccikd9rQTGZIboQy9Bf6C/wZvuqLmW5F68eFwOHcc09uTrJKSYuMfWkFNw4Ob946uh3euXvv/nH75MGFLZ0RMBWlKs1Vxi0oqWGKEhVcVQZ4kSm4zFZvmv7lJzBWlvoDritICr7QMpeCo6fSNsRSY8o+RjQuOC5zw1f1u03Xxdr16Czvul6SPqOv6S+Zghy7f4uf71ENExu5WGKv8UjbHdYfsNOXgwFlfTYejiLmwegFG58NadRn2+qQXZ2nJ63DeF4KV4BGobi1s4hVmNTcoBQKNmHsLFRcrPgCZh5qXoBN6m0eG/rEM3Oal8YfjXTL/j5R88LadZF5ZbO0/bPXkP/qzRzmZ0ktdeUQtLi+KHeKYkmbcOlcGhCo1h5wYaTflYolN1yg/4Jwz2prLkxSgxNc7T3IU02OmzAMfXA/06H/BxeDfjTqs/fDzmSyi/CIPCKPSZdEZEwm5C05J1MiyGfylXwj34OD4GkQBafX0qC1m3lI9ip49QMeP8LD</latexit>
Z 1
0
M(u⌫)[f(u)]+ =
Z 1
0
(M(u⌫) M(⌫)) f(u)
Common scale:
<latexit sha1_base64="2wZvWsh4IXg2kLWFd/Nh6LwksVQ=">AAAChnicdVFda9swFFW8dcu8r3R73ItYGHSQerZpnIaREhhje+xgSQuxZ2RFTkUk20hyIRX6jX3uD+nrNsX1xjK2C4LDufecKx1lFaNS+f5Nx7l3f+/Bw+4j9/GTp8+e9/ZfzGVZC0xmuGSlOM+QJIwWZKaoYuS8EgTxjJGzbP1h2z+7JELSsviqNhVJOFoVNKcYKUulPXqV+gcxryehjgWHn8jcvIUTGOcCYR2Sb/owXiHOUfoRHgbvQmO0HTYT3/OjUTxoNDk38WAQv29FgdHW01iT0Bsfwd+2aa/ve8E4GochtPKmLIjGx8NhBIOW6YO2TtP9zl68LHHNSaEwQ1IuAr9SiUZCUcyIceNakgrhNVqRhYUF4kQmusnEwDeWWcK8FPYUCjbsnwqNuJQbntlJjtSF/Lu3Jf/VW9QqP040LapakQLfLcprBlUJtwHDJRUEK7axAGFB7V0hvkA2GWW/wd2xasyxSDSpMWI7D7KUTXNtXNe1wf1KB/4fzEMviDz/y1F/etJG2AWvwGtwAAIwAlPwGZyCGcDgGtyC7+CH03U8Z+iM7kadTqt5CXbKmf4EyRrBsw==</latexit>
z0(µ = 2GeV) =
2e E 1/2
µ
= 0.067 fm ,
1
z0
= 2.94GeV
PDF results
0 1 2 3 4 5 6 7 8 9 10
∫
°0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Im[Q(∫,
µ
2
)]
M(∫, z2
3)
Pz = 0
Pz = 1
Pz = 2
Pz = 3
Pz = 4
Pz = 5
Pz = 6
<latexit sha1_base64="kck6YtsZYdhnTQsjPFVQMizaNeQ=">AAACNHicbVDLSsNAFJ1UqzW+Wl24cBMsQgUpSRV1WXDjRqhgH9DEMJlO2qGTSZiZCDXka9zq1n8R3Ilbv8FJmoWtHhg4nHPvnXuPF1EipGm+a6WV1fLaemVD39za3tmt1vZ6Iow5wl0U0pAPPCgwJQx3JZEUDyKOYeBR3Pem15nff8RckJDdy1mEnQCOGfEJglJJbvXADqCc+BxOk9u0YbP49Mk9e2iduNW62TRzGH+JVZA6KNBxa1rZHoUoDjCTiEIhhpYZSSeBXBJEcarbscARRFM4xkNFGQywcJL8gtQ4VsrI8EOuHpNGrv7uSGAgxCzwVGW2r1j2MvE/bxhL/8pJCItiiRmaf+TH1JChkcVhjAjHSNKZIhBxonY10ARyiKQKTV8YlQ9H3ElwjCBdOEhJWYSprusqOGs5pr+k12paF03z7rzebhURVsAhOAINYIFL0AY3oAO6AIEUPIMX8Kq9aR/ap/Y1Ly1pRc8+WID2/QOrbqlE</latexit>
M(⌫, z2
3)
‣ treat each independently
‣ need polynomial parametrization w.r.t.
‣ evolution/matching processes separately or combined
can give rise to different systematics
‣ 1-loop matching: ~10% effect to pseudo-ITD data
‣ small higher-twist effects
z3
ν
<latexit sha1_base64="bUpnZ+DHs1y67TuCAYb3jWu66Ow=">AAACQHicdVBNa9tAEF25dZKqbeI0x16WmkIKRawUO05vhl5yKaRQJwZLNaP1yl68Won9SDDCP6C/ptf2mn+Rf5Bb6LWnrhwX6tA8WHi8NzM789JScG0IufEaT542t7Z3nvnPX7zc3WvtvzrXhVWUDWghCjVMQTPBJRsYbgQblopBngp2kc4/1v7FJVOaF/KLWZQsyWEqecYpGCeNW+04BzPLFMyrT8tDG0v7Ps7t1+hdrPh0ZkCp4spVkSAiRx+iCJOA9DrdkDjSPSa9kw4OA7JCG61xNt73mvGkoDZn0lABWo9CUpqkAmU4FWzpx1azEugcpmzkqISc6aRaXbPEb50ywVmh3JMGr9R/OyrItV7kqausd9cPvVr8nzeyJjtJKi5La5ik9x9lVmBT4DoaPOGKUSMWjgBV3O2K6QwUUOMC9DdGrYZTlVTMUhAbBzmpjnPp+74L7m86+HFyHgVhNyCfO+1+fx3hDnqN3qBDFKIe6qNTdIYGiKJv6Dv6gX56196td+f9ui9teOueA7QB7/cfeYSvVg==</latexit>
M(u⌫, µ2
) !
Full picture: -dependence
x
<latexit sha1_base64="ec+jDU0k1TeZXl/5C2j/fnt2hyI=">AAACWnicdVBdSxtBFJ1sa6urbWPtW18GgxDBht3QxOQhEPCljwqNCtlNmJ3c1SGzs9v5kIRhf01/TV/tU8Ef00lcwZR6YOBw7rn3zj1JwZnSQfCn5r16vfXm7faOv7v37v2H+v7HS5UbSWFEc57L64Qo4EzASDPN4bqQQLKEw1UyP1vVr+5AKpaL73pZQJyRG8FSRol20rQ+iDKibynh9qJsRsKcRJmZtI/xAEdM6Kn9EpYTG5azBYaJZc6AF+WP5qKyTeuNoBX2u/12GwetYA1Huv1ep9PFYaU0UIXz6X5tK5rl1GQgNOVEqXEYFDq2RGpGOZR+ZBQUhM7JDYwdFSQDFdv1nSU+csoMp7l0T2i8Vp93WJIptcwS51xdpf6trcT/1cZGp73YMlEYDYI+LkoNxzrHq9DwjEmgmi8dIVQy91dMb4kkVLto/Y1R6+FUxhaMS3XjICelksxL3/ddcE/p4JfJZbsVdlrBxdfGcFhFuI0+o0PURCE6RUP0DZ2jEaLoJ/qF7tHv2oPneTve7qPVq1U9B2gD3qe/VIO0Yg==</latexit>
Q(⌫, µ2
) =
Z 1
1
dxei⌫x
q(x, µ2
)
discrete data in -space
ν
continuous function
in -space
x
<latexit sha1_base64="s43+tV+ttccgFKZTQDnTszK+27k=">AAACZHicdVBda9RAFJ2N1tZYdWvxSZCLi7AFWZLFrl2hUPBBH1tx28ImDZPZm3bYySSdj7JLyE/qr/FJ0Fd/h5NtBFf0wMCZc+69M/ekpeDaBMG3jnfv/saDza2H/qPtx0+edneenerCKoYTVohCnadUo+ASJ4YbgeelQpqnAs/S+YfGP7tBpXkhv5hliXFOLyXPOKPGSUn3YxWpHD5jHb2JcmquGBXVSd2PpHV3ezHcg0OIuDRJcBHCbAERK3TjwmIPrpOb/qItS7q9YBCOR+PhEIJBsIIjo/HB/v4IwlbpkRbHyU5nI5oVzOYoDRNU62kYlCauqDKcCaz9yGosKZvTS5w6KmmOOq5WG9fw2ikzyArljjSwUv/sqGiu9TJPXWWzlf7ba8R/eVNrsoO44rK0BiW7eyizAkwBTXww4wqZEUtHKFPc/RXYFVWUGReyvzZqNZypuELrUl1byEmZovPa930X3O904P/kdDgIR4Pg5G3v6H0b4RZ5QV6RPgnJO3JEPpFjMiGM3JKv5Dv50fnpbXu73vO7Uq/T9uySNXgvfwGkqLcY</latexit>
Re Q(⌫, µ2
) =
Z 1
0
dx cos(⌫x)qv(x, µ2
)
valence quark distribution:
Inverse problem! Way around:
‣ choose a physically meaningful functional form for
‣ introduce model bias in determination, but…
‣ general form:
i) 2-parameter fit:
ii) 3-parameter fit:
q(x, μ2
)
α, β ≠ 0, γ, δ = 0
α, β, δ ≠ 0, γ = 0
<latexit sha1_base64="NIw3nN6MJgQRlsFY51X2P+E1QmU=">AAACqHicdVFdb9MwFHUCgxE+1sEDD7wYKqSWbiUprKwPoAleeCwSXYearLpxndaqnWS2M6WK8gv2C/cz+Ae4aRgrgitZOjrn3Gv73DDlTGnXvbbsO3d37t3ffeA8fPT4yV5j/+mpSjJJ6IgkPJFnISjKWUxHmmlOz1JJQYScjsPll7U+vqRSsST+rlcpDQTMYxYxAtpQ08bVxfSylbfxR+xHEkiRn/vA0wW0vMO8fe6HVBvY8ecgBPjqQuoiLzv+jHINOG+XxefWxt/xDipzx2vXbnwjvXvbuyVuem/EP1I5bTTdrjfoD3o97HbdqgzoD46PjvrYq5kmqms43bd2/FlCMkFjTTgoNfHcVAcFSM0Ip6XjZ4qmQJYwpxMDYxBUBUWVWolfG2aGo0SaE2tcsbc7ChBKrURonAL0Qv2trcl/aZNMR8dBweI00zQmm4uijGOd4PUK8IxJSjRfGQBEMvNWTBZg0tdmUc7WqGo4kUFBMwJ860OGMhtblo7jmOB+p4P/D057Xa/fdb+9b558qiPcRS/QK9RCHvqATtBXNEQjRNBP67mFrZf2G3toj+0fG6tt1T3P0FbZ4S+xocwD</latexit>
qv(x) =
x↵
(1 x) (1 +
p
x + x)
B(↵ + 1, + 1) + B(↵ + 3/2, + 1) + B(↵ + 2, + 1)
: beta-function
B(i, j)
<latexit sha1_base64="21L9iKzfhLn/lpdw4rNnqmdi5e0=">AAACt3icdVFda9swFJW9deu8r3R73MtlYSOBLLXNmjWMjsJg7LGBpi1EtlEUORGxZFeSS4LxH9k/27+ZnGTQjO6C0NG5515J506LjGvj+78d99HjgydPD595z1+8fPW6dfTmSuelomxM8yxXN1OiWcYlGxtuMnZTKEbENGPX0+X3Jn99x5Tmubw064JFgswlTzklxlJJ6xemCx6HcAZYlyKpsCzP/DpudntQAgRZ1TXgVBFajTqW7mFRxmEXPsFoq/hxWd/j6wprPhckGcVhjXs9/PVhXXMjlybx4wBmK8A019CkYdWF2+Sus+omrbbfD4aDYRiC3/c3YcFgeHpyMoBgx7TRLi6SI+cAz3JaCiYNzYjWk8AvTFQRZTjNWO3hUrOC0CWZs4mFkgimo2pjYg0fLDODNFd2SQMb9n5FRYTWazG1SkHMQv+ba8iHcpPSpKdRxWVRGibp9qK0zMDk0EwEZlwxarK1BYQqbt8KdEGs38bOzdtrtWlOVVSxkpJs70OWsjNa1p7nWeP+ugP/B1dhPxj0/dHn9vm3nYWH6B16jzooQF/QOfqJLtAYUQc5H51jx3eHbuKm7mIrdZ1dzVu0F+7tHyo+0X4=</latexit>
2
=
⌫max
X
⌫=0
Q(⌫, µ2
) QFT(⌫, µ2
)
2
Q
, QFT(⌫, µ2
) =
Z 1
0
dx cos(⌫x)qv(x)
PDF results
0 1 2 3 4 5 6 7 8 9 10
∫
°0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Re[Q(∫,
µ
2
)]
2-param
3-param
Pz = 0
Pz = 1
Pz = 2
Pz = 3
Pz = 4
Pz = 5
Pz = 6
χ2
∼ 2.3
Full picture: -dependence
x
<latexit sha1_base64="ec+jDU0k1TeZXl/5C2j/fnt2hyI=">AAACWnicdVBdSxtBFJ1sa6urbWPtW18GgxDBht3QxOQhEPCljwqNCtlNmJ3c1SGzs9v5kIRhf01/TV/tU8Ef00lcwZR6YOBw7rn3zj1JwZnSQfCn5r16vfXm7faOv7v37v2H+v7HS5UbSWFEc57L64Qo4EzASDPN4bqQQLKEw1UyP1vVr+5AKpaL73pZQJyRG8FSRol20rQ+iDKibynh9qJsRsKcRJmZtI/xAEdM6Kn9EpYTG5azBYaJZc6AF+WP5qKyTeuNoBX2u/12GwetYA1Huv1ep9PFYaU0UIXz6X5tK5rl1GQgNOVEqXEYFDq2RGpGOZR+ZBQUhM7JDYwdFSQDFdv1nSU+csoMp7l0T2i8Vp93WJIptcwS51xdpf6trcT/1cZGp73YMlEYDYI+LkoNxzrHq9DwjEmgmi8dIVQy91dMb4kkVLto/Y1R6+FUxhaMS3XjICelksxL3/ddcE/p4JfJZbsVdlrBxdfGcFhFuI0+o0PURCE6RUP0DZ2jEaLoJ/qF7tHv2oPneTve7qPVq1U9B2gD3qe/VIO0Yg==</latexit>
Q(⌫, µ2
) =
Z 1
1
dxei⌫x
q(x, µ2
)
discrete data in -space
ν
continuous function
in -space
x
<latexit sha1_base64="s43+tV+ttccgFKZTQDnTszK+27k=">AAACZHicdVBda9RAFJ2N1tZYdWvxSZCLi7AFWZLFrl2hUPBBH1tx28ImDZPZm3bYySSdj7JLyE/qr/FJ0Fd/h5NtBFf0wMCZc+69M/ekpeDaBMG3jnfv/saDza2H/qPtx0+edneenerCKoYTVohCnadUo+ASJ4YbgeelQpqnAs/S+YfGP7tBpXkhv5hliXFOLyXPOKPGSUn3YxWpHD5jHb2JcmquGBXVSd2PpHV3ezHcg0OIuDRJcBHCbAERK3TjwmIPrpOb/qItS7q9YBCOR+PhEIJBsIIjo/HB/v4IwlbpkRbHyU5nI5oVzOYoDRNU62kYlCauqDKcCaz9yGosKZvTS5w6KmmOOq5WG9fw2ikzyArljjSwUv/sqGiu9TJPXWWzlf7ba8R/eVNrsoO44rK0BiW7eyizAkwBTXww4wqZEUtHKFPc/RXYFVWUGReyvzZqNZypuELrUl1byEmZovPa930X3O904P/kdDgIR4Pg5G3v6H0b4RZ5QV6RPgnJO3JEPpFjMiGM3JKv5Dv50fnpbXu73vO7Uq/T9uySNXgvfwGkqLcY</latexit>
Re Q(⌫, µ2
) =
Z 1
0
dx cos(⌫x)qv(x, µ2
)
valence quark distribution:
0.0 0.2 0.4 0.6 0.8 1.0
x
0
1
2
3
4
5
6
q
v
(x)
CJ15
MSTW
NNPDF
q
(3)
v (x)
0.0 0.2 0.4 0.6 0.8 1.0
x
0
1
2
3
4
5
6
q
v
(x)
q
(2)
v (x)
q
(3)
v (x)
CJ15: A. Accardi et. al. arXiv: 1602.03154
MSTW: A.D.Martin etl al. arXiv: 0901.0002
NNPDF: R.D.Ball et. al. arXiv: 1706.00428
Inverse problem! Way around:
‣ choose a physically meaningful functional form for
‣ introduce model bias in determination, but…
‣ general form:
i) 2-parameter fit:
ii) 3-parameter fit:
q(x, μ2
)
α, β ≠ 0, γ, δ = 0
α, β, δ ≠ 0, γ = 0
<latexit sha1_base64="NIw3nN6MJgQRlsFY51X2P+E1QmU=">AAACqHicdVFdb9MwFHUCgxE+1sEDD7wYKqSWbiUprKwPoAleeCwSXYearLpxndaqnWS2M6WK8gv2C/cz+Ae4aRgrgitZOjrn3Gv73DDlTGnXvbbsO3d37t3ffeA8fPT4yV5j/+mpSjJJ6IgkPJFnISjKWUxHmmlOz1JJQYScjsPll7U+vqRSsST+rlcpDQTMYxYxAtpQ08bVxfSylbfxR+xHEkiRn/vA0wW0vMO8fe6HVBvY8ecgBPjqQuoiLzv+jHINOG+XxefWxt/xDipzx2vXbnwjvXvbuyVuem/EP1I5bTTdrjfoD3o97HbdqgzoD46PjvrYq5kmqms43bd2/FlCMkFjTTgoNfHcVAcFSM0Ip6XjZ4qmQJYwpxMDYxBUBUWVWolfG2aGo0SaE2tcsbc7ChBKrURonAL0Qv2trcl/aZNMR8dBweI00zQmm4uijGOd4PUK8IxJSjRfGQBEMvNWTBZg0tdmUc7WqGo4kUFBMwJ860OGMhtblo7jmOB+p4P/D057Xa/fdb+9b558qiPcRS/QK9RCHvqATtBXNEQjRNBP67mFrZf2G3toj+0fG6tt1T3P0FbZ4S+xocwD</latexit>
qv(x) =
x↵
(1 x) (1 +
p
x + x)
B(↵ + 1, + 1) + B(↵ + 3/2, + 1) + B(↵ + 2, + 1)
: beta-function
B(i, j)
<latexit sha1_base64="21L9iKzfhLn/lpdw4rNnqmdi5e0=">AAACt3icdVFda9swFJW9deu8r3R73MtlYSOBLLXNmjWMjsJg7LGBpi1EtlEUORGxZFeSS4LxH9k/27+ZnGTQjO6C0NG5515J506LjGvj+78d99HjgydPD595z1+8fPW6dfTmSuelomxM8yxXN1OiWcYlGxtuMnZTKEbENGPX0+X3Jn99x5Tmubw064JFgswlTzklxlJJ6xemCx6HcAZYlyKpsCzP/DpudntQAgRZ1TXgVBFajTqW7mFRxmEXPsFoq/hxWd/j6wprPhckGcVhjXs9/PVhXXMjlybx4wBmK8A019CkYdWF2+Sus+omrbbfD4aDYRiC3/c3YcFgeHpyMoBgx7TRLi6SI+cAz3JaCiYNzYjWk8AvTFQRZTjNWO3hUrOC0CWZs4mFkgimo2pjYg0fLDODNFd2SQMb9n5FRYTWazG1SkHMQv+ba8iHcpPSpKdRxWVRGibp9qK0zMDk0EwEZlwxarK1BYQqbt8KdEGs38bOzdtrtWlOVVSxkpJs70OWsjNa1p7nWeP+ugP/B1dhPxj0/dHn9vm3nYWH6B16jzooQF/QOfqJLtAYUQc5H51jx3eHbuKm7mIrdZ1dzVu0F+7tHyo+0X4=</latexit>
2
=
⌫max
X
⌫=0
Q(⌫, µ2
) QFT(⌫, µ2
)
2
Q
, QFT(⌫, µ2
) =
Z 1
0
dx cos(⌫x)qv(x)
PRELIMINARY
PDF results
Conclusions
Summary & Outlook
‣ Lattice QCD via pseudo-PDF framework: in good position to give reliable insight on nucleon PDFs
‣ Distillation: valuable alternative to standard smearing techniques
‣ controllable statistical uncertainties and excited state effects
‣ Some stretch between lattice and phenomenological -dependence exists:
‣ lattice artifacts finite volume and lattice spacing, non-physical simulations
‣ parametrization of PDFs be systematic: try different approaches, compare with other lattice evaluations
On the horizon:
‣ results from two other ensembles, one at almost physical pion mass study volume effects, remove systematics
‣ plans for analyzing ensembles with smaller lattice spacing continuum extrapolation
‣ helicity, transversity distributions & GPDs on the way!
‣ coming soon: disconnected diagrams
x
→
→
→
→
Conclusions
Summary & Outlook
‣ Lattice QCD via pseudo-PDF framework: in good position to give reliable insight on nucleon PDFs
‣ Distillation: valuable alternative to standard smearing techniques
‣ controllable statistical uncertainties and excited state effects
‣ Some stretch between lattice and phenomenological -dependence exists:
‣ lattice artifacts finite volume and lattice spacing, non-physical simulations
‣ parametrization of PDFs be systematic: try different approaches, compare with other lattice evaluations
On the horizon:
‣ results from two other ensembles, one at almost physical pion mass study volume effects, remove systematics
‣ plans for analyzing ensembles with smaller lattice spacing continuum extrapolation
‣ helicity, transversity distributions & GPDs on the way!
‣ coming soon: disconnected diagrams
x
→
→
→
→
Thank you
Bonus!
(Bonus!) Matrix elements
Ensuring ground state dominance
i) Plateau method
0.695
0.700
0.705
0.710
0.715 Pz = 1 , z3 = 1
tsep = 4a
tsep = 6a
tsep = 8a
tsep = 10a
tsep = 12a
tsep = 14a Plateau fits
°8 °6 °4 °2 0 2 4 6 8
[tins ° tsep/2]/a
0.210
0.212
0.214
0.216
0.218
Pz = 1 , z3 = 4
4 6 8 10 12 14
tsep/a
Re[R(P
z
,
z
3
)]
Ratio of 3pt/2pt functions:
<latexit sha1_base64="B0WpVQZDUMfB2zKuvzkTsak6BfQ=">AAACTHicdZBLSwMxFIUz9V1fVZdugkVQkCHTsVYRoeDGZRWrQluGTJrRYOZBckeow/xANy7c+SvcuFBEMK0t+LwQcjj3u3kcP5FCAyGPVmFsfGJyanqmODs3v7BYWlo+03GqGG+yWMbqwqeaSxHxJgiQ/CJRnIa+5Of+9WG/f37DlRZxdAq9hHdCehmJQDAKxvJK7GSj4d1u3XruPniZ5km+ZXYR6XwTH+B2oCjLDr2srULsJpCPYPyLzkdYZYQNic3cK5WJXXEdt+ZiYpNKbbvqGFHd2yG1XezYZFBlNKyGV3pod2OWhjwCJqnWLYck0MmoAsEkz4vt1BxM2TW95C0jIxpy3ckGYeR43ThdHMTKrAjwwP06kdFQ617oGzKkcKV/9vrmX71WCsFux3w2SYFH7POiIJUYYtxPFneF4gxkzwjKlDBvxeyKmgDB5F80IYx+iv8XZxXbqdrkeLtcrw/jmEaraA1tIAfVUB0doQZqIobu0BN6Qa/WvfVsvVnvn2jBGs6soG9VmPwA/a+z/g==</latexit>
R(Pz, z3; tsep, tins) =
C3pt(Pz, z3; tsep, tins)
C2pt(Pz, tsep)
‣ for each , perform constant fits for multiple ranges
‣ decrease each fit range by one point on each side
‣ best fit: longest for which
tsep
χ2
≤ 0.9
(Bonus!) Matrix elements
Ensuring ground state dominance
0.75
0.80
0.85
0.90
0.95
Pz = 3 , z3 = 0
ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a
Plateau fits Summ. linear
0.425
0.450
0.475
0.500
0.525
0.550
0.575
Pz = 3 , z3 = 2
0.08
0.09
0.10
0.11
0.12
0.13 Pz = 3 , z3 = 5
°8 °6 °4 °2 0 2 4 6 8
[tins ° ts/2]/a
0.005
0.010
0.015
0.020
0.025
Pz = 3 , z3 = 8
4 6 8 10 12 14
ts/a
4 6 8
tlow
s /a
Re[R(P
z
,
z
3
)]
0.022
0.023
0.024
0.025
0.026
Pz = 1 , z3 = 1
ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a
Plateau fits Summ. linear
0.033
0.034
0.035
0.036
0.037
0.038
0.039
Pz = 1 , z3 = 2
0.024
0.025
0.026
0.027
0.028
0.029 Pz = 1 , z3 = 5
°8 °6 °4 °2 0 2 4 6 8
[tins ° ts/2]/a
0.0085
0.0090
0.0095
0.0100
0.0105
0.0110
Pz = 1 , z3 = 8
4 6 8 10 12 14
ts/a
4 6 8
tlow
s /a
Im[R(P
z
,
z
3
)]

More Related Content

Similar to Lattice QCD study of nucleon parton distribution functions

Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Anubhav Jain
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...aimsnist
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATKAnders Blom
 
Superconducting qubits for quantum information an outlook
Superconducting qubits for quantum information an outlookSuperconducting qubits for quantum information an outlook
Superconducting qubits for quantum information an outlookGabriel O'Brien
 
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...promitac
 
CDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networksCDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networksMarco Antoniotti
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Ruo-Qian (Roger) Wang
 
variational bayes in biophysics
variational bayes in biophysicsvariational bayes in biophysics
variational bayes in biophysicschris wiggins
 
NIST-JARVIS infrastructure for Improved Materials Design
NIST-JARVIS infrastructure for Improved Materials DesignNIST-JARVIS infrastructure for Improved Materials Design
NIST-JARVIS infrastructure for Improved Materials DesignKAMAL CHOUDHARY
 
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...Liqiang Lu
 
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...npaulson
 
Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Anubhav Jain
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...Stephan Irle
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...Jorge Quintanilla
 
Nucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDNucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDChristos Kallidonis
 
Morgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distMorgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distddm314
 

Similar to Lattice QCD study of nucleon parton distribution functions (20)

Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...Software tools, crystal descriptors, and machine learning applied to material...
Software tools, crystal descriptors, and machine learning applied to material...
 
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
How to Leverage Artificial Intelligence to Accelerate Data Collection and Ana...
 
Webinar about ATK
Webinar about ATKWebinar about ATK
Webinar about ATK
 
Superconducting qubits for quantum information an outlook
Superconducting qubits for quantum information an outlookSuperconducting qubits for quantum information an outlook
Superconducting qubits for quantum information an outlook
 
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...
Promita Chakraborty Dissertation (Copyright 2014) -- A Computational Framewor...
 
CDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networksCDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networks
 
Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...Numerical and analytical studies of single and multiphase starting jets and p...
Numerical and analytical studies of single and multiphase starting jets and p...
 
variational bayes in biophysics
variational bayes in biophysicsvariational bayes in biophysics
variational bayes in biophysics
 
Kent_2007
Kent_2007Kent_2007
Kent_2007
 
NIST-JARVIS infrastructure for Improved Materials Design
NIST-JARVIS infrastructure for Improved Materials DesignNIST-JARVIS infrastructure for Improved Materials Design
NIST-JARVIS infrastructure for Improved Materials Design
 
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
 
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
Computationally Efficient Protocols to Evaluate the Fatigue Resistance of Pol...
 
Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...Introduction (Part I): High-throughput computation and machine learning appli...
Introduction (Part I): High-throughput computation and machine learning appli...
 
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice ComputationsUCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
SWCNT Growth from Chiral and Achiral Carbon Nanorings: Prediction of Chiralit...
 
Crystalography
CrystalographyCrystalography
Crystalography
 
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
New Broken Time-reversal Symmetry Superconductors: Theoretical Constraints on...
 
Nucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCDNucleon valence quark distribution functions from Lattice QCD
Nucleon valence quark distribution functions from Lattice QCD
 
Morgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distMorgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 dist
 

More from Christos Kallidonis

The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...Christos Kallidonis
 
Nucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDANucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDAChristos Kallidonis
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDChristos Kallidonis
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDChristos Kallidonis
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDChristos Kallidonis
 
Hyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDHyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDChristos Kallidonis
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDChristos Kallidonis
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDChristos Kallidonis
 

More from Christos Kallidonis (9)

The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...The nucleon electromagnetic form factors at high momentum transfer from Latti...
The nucleon electromagnetic form factors at high momentum transfer from Latti...
 
Nucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDANucleon TMD Contractions in Lattice QCD using QUDA
Nucleon TMD Contractions in Lattice QCD using QUDA
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
Introduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCDIntroduction to Hadron Structure from Lattice QCD
Introduction to Hadron Structure from Lattice QCD
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCD
 
Hyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCDHyperon and charm baryon axial charges from Lattice QCD
Hyperon and charm baryon axial charges from Lattice QCD
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 

Recently uploaded

PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravitySubhadipsau21168
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Jshifa
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 

Recently uploaded (20)

PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified Gravity
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 

Lattice QCD study of nucleon parton distribution functions

  • 1. Christos Kallidonis JLab Cake Seminar | Feb. 8, 2021 The Nucleon Parton Distribution Functions from Lattice QCD An exploratory study of distillation in the pseudo-PDF framework
  • 2. Outline lattice evaluation PDF results summary & outlook theoretical framework intro & motivation HadStruct Collaboration Robert Edwards, C.K., Jianwei Qiu, David Richards, Frank Winter [a] Balint Joó [b] Carl Carlson, Colin Egerer, Tanjib Khan, Christopher Monahan, Kostas Orginos, Eloy Romero [c] Wayne Morris, Anatoly Radyushkin [d] Joe Karpie [e] Savvas Zafeiropoulos [f] Yan-Qing Ma [g] [a] Jefferson Lab, [b] Oak Ridge, [c] William & Mary, [d] Old Dominion University, [e] Columbia University, [f] Aix Marseille University, [g] Peking University
  • 3. How can we study hadron structure? • Hadrons are complicated systems made of quarks, antiquarks, gluons ( • Dynamics of partons encoded in e.g.: Form factors Parton distribution functions (PDFs) d A. Scapellato (Adam Mickiewicz University) Nucleon PDFs and GPDs from lattice QCD Introduction Motivation - why the PDFs? } Generalized Parton Distributions (GPDs) Transverse-momentum dependent (TMD) PDFs complement 3D picture of hadrons Parton Distribution Functions (PDFs): ‣ part of ongoing efforts for deep understanding of internal quark and gluon structure of hadrons ‣ number density of “partons” with a longitudinal momentum fraction of the nucleon’s momentum 1D object, necessary in 3D imaging of hadrons ‣ accessible in deep inelastic and semi-inclusive deep inelastic scattering x → Important LHC applications ‣ predictions of various cross sections ‣ W-boson mass ‣ Strong coupling constant ‣ Higgs boson couplings and cross-sections (probe BSM physics) Gao et.al., arXiv: 1709.04922
  • 4. Introduction Motivation - why on the lattice? Hadrons have an immensely rich composition: Experimental extraction of information becomes more complex the deeper we look Accessing PDFs from experiments is an intricate procedure Still, relatively good precision exists for unpolarized PDFs Kovarik et.al., arXiv: 1905.06957 7 x*f(x,Q) x CT18 at 2 GeV s g/5 u d – d – u c 0.0 0.5 1.0 1.5 2.0 10 -6 10 -4 10 -3 10 -2 10 -1 0.2 0.5 0.9 x*f(x,Q) x CT18 at 100 GeV s g/5 u d – d – u c b 0.0 0.5 1.0 1.5 2.0 10 -6 10 -4 10 -3 10 -2 10 -1 0.2 0.5 0.9 x,Q) CT18Z at 2 GeV s g/5 u d – d – 1.0 1.5 2.0 x,Q) CT18Z at 100 GeV s g/5 u d – d – 1.0 1.5 2.0 Hou et.al. arXiv: 1912.10053 Lattice Evaluation ‣ PDFs: “hot” topic, deserve theoretical attention ‣ unpolarized PDFs benchmark quantity ‣ transversity PDFs not well constrained ‣ GPDs and TMDs even more difficult to access ‣ first principles calculation →
  • 5. PDFs on the lattice pseudo-PDF framework Unpolarized PDF: non-local matrix element on the light-cone in Minkowski space <latexit sha1_base64="FJ8sLWusYBA9S14q/L9CMSzijNI=">AAACbHicdVHdbtMwGHXC31Z+1gEXoAnJogIlGq2Sai3rBVIlbrhCRaLrpLqpHNfprDlOZjuolZervSF3PAI3PANOGiRA8EmWj8/5jj77OM45UzoIvjnurdt37t7b22/df/Dw0UH78PGZygpJ6JRkPJPnMVaUM0GnmmlOz3NJcRpzOosv31f67AuVimXis97mdJHitWAJI1hbatm+ufI2PnwHERN6abp2S/S2jEwDIEokJmaFNizqluYE5aykkemyzSQ6tmS3RByLNafwozfxr1GMpUG5YqVXO3y0xmmKo+PZ7vwm8CvVC/zrqh/J2rtsd4JeOBqO+n0Y9IK6LBiOTgeDIQwbpgOamizbX9EqI0VKhSYcKzUPg1wvDJaaEU7LFioUzTG5xGs6t1DglKqFqcMq4SvLrGCSSbuEhjX7u8PgVKltGtvOFOsL9bdWkf/S5oVOTheGibzQVJDdoKTgUGewSh6umKRE860FmEhm7wrJBbbxavs/LRvCr5fC/4Ozfi8c9IJPJ53xuIljDxyBl8ADIXgLxuADmIApIOC7c+A8c547P9yn7pH7YtfqOo3nCfij3Nc/ARkpucQ=</latexit> q(x) = Z 1 1 d⇠ 4⇡ e ixP + ⇠ hN(P)| ¯(⇠ ) + W(⇠ , 0) (0)|N(P)i Inaccessible on the lattice! <latexit sha1_base64="QxkCXaXXpq/dgqIIFLlU2fXxLRI=">AAACD3icdZDLSsNAFIYn9VbrLerSzWBRXJWk2touhIIblxXsBZq2TKaTduhkEmcmhRLyBm58FTcuFHHr1p1v47SNoKI/DPx85xzOnN8NGZXKsj6MzNLyyupadj23sbm1vWPu7jVlEAlMGjhggWi7SBJGOWkoqhhph4Ig32Wk5Y4vZ/XWhAhJA36jpiHp+mjIqUcxUhr1zeNJL3ZCP4EX0PEEwvGkZ0EN4KR3msSOvBUqLiZJ38xbBbtarhaL0CpYc2lTrlZKpTK0U5IHqep9890ZBDjyCVeYISk7thWqboyEopiRJOdEkoQIj9GQdLTlyCeyG8/vSeCRJgPoBUI/ruCcfp+IkS/l1Hd1p4/USP6uzeBftU6kvEo3pjyMFOF4sciLGFQBnIUDB1QQrNhUG4QF1X+FeIR0LEpHmNMhfF0K/zfNYsEuFazrs3ytlsaRBQfgEJwAG5yDGrgCddAAGNyBB/AEno1749F4MV4XrRkjndkHP2S8fQIA1Jyr</latexit> v± = v0 ± v3 p 2 : light-cone coordinates ξ+ , ξ− x0 x3 ξ+ ξ− light-cone distances shrink to the origin in Euclidean space-time Methods for accessing -dependence on the lattice: ‣ hadronic tensor ‣ auxiliary quarks ‣ “good lattice cross sections” ‣ “OPE without OPE” ‣ quasi-distributions ‣ pseudo-distributions x K.F. Liu et.al. arXiv: hep-ph/9306299 U. Aglietti et.al. arXiv: hep-ph/9806277, W. Detmold et al. arXiv: hep-lat/0507007, V. Braun et. al. arXiv: 0709.1348 Y-Q. Ma and J. Qiu arXiv: 1404.6860, 1412.2688, 1709.03018 A.J. Chambers et.al. arXiv: 1703.01153 X. Ji arXiv: 1305.1539 A. Radyushkin arXiv: 1705.01488, 1612.05170, 1710.08813, 1711.06031, 1801.02427, 1912.04244 Review: K. Cichy, M. Constantinou arXiv: 1811.07248
  • 6. PDFs on the lattice pseudo-PDF framework Matrix element in Euclidean space: Lorentz decomposition <latexit sha1_base64="E0sa7DU94HGbw6Z524UrPbuqsVc=">AAACN3icdVDLSgMxFM34tr6qLt0Ei1BRysyg1S4UwY0bpYJVoVPLnTRtg5nMkGSEduhfufE33OnGhSJu/QPTOj7RA4HDOeeSe48fcaa0bd9ZQ8Mjo2PjE5OZqemZ2bns/MKpCmNJaIWEPJTnPijKmaAVzTSn55GkEPicnvmX+33/7IpKxUJxojsRrQXQEqzJCGgj1bNHhxce8KgN+fJ6dxXvYLecCtgLQLcJ8OSwl/dEvN69cFfxGna7aeDTP/ry69mcXXBKxZLrYrtgD2BIsbS9uVnETqrkUIpyPXvrNUISB1RowkGpqmNHupaA1Ixw2st4saIRkEto0aqhAgKqasng7h5eMUoDN0NpntB4oH6fSCBQqhP4JtnfVf32+uJfXjXWze1awkQUayrI+0fNmGMd4n6JuMEkJZp3DAEimdkVkzZIINpUnTElfFyK/yenbsEpFuzjjdzeblrHBFpCyyiPHLSF9tABKqMKIuga3aNH9GTdWA/Ws/XyHh2y0plF9APW6xtvuqqJ</latexit> M↵ (P, z) = 2P↵ M(⌫, z2 ) + 2z↵ N(⌫, z2 ) leading twist + 𝒪(z2 Λ2 QCD) higher twist kinematics <latexit sha1_base64="Z4rhREW/zCPOGmLgFgE6s62SfT8=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxCBQlJsbFdKAURXEawD2hDmEwn7dDJg5mJ0IZ+iRsXirj1U9z5N04fgoqey4XDOfcyd46fMCqkaX5ouZXVtfWN/GZha3tnt6jv7bdEnHJMmjhmMe/4SBBGI9KUVDLSSThBoc9I2x9dzfz2PeGCxtGdHCfEDdEgogHFSCrJ04sOvIDl61NTleNNTjy9ZBpW3a5XKtA0zDkUseu1atWG1lIpgSUcT3/v9WOchiSSmCEhupaZSDdDXFLMyLTQSwVJEB6hAekqGqGQCDebHz6Fx0rpwyDmqiMJ5+r3jQyFQoxDX02GSA7Fb28m/uV1UxnU3IxGSSpJhBcPBSmDMoazFGCfcoIlGyuCMKfqVoiHiCMsVVYFFcLXT+H/pFUxLNswb89KjctlHHlwCI5AGVjgHDTADXBAE2CQggfwBJ61ifaovWivi9Gcttw5AD+gvX0CW72Q9g==</latexit> P = (E, 0, 0, Pz) <latexit sha1_base64="o9teCzI1S8UPfzt52COtMK7Ui28=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxCBQlJtbFdKAU3LivYB7QhTKaTdujkwcxEaEO/xI0LRdz6Ke78GydtBRU9lwuHc+5l7hwvZlRI0/zQciura+sb+c3C1vbOblHf22+LKOGYtHDEIt71kCCMhqQlqWSkG3OCAo+Rjje+zvzOPeGCRuGdnMTECdAwpD7FSCrJ1YtTeAnL5mlWU/fsxNVLpmHV7XqlAk3DnEMRu16rVm1oLZUSWKLp6u/9QYSTgIQSMyREzzJj6aSIS4oZmRX6iSAxwmM0JD1FQxQQ4aTzw2fwWCkD6EdcdSjhXP2+kaJAiEngqckAyZH47WXiX14vkX7NSWkYJ5KEePGQnzAoI5ilAAeUEyzZRBGEOVW3QjxCHGGpsiqoEL5+Cv8n7Yph2YZ5e15qXC3jyINDcATKwAIXoAFuQBO0AAYJeABP4Fmbao/ai/a6GM1py50D8APa2ydRY5Du</latexit> z = (0, 0, 0, z3) <latexit sha1_base64="Vxs8AHWbh2U5ZSw+rgEQCy/P064=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0iKje1BKXjxWMF+YBvKZLttl242YXcjlNB/4cWDIl79N978N27bCCr6YODx3gwz84KYM6Ud58PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kp0AFOVM0KZmmtNOLCmEAaftYHI199v3VCoWiVs9jakfwkiwISOgjXTXAx6PAV9gp18sObZb82rlMnZsZwFDvFq1UvGwmykllKHRL773BhFJQio04aBU13Vi7acgNSOczgq9RNEYyARGtGuogJAqP11cPMMnRhngYSRNCY0X6veJFEKlpmFgOkPQY/Xbm4t/ed1ED6t+ykScaCrIctEw4VhHeP4+HjBJieZTQ4BIZm7FZAwSiDYhFUwIX5/i/0mrbLue7dycleqXWRx5dISO0Sly0Tmqo2vUQE1EkEAP6Ak9W8p6tF6s12VrzspmDtEPWG+fkqmQMg==</latexit> ↵ = 0 vector current: unpolarized PDFs <latexit sha1_base64="6W/Z/tWVyshbFjpuWYSsvssMUeM=">AAACQXicdVDNa9swHJW7ry7dR7oedxENAxtKkEObNhRKYZddNlJYmkCUhZ8VJRGVZFeSC4mbf22X/Qe77b7LDhtj110mpx5sZXsgeLwPJL0kk8I6Qj4FG3fu3rv/YPNhbevR4ydP69vPzm2aG8Z7LJWpGSRguRSa95xwkg8yw0ElkveTi5el37/ixopUv3WLjI8UzLSYCgbOS+P64PU7CjKbQ9jdW0aY8stcXGEqQc8kx2/CbnRNEzAFzaxYhcuIzkApqDq4Hy73SFR6IYmuyzQ16yY9HtcbpBl32p1WC5MmWcOTdufo4KCN40ppoArdcf0jnaQsV1w7JsHaYUwyNyrAOMEkX9VobnkG7AJmfOipBsXtqFgvsMIvvDLB09T4ox1eq382ClDWLlTikwrc3N72SvFf3jB306NRIXSWO67ZzUXTXGKX4nJOPBGGMycXngAzwr8VszkYYM6PXvMj/P4p/j85bzXjdpOc7TdOT6o5NtFztItCFKNDdIpeoS7qIYbeo8/oK/oWfAi+BN+DHzfRjaDq7KC/EPz8Bap4ro0=</latexit> M↵ (P, z) ⌘ hN(P)| ¯(z) ↵ W(z, 0) (0)|N(P)i Wilson line boosted nucleon states <latexit sha1_base64="zhH9sclxsIgEnWt4RQGNhATEj+I=">AAAC13icdVFdi9NAFJ1EV9f4sV199GWwCBXckkS3bh+UBUF8EavY3ZUmDZPJpB06mYSZibaG4Jv46t/xn/hvvOmmYqVeGOZw7se5cyYuBNfGdX9Z9pWre9eu799wbt66feegc3j3TOelomxMc5Gri5hoJrhkY8ONYBeFYiSLBTuPFy+b/PknpjTP5QezKliYkZnkKafEABV1fgYZMXNKRPWm7gWyfPwlejL1H+HnOODSRNWRV08rr8bJErNpxaECL+s/PaO6t9x0BO/5bG6IUvlnvLMARqaKUJhW+UHB640CXKlZgUwLcNKogNpRK4d37xh1um7fGw6Gvo/dvrsOAIPhyfHxAHst00VtjKJDay9IclpmTBoqiNYTzy1MWBFlOBWsdoJSs4LQBZmxCUBJMqbDam1yjR8Ck+A0V3CkwWv2746KZFqvshgqm3X1v7mG3JWblCY9CSsui9IwSS+F0lJgk+Pmx3DCFaNGrAAQqjjsiumcgJMG/tXZGrUeTlVYsRLs2noQUOD+onYcB4zbuIP/D878vjfou++edk9ftBbuo/voAeohDz1Dp+g1GqExoha2XllvrZH90f5qf7O/X5baVttzD22F/eM3XiPhiQ==</latexit> M(⌫, z2 3) = Z 1 1 dxei⌫x P(x, z2 3) ) P(x, z2 3) = 1 2⇡ Z 1 1 d⌫e i⌫x M(⌫, z2 3) pseudo-PDF FT: Along constant line z3 <latexit sha1_base64="4hHFANeHviVkkMWgywy+i0Pv3qI=">AAACT3icdVBNj9JAGJ6i7EJ1d0GPXiYSE0gMabsLwmENiRePmMhHQmvzdpjChOmHM1OFbfo//DVe9erRX+LNOGBNls36JJM8eZ533o8nSDmTyrJ+GpUHD6snp7W6+ejx2flFo/lkKpNMEDohCU/EPABJOYvpRDHF6TwVFKKA01mwebP3Z5+okCyJ36tdSr0IVjELGQGlJb/hfGxvO/gau5xFfn7jX7qCrdYKhEg+Y6twI1BrAjwfF+3tS21/cDp+o2V17WF/6DjY6loHaNIfDnq9PrZLpYVKjP2mUXWXCckiGivCQcqFbaXKy0EoRjgtTDeTNAWygRVdaBpDRKWXH44r8AutLHGYCP1ihQ/q7R85RFLuokBX7peVd729eJ+3yFQ48HIWp5miMfk7KMw4VgneJ4WXTFCi+E4TIILpXTFZgwCidJ7mUatDcyK8nGY6rKODtBQK2BSmaerg/qWD/0+mTtfud613V63R6zLCGnqGnqM2stErNEJv0RhNEEFf0Ff0DX03fhi/jN+VsrRilOQpOkKl/geCUbIZ</latexit> q(x) = lim z3!0 P(x, z2 3) PDF (ignoring divergences) : “Ioffe time” <latexit sha1_base64="D8xd+izXgjmnEW04K1HgA1thkBc=">AAACAHicbVDLSgMxFM34rPVVdeHCTbAIroaZVlvdSMGNywr2AZ0yZNJMG5pJxiRTaEs3/oobF4q49TPc+Tem7YBaPXDhcM693HtPEDOqtON8WkvLK6tr65mN7ObW9s5ubm+/rkQiMalhwYRsBkgRRjmpaaoZacaSoChgpBH0r6d+Y0CkooLf6WFM2hHqchpSjLSR/NyhxxPokfuEDmDVH3m4IzQc+UU/l3fs83LhslSEju3M8E3clORBiqqf+/A6AicR4RozpFTLdWLdHiOpKWZkkvUSRWKE+6hLWoZyFBHVHs8emMATo3RgKKQpruFM/TkxRpFSwygwnRHSPbXoTcX/vFaiw4v2mPI40YTj+aIwYVALOE0DdqgkWLOhIQhLam6FuIckwtpkljUhuIsv/yX1gu2WbOf2LF+5SuPIgCNwDE6BC8qgAm5AFdQABhPwCJ7Bi/VgPVmv1tu8dclKZw7AL1jvXxahlhI=</latexit> ⌫ ⌘ Pz · z3 B. Ioffe, Phys.Lett. 30B, 123 (1969) Ioffe-time distributions <latexit sha1_base64="7/9HqRNqJrcweS2cOYDmvTJVjbE=">AAACS3icdVBNa9swGJbTdeuyr6w77iIWBjaUIKdr1lAohV16WclgaQpRal4rSioqyUaSB6mb/7fLLrvtT/TSQ0fpoXKSwTa2FwSPng+k90lzKawj5EdQW3uw/vDRxuP6k6fPnr9ovNw8tllhGO+zTGbmJAXLpdC874ST/CQ3HFQq+SA9/1Dpgy/cWJHpz26W85GCqRYTwcB5KmmkVIE7YyDLj/OQ6mLrItk+bUeYWqEwlaCnkuOjsJdcRJc0BVPS3Ip56F0RnYJScErwoLpukaiSQhJdLu3ULMJ0L2k0SSvudrrtNiYtshgPOt3dnZ0OjldME62mlzS+03HGCsW1YxKsHcYkd6MSjBNM8nmdFpbnwM5hyocealDcjspFF3P81jNjPMmMP9rhBft7ogRl7Uyl3lltbv/WKvJf2rBwk91RKXReOK7Z8qFJIbHLcFUsHgvDmZMzD4AZ4f+K2RkYYM7XX/cl/NoU/x8ct1txp0U+vWse7K/q2ECv0RsUohi9RwfoEPVQHzH0FV2hG/Qz+BZcB7fB3dJaC1aZV+iPqa3fA1yOsTQ=</latexit> M(⌫, z2 3) ⇠ hN(Pz)| ¯(z3) 0 W(z3, 0) (0)|N(Pz)i Lorentz invariant! , : Lorentz scalars ν z3 features: ‣ standard log. divergence ‣ power divergence (Wilson line) ‣ mult. renormizable to all orders in PT <latexit sha1_base64="BM6nsJQsx4bt4aKPHsCNCVauZq4=">AAACM3icdVDLSgMxFM1Uq3V8tQpu3ASLUEHKTLW13UjBjRuhgn1AO5ZMmmlDM5khyQh17M+41a0fI+7Erf9g+hCs6IHA4Zx7b+49bsioVJb1aiSWlpMrq6k1c31jc2s7ndlpyCASmNRxwALRcpEkjHJSV1Qx0goFQb7LSNMdXkz85h0Rkgb8Ro1C4vioz6lHMVJa6qb3Oj5SA4xYfDXOdXh0fN89uS0cddNZK29XSpVCAVp5awpNSpVysViC9lzJgjlq3YyR7PQCHPmEK8yQlG3bCpUTI6EoZmRsdiJJQoSHqE/amnLkE+nE0wPG8FArPegFQj+u4FT92REjX8qR7+rKybrytzcR//LakfLKTkx5GCnC8ewjL2JQBXCSBuxRQbBiI00QFlTvCvEACYSVzsxcGDUdjoUTk0jHtXCQljyBhmPTNHVw3+nA/0mjkLdLeev6NFs9n0eYAvvgAOSADc5AFVyCGqgDDB7AI3gCz8aL8Wa8Gx+z0oQx79kFCzA+vwAoiakW</latexit> M(⌫, z2 3) T. Ishikawa et.al. arXiv: 1609.02018 J. W. Chen et. al. arXiv: 1707.03107
  • 7. PDFs on the lattice pseudo-PDF framework Steps towards -dependence x i) cancel divergences - renormalization reduced-ITD iii) reconstruction of -dependence x F. T. in -space: ν <latexit sha1_base64="ec+jDU0k1TeZXl/5C2j/fnt2hyI=">AAACWnicdVBdSxtBFJ1sa6urbWPtW18GgxDBht3QxOQhEPCljwqNCtlNmJ3c1SGzs9v5kIRhf01/TV/tU8Ef00lcwZR6YOBw7rn3zj1JwZnSQfCn5r16vfXm7faOv7v37v2H+v7HS5UbSWFEc57L64Qo4EzASDPN4bqQQLKEw1UyP1vVr+5AKpaL73pZQJyRG8FSRol20rQ+iDKibynh9qJsRsKcRJmZtI/xAEdM6Kn9EpYTG5azBYaJZc6AF+WP5qKyTeuNoBX2u/12GwetYA1Huv1ep9PFYaU0UIXz6X5tK5rl1GQgNOVEqXEYFDq2RGpGOZR+ZBQUhM7JDYwdFSQDFdv1nSU+csoMp7l0T2i8Vp93WJIptcwS51xdpf6trcT/1cZGp73YMlEYDYI+LkoNxzrHq9DwjEmgmi8dIVQy91dMb4kkVLto/Y1R6+FUxhaMS3XjICelksxL3/ddcE/p4JfJZbsVdlrBxdfGcFhFuI0+o0PURCE6RUP0DZ2jEaLoJ/qF7tHv2oPneTve7qPVq1U9B2gD3qe/VIO0Yg==</latexit> Q(⌫, µ2 ) = Z 1 1 dxei⌫x q(x, µ2 ) <latexit sha1_base64="oT+0KHaIr/RM7hjHKLPJQjIX8Uw=">AAACaXicdVDLattAFB2rTZOoLzvdhGQz1BQcKEYytRMXAoFussgiKXUSsBQxGl8lg0cjZR7BRuin+jXJMt32JzpSVKhLe2Hg3HPuY+6Jc86U9ryHlvPs+dqL9Y1N9+Wr12/etjtb5yozksKEZjyTlzFRwJmAiWaaw2UugaQxh4t4/qXSL+5AKpaJb3qZQ5iSa8ESRom2VNQ+CVKibxJJ5sVXKIOPdUoJL87KXiCMzc3VYA8f4oAJHXlXPp4tcEAzVal4sYdvo7veoimL2l2v749H48EAe32vDgtG44PhcIT9humiJk6jTmstmGXUpCA05USpqe/lOiyI1IxyKN3AKMgJnZNrmFooSAoqLOqzS/zBMjOcZNI+oXHN/tlRkFSpZRrbyuoq9bdWkf/SpkYnB2HBRG40CPq0KDEc6wxXHuIZk0A1X1pAqGT2r5jeEEmotk67K6Pq4VSGBRjr6spBlqp8L13Xtcb9dgf/H5wP+v6w75196h59bizcQLvoPeohH+2jI3SMTtEEUfQd3aNH9KP10+k4287OU6nTanreoZVwur8A/325mA==</latexit> Re Q(⌫, µ2 ) = Z 1 0 dx cos(⌫x)qv(x, µ2 ) <latexit sha1_base64="7nvsVyySzfeYOANVvx1Y3OQSdK0=">AAACbXicdVBdS+NAFJ1mddXsh3XFJ2UZtixbQUoSttUKguCLvlXYqtDEMJlOdOhkkp0PaQn5W/4XwVd99S84iRG2sl4YOPec+zH3RBmjUjnOXcP6sLD4cWl5xf70+cvX1ebatzOZaoHJEKcsFRcRkoRRToaKKkYuMkFQEjFyHk2OSv38hghJU/5HzTISJOiK05hipAwVNgd+gtR1LNAkP0kKf6dKMWL5adH2uTa5vvS24QH0KVehc+nC8RT6kvJShdNt+DfMbzxZtKd1adhsOR233+t7HnQ6ThUG9Pp73W4PujXTAnUMwrXGoj9OsU4IV5ghKUeuk6kgR0JRzEhh+1qSDOEJuiIjAzlKiAzy6vQC/jTMGMapMI8rWLH/duQokXKWRKayvEy+1Uryf9pIq3gvyCnPtCIcvyyKNYMqhaWPcEwFwYrNDEBYUPNXiK+RQFgZt+25UdVwLIKcaOPs3EGGKr0vbNs2xr26A98HZ17H7Xac09+tw/3awmWwCX6ANnDBLjgEx2AAhgCDW3APHsBj48nasLas7y+lVqPuWQdzYf16BtKku2E=</latexit> Im Q(⌫, µ2 ) = Z 1 0 dx sin(⌫x)qv2s(x, µ2 ) Inverse problem…! K. Orginos et.al. arXiv: 1706.05373 J. Karpie et. al. arXiv: 1710.08288 J. Karpie et. al. arXiv: 1807.10933 A. Radyushkin arXiv: 1705.01488 <latexit sha1_base64="ufDO2bwQ0PTVfOHwZZ1L74vdHXM=">AAAC8HicjVFNj9MwEHUCC0v46sKRi0WF1JVWlVPYsj0UrcSFC1KR6O5KTYgc12mtOk5kO0jd4P/BDXHl73Di3zDJBokiVjCSpfF7b8aeN2kphbGE/PD8Gzf3bt3evxPcvXf/wcPewaMzU1Sa8TkrZKEvUmq4FIrPrbCSX5Sa0zyV/DzdvG74849cG1Go93Zb8jinKyUywagFKOl9j3Jq15mmm/qtG0SqOrpMnn8YHeIpjiTP7CACjtWtilHZiGbJJWg6nbue+pTUkEyJc5EWq7U9jKzIufm/vlAM9yk56lr8W+kc7t5Jen0yDCfjyWiEyZC0Acl4cnJ8PMZhh/RRF7PkwNuLlgWrcq4sk9SYRUhKG9dUW8Ekd0FUGV5StqErvoBUUZgjrlv3HX4GyBJnhYajLG7R3ytqmhuzzVNQNjOYP7kG/Bu3qGx2EtdClZXlil09lFUS2wI3q8RLoTmzcgsJZVrAXzFbU7DVwsKDnVZtc6bjmlfg4c5AADXrd0EQgHG/3MHXJ2ejYTgekncv+qevOgv30RP0FA1QiF6iU/QGzdAcMW/iJd7aE772P/tf/K9XUt/rah6jnfC//QTi8OuL</latexit> M(⌫, z2 3) = ✓ M(Pzz3, z2 3) M(Pzz3, z2 3)|z3=0 ◆ ⇥ ✓ M(Pzz3, z2 3)|Pz=0,z3=0 M(Pzz3, z2 3)|Pz=0 ◆ <latexit sha1_base64="EarU8i0j3TGPacGrbQ6T+iUZP9o=">AAACe3icdZFdS8MwFIaz+l2/pl56ExyCiox2urldCANvvBEmOBXWWtIs1bA0LUkqbLX/zj/hX/BWbwXTWsGJHgicvO85J8kTP2ZUKst6qRgzs3PzC4tL5vLK6tp6dWPzWkaJwKSPIxaJWx9JwignfUUVI7exICj0GbnxR2e5f/NIhKQRv1LjmLghuuc0oBgpLXnVOydE6iEQaJReZHsOTw4n3tFdYx+eQkerOC18jFhu97yJdsuK7H/ryUv1/tTKMq9as+p2p9VpNKBVt4rQSavTbjZb0C6VGiij521U5pxhhJOQcIUZknJgW7FyUyQUxYxkppNIEiM8QvdkoFOOQiLdtACRwV2tDGEQCb24goX6syNFoZTj0NeV+d3lby8X//IGiQrabkp5nCjC8ddBQcKgimBOFQ6pIFixsU4QFlTfFeIHpPkpzd6cGlUMx8JNSaLZTT1IS/lPZKZpanDfdOD/yXWjbrfq1uVxrdstES6CbbAD9oANTkAXnIMe6AMMnsEreAPvlQ+jZhwYh1+lRqXs2QJTYTQ/AYmmwcA=</latexit> M(⌫, z2 3) = M(Pzz3, z2 3) M(Pzz3, z2 3)|Pz=0 renormalization V0 <latexit sha1_base64="V3t2LdZcGXusZQxUs9iZAc9pXKo=">AAACYXicdZDLattAFIbHatMmSi9OusxmqCnYUIzkNm68CBiaRTcFF2InxFLFaHxkDx5dmDkqOFO9UJ+m22SbF8nIcSEu7YEDP/+5zJwvLqTQ6Hk3DefJ051nz3f33P0XL1+9bh4cTnReKg5jnstcXcZMgxQZjFGghMtCAUtjCRfx8nNdv/gBSos8O8dVAWHK5plIBGdorah5FkhIsH0VTdqj6LpDT2mQKMaNX5kgZbjgTJqvVV27jj68t/m91/kZGStOvaoKlJgvsBM1W17XH/QHvR71ut46rOgPTo6P+9TfOC2yiVF00NgJZjkvU8iQS6b11PcKDA1TKLiEyg1KDQXjSzaHqZUZS0GHZn1uRd9ZZ0aTXNnMkK7dxxOGpVqv0th21ifov2u1+a/atMTkJDQiK0qEjD88lJSSYk5rdnQmFHCUKysYV8L+lfIFs7jQEna3Vq2XcxUaKC3CrYOsZREvK9d1Lbg/dOj/xaTX9ftd79vH1nC4QbhLjshb0iY++USG5AsZkTHh5Bf5TW7IbePO2XOazuFDq9PYzLwhW+Ec3QMavbcb</latexit> ✓ ZV (Pz) = 1 M(Pzz3, z2 3)|z3=0 ◆ valence quark q + q̄ ii) matching to light-cone ITDs 1-loop matching equation: evolution to common scale 1/z0 conversion to scheme MS light-cone ITD <latexit sha1_base64="2o+yCBDc1TlCsbx2scqzyN2Wt3c=">AAAC6XicdVFbaxNBFJ5drdb10lQffRkMQkpL2F3a2DwIwaL4oNCCaQOZzTI7mU2GzF6YixCH/RG+ia/+Hf+A/8bZi9CIHhj45jvnfHPmO0nJmVS+/8tx79zdu3d//4H38NHjJwe9w6fXstCC0CkpeCFmCZaUs5xOFVOczkpBcZZwepNsLur8zWcqJCvyT2pb0ijDq5yljGBlqbj3E2VYrVOBN+ZjNUC5PvmyCI/ga9jwBHNz1dIo03XiGCJbTAzCvFzjWMKL+F1lQlSyCrFcxf4igEuNTnb69S0BxGmq5ojnLRrY55pMK0sXVmuFswzHb4+DqjKnFRJstVZHjV6SmjfVXEf1GN39Q31va6K41/eHwXg0DkPoD/0mLBiNz8/ORjDomD7o4jI+dPbQsiA6o7kiHEs5D/xSRQYLxQinlYe0pCUmG7yicwtznFEZmcb2Cr60zBKmhbAnV7Bhb3cYnEm5zRJbWQ8r/87V5L9yc63S88iwvNSK5qR9KNUcqgLWO4RLJihRfGsBJoLZWSFZY+ufspv2dqQacSIiQ7Vdxs6HLFXvvfI8zxr3xx34f3AdDoPR0L867U8mnYX74Dl4AQYgAK/ABLwHl2AKiBM6Mwc7ibtxv7rf3O9tqet0Pc/ATrg/fgOsfukf</latexit> M(⌫, z2 ) = Q(⌫, µ2 ) + ↵sCF 2⇡ Z 1 0 du Q(u⌫, µ2 )  ln ✓ z2 µ2 e2 E +1 4 ◆ B[u] + L[u] A. Radyushkin arXiv: 1801.02427 J.-H.Zhang et. al. arXiv: 1801.03023 T. Izubuchi et. al. arXiv: 1801.3917
  • 8. Lattice evaluation Correlation functions: “Distillation” as a smearing method Smearing: Increase overlap of hadron interpolating fields with ground state Distillation: Smearing operator low-rank eigenvector representation → <latexit sha1_base64="LNf1EkghLGCuYHBLsx67coqgZvY=">AAACnXicdVFdixMxFM2Mrq7jqt0VffHBYBFaWMtMceuWZaEogg+yrGDbhaYd7mQy3TCZj00yZcsw4N/0D/g7TKezYEUvhNx77jk3yUmQC6606/607Hv39x483H/kPD548vRZ6/BoorJCUjammcjkVQCKCZ6yseZasKtcMkgCwaZB/GnTn66YVDxLv+t1zuYJLFMecQraQH7rB/mY3folWTFa3lbH9b6uqo7uYsJuCr7CRBWJX8bnXrW4wCs/7txxdddUCxLCstPIDITP8cSIJ1tcd8nZMTnD70gKgYBF3ygMgwhzwRD82JR+q+32vOFg2O9jt+fWYZLB8PTkZIC9BmmjJi79Q2uPhBktEpZqKkCpmefmel6C1JwKVjmkUCwHGsOSzUyaQsLUvKytqvBbg4Q4yqRZqcY1+qeihESpdRIYZgL6Wv3d24D/6s0KHZ3OS57mhWYp3R4UFQLrDG98xyGXjGqxNglQyc1dMb0GCVSb33F2RtXDqZyXrKAgdh5koEhCXDmOY4y7cwf/P5n0e96g53573x6NGgv30Sv0BnWQhz6gEfqCLtEYUfTLOrBeWC/t1/Zn+6t9saXaVqN5jnbCnv4Gl83K0Q==</latexit> ⇤~ x,~ y(t) ⌘ N X k=1 vk(~ x, t)v† k(~ y, t) = V (t)V † (t) , r2 vk = kvk <latexit sha1_base64="lLuBnZavVOmEY3iLkQOaidYwexs=">AAACWnicdVBdT9swFHXDxyBsUBhvvFhUk4o0VUlFO/qAVLEXHkGigNRElePegFU7CfYNoorya/Zr9ro9TeLHzA1BotO4kuXjc+6H74kyKQx63p+Gs7K6tv5hY9Pd+vhpe6e5u3dt0lxzGPFUpvo2YgakSGCEAiXcZhqYiiTcRLPvC/3mEbQRaXKF8wxCxe4SEQvO0FKT5unDpAi0okaV7eARePFUfsUjekqDs/TJSjVV3fOybOPRQ7t+2LxJs+V1/EF/0O1Sr+NVYUF/cNLr9alfMy1Sx8Vkt7EWTFOeK0iQS2bM2PcyDAumUXAJpRvkBjLGZ+wOxhYmTIEJi2rPkn6xzJTGqbYnQVqxbysKpoyZq8hmKob35l9tQf5PG+cYn4SFSLIcIeEvg+JcUkzpwjQ6FRo4yrkFjGth/0r5PdOMo7XWXWpVNec6LCDnTC4tZKlYs1npuq417tUd+j647nb8Xse7PG4Nh7WFG+SAHJI28ck3MiTn5IKMCCc/yE/yi/xuPDuOs+lsvaQ6jbrmM1kKZ/8vhLu1mA==</latexit> qsm(~ x, t) = ⇤~ x,~ y(t)q(~ y, t) <latexit sha1_base64="TFql/Z4y3xzWSgwX8jrRyFS5mAs=">AAAC63icdZFdb9MwFIadwGCEj3VwyY1FhdRJqErStawXSNXGBZdD0K2iSaMT1+msOh+znYkq8q/gbtotf4d7/g1uF9Z2giNZPnrPc47t13HBmVSu+9uyHzzcefR494nz9NnzF3uN/ZdnMi8FoUOS81yMYpCUs4wOFVOcjgpBIY05PY/nJ8v6+RUVkuXZV7UoaJjCLGMJI6CMFDV+BSmoCwK8GunouBVcUVJ91+/UAf6AA1pIxvNsUkFM9B34RUdVINkshcird7/eO7p1h33UkXcZeQdrWE9g44At0r+M/DXp60m8eZX7QztrtKMnZAONGk237fV7fd/HbttdhUl6/aNut4e9WmmiOk6jfWsnmOakTGmmCAcpx55bqLACoRjhVDtBKWkBZA4zOjZpBimVYbUyXuO3RpniJBdmZQqv1M2OClIpF2lsyOUL5P3aUvxXbVyq5CisWFaUimbk9qCk5FjlePmLeMoEJYovTAJEMHNXTC5AAFHmr52tUavhRIQVLY2DWw8yUiJgrh3HMcb9dQf/Pznz21637X4+bA4GtYW76DV6g1rIQ+/RAH1Cp2iIiHVofbOINbVT+4d9bd/corZV97xCW2H//AMpP+wQ</latexit> XB(~ x, t) = ✏abc S 1 2 3 (D1q1)a 1 (~ x, t)(D2q2)b 2 (~ x, t)(D1q3)c 3 (~ x, t) <latexit sha1_base64="9y2zSXOQS1TTlL6Rj9X+owRfsRM=">AAACYnicdZDRShtBFIYn21p11ZrUS70YDEKEEnaDSQ0iBKTFSwuNCWSXMDs5mwyZ2d3MzErDsk/k03ip3vZBOlm3YIoeGPj5/jNn5vxBwpnSjvNYsT583Pi0ubVt7+zufd6v1r7cqjiVFPo05rEcBkQBZxH0NdMchokEIgIOg2B+tfIHdyAVi6NfepmAL8g0YiGjRBs0rn5fjDNPCqxE3vDugGa/86/6FF9iTxA9o4RnP/JR/5V1Uchl7i8apTJwXK07Tbfb6bZa2Gk6RRnR6Z632x3slqSOyroZ1yob3iSmqYBIU06UGrlOov2MSM0oh9z2UgUJoXMyhZGRERGg/KzYN8cnhkxwGEtzIo0L+vpGRoRSSxGYztUW6n9vBd/yRqkOz/2MRUmqIaIvD4UpxzrGq/DwhEmgmi+NIFQy81dMZ0QSqk3E9tqoYjiVfgapSXFtIYNCSea5bdsmuH/p4PfFbavptpvOz7N6r1dGuIUO0TFqIBd9Qz10jW5QH1F0jx7QE3qu/LFsq2YdvLRalfLOAVor6+gvXTO4yA==</latexit> qsm(~ x, t) = F[U(~ x, t); ~ y]q(~ y, t) <latexit sha1_base64="HF5ZxH7U+Ine0XsBMepGzMSLNHI=">AAAC4HicdVFNj9MwEHUCC0v42C4cuVhUSK2WVkmhZXtYqRIXbiwS3S1qstHEdVq3zofsyYoqyp0b4srf4Vfwb3C7LdACI1l+em/ejD0T5VJodN0fln3r9sGdu4f3nPsPHj46qh0/vtBZoRgfskxmahSB5lKkfIgCJR/likMSSX4ZLd6s9MtrrrTI0g+4zHmQwDQVsWCAhgpr31t+CpGEq05Y+teclZ+qF+t7WVUNbNIz2vMnXCL8krcqbVFfF0lYzs+86qp8WfmSxzgehvPGthA297wn/gywnP9uQU+oMVz5E5huXa1tzl/u1r7bV2I6wyCs1d221+/1Ox3qtt11GNDrn3a7PeptmDrZxHl4bB34k4wVCU+RSdB67Lk5BiUoFEzyyvELzXNgC5jysYEpJFwH5XraFX1umAmNM2VOinTN/ukoIdF6mUQmMwGc6X1tRf5LGxcYnwalSPMCecpuGsWFpJjR1eroRCjOUC4NAKaEeStlM1DA0CzY2Sm1Ls5UUPKCgdz5kKFiBYvKcRwzuO106P/BRaftddvu+1f1wWAzwkPylDwjDeKR12RA3pJzMiTMalrvrJH10Y7sz/YX++tNqm1tPE/ITtjffgLAe+oM</latexit> r2 ~ x,~ y(t) = 6 ~ x~ y 3 X j=1 h Uj(~ x, t) ~ x+ĵ,~ y + U† j (~ x ĵ, t) ~ x ĵ,~ y i ”Standard” techniques: Gauge-covariant, based on 3D lattice Laplacian perambulators: <latexit sha1_base64="1Gh0B8X7KF3PjWMVVLalM+rUG+8=">AAACTXicdVBdSxtBFJ1N60fXr2gf+zI0CBE0zAaNyYMg+NKXgoUmCsm63J3MxiGzH8zcFcKSv9Ff46u+9tkf4puUzsa0GNEDMxzOuffO3BNmShpk7MGpfPi4tLyy+sldW9/Y3Kpu7/RMmmsuujxVqb4MwQglE9FFiUpcZlpAHCpxEY7PSv/iRmgj0+QnTjLhxzBKZCQ5oJWCKhsg5HUMon0M2B49ob2rwRBGpbL3/ao48Kb/zV69vINqjTW8TqvTbFLWYDNY0uq0j45a1JsrNTLHebDtLA2GKc9jkSBXYEzfYxn6BWiUXImpO8iNyICPYST6liYQC+MXs9WmdNcqQxql2p4E6Ux92VFAbMwkDm1lDHhtXnul+JbXzzFq+4VMshxFwp8finJFMaVlTnQoteCoJpYA19L+lfJr0MDRpukujJoN59ovRM5BLSxkpUjDeOq6rg3uXzr0fdJrNrxWg/04rJ225xGuki/kK6kTjxyTU/KNnJMu4eQXuSV35N757Tw6T86f59KKM+/5TBZQWfkLaACwSA==</latexit> ⌧(tf , t0) = V † (tf )M 1 (tf , t0)V (t0) elementals: <latexit sha1_base64="7Nuc1HuoPJnp5qRYba7d+cW7fpw=">AAACw3icfZHvi9MwGMfT6ulZT93pS98Eh7CDY7TVmxsqHKjgy4nu7mDtytMs3XJN05KkgxH67/g/+d+Y9aq4Q30gPA+f50eefJNWnCnt+z8c987dg3v3Dx94D48ePX7SO356ocpaEjojJS/lVQqKciboTDPN6VUlKRQpp5dp/mGXv9xQqVgpvultReMCVoJljIC2KOl9j6ZrlphIsVUBSdD5sPOvmoVhp9eneTPQJ/g9jmilGC/FwkBKmqgAvSbAzdfmPxMGv8s+NkmwSZgddbKAPRxukusWp7er8xaTpNf3h8FkNAlD7A/91mwwmozPzkY46EgfdTZNjp2DaFmSuqBCEw5KzQO/0rEBqRnhtPGiWtEKSA4rOrehgIKq2LSCNvilJUucldIeoXFL/+wwUCi1LVJbuVtX3c7t4N9y81pn49gwUdWaCnJzUVZzrEu8+x28ZJISzbc2ACKZ3RWTNUgg2v6htzeqHU5kbGht5dp7kEWZhLzxPM8K90sd/O/gIhwGo6H/5XX/fNxJeIieoxdogAL0Bp2jz2iKZog4R07ovHXeuZ/c3JWuvil1na7nGdozt/kJF+/azA==</latexit> i,j,k 1 2 3 (t) = ✏abc S 1 2 3 (D1vi(t))a (D2vj(t))b (D1vk(t))c gen. perambulators: <latexit sha1_base64="4C5I9UwcIo+CCLLVGYm4Q4zed3E=">AAACk3icdVFda9swFJW9devcbks39tQXsTBIYAt2WLOEMSjtYHspdLCkhdg117Kciki2ka4LwfiHDvZjJqfpaPZxQeJwzrlX0lFSSmHQ93847oOHO48e7z7x9vafPnveOXgxM0WlGZ+yQhb6MgHDpcj5FAVKfllqDiqR/CJZnrb6xQ3XRhT5d1yVPFKwyEUmGKCl4s5NiEKmvA4RqqaHcfYW4zrUiorcNBb7ffqJzq7CFBat2j+7qt8Ffxn74RdQCnr3qd/O7XGzXrvHna4/CCajyXBI/YG/LgtGk/HR0YgGG6ZLNnUeHzg7YVqwSvEcmQRj5oFfYlSDRsEkb7ywMrwEtoQFn1uYg+ImqtcBNfSNZVKaFdquHOmavd9RgzJmpRLrVIDX5k+tJf+lzSvMxlEt8rJCnrPbg7JKUixomzZNheYM5coCYFrYu1J2DRoY2j/xtkathzMd1bxiILceZKlMw7LxPM8Gd5cO/T+YDQfBaOB/e989Hm8i3CWH5DXpkYB8IMfkKzknU8LIT8d19px995X70T1xP99aXWfT85JslXv2C0gGxms=</latexit> ˜ ⌧(tf , tins, t0) = V † (tf )M 1 (tf , tins) (tins)M 1 (tins, t0)V (t0) Pros: ‣ factorization of correlation functions ‣ various spin structures without additional inversions ‣ mom. projection at the sink and the source ‣ reusability of building blocks Cons: ‣ extra step: compute eigenvectors of ‣ big files/storage ∇2 inversions: <latexit sha1_base64="p5Omw89Ua4LwxSaq1yWeHjMqQ9g=">AAACuHicdVFdb9MwFHUyBiN8dfDIi0WFaCWonK2jGwipEi+8IA1Bt0lNFm5cp7XqfMi+qVSi/BJ+Gf8GJ+2kFY0r2bo+59xz7eu4UNIgY38cd+/e/v0HBw+9R4+fPH3WOXx+YfJSczHhucr1VQxGKJmJCUpU4qrQAtJYict4+bnhL1dCG5lnP3BdiDCFeSYTyQEtFHV+f48CUMUCrque7Ne99UeMWJ9+ol+vq3d+cw5Wgle/6rfYj6qNNIgFQr2KZG/L9YOZUAiWb5h2i1h9A6J1rO90tJ12PK3utmvU6bIBOz4dsRFlg+HZERu+pw1ycjwcUX/A2uiSbZxHh85+MMt5mYoMuQJjpj4rMKxAo+RK1F5QGlEAX8JcTG2aQSpMWLVTrOlri8xokmu7MqQteruigtSYdRpbZQq4MP9yDXgXNy0xOQ0rmRUlioxvGiWlopjT5kvoTGrBUa1tAlxLe1fKF6CBo/04b8eqNec6rETJQe08yEKJhmXteZ4d3M106P+Ti6OBfzJg34bd8Xg7wgPykrwiPeKTERmTL+ScTAh3HOeNwxzf/eD+dOeu3EhdZ1vzguyEq/8CEabWMw==</latexit> S(i) ↵ (y; t0) = M 1 (y; ~ z, t)↵ vi(~ z) 0 tt0 = M 1 (y; ~ z, t0)↵ 0 vi(~ z) <latexit sha1_base64="Ec16og68vhuG9SbHwaiiQEtK+LU=">AAACkHicdVFda9swFJW9dU29r7R77ItYGKRQgh2WNHkoy+hL2VMHSxuIjZEVORWRZCPJpUboh/bXbIrjQjO2C0KHc+65ko6yklGlw/DJ81+9Pnhz2DkK3r57/+Fj9/jkVhWVxGSOC1bIRYYUYVSQuaaakUUpCeIZI3fZ5mqr3z0QqWghfum6JAlHa0FzipF2VNpVV6mJJYfDUtu+TvNznYZn8BLGquJOeSDYPNrzZq+tjRkSa0ZgzJG+x4iZhe0/9zjzWZwhaV6IrVrb3dhYNva02wsH0XQ8HQ5hOAibcmA8nYxGYxi1TA+0dZMeewfxqsAVJ0JjhpRaRmGpE4OkppgRG8SVIiXCG7QmSwcF4kQlpknHwi+OWcG8kG4JDRv2pcMgrlTNM9e5vbn6W9uS/9KWlc4niaGirDQReHdQXjGoC7iNGq6oJFiz2gGEJXV3hfgeSYS1+5Bgb1QzHMvEkMolt/cgR+USbWwQBC6453Tg/8HtcBCNBuHPr73ZrI2wA07BZ9AHEbgAM3ANbsAcYPAEfnsd78g/8Sf+N//7rtX3Ws8nsFf+jz8js8k7</latexit> C2pt(tf , t0) = X ~ x,~ y hX(~ x, tf )X̄(~ y, t0)i t0 tf t0 tf tins W(z3) <latexit sha1_base64="Umwm2f9JJtZZfaCxTOYf7ULsBnQ=">AAACz3icdVHdbtMwGHUCYyP8rIMbJG4sKqRWmqqksG7VBKq0i+1yk+haqQ6V4zqdVTvJbGcQIiNueR3ehrfBSVNpRfBJkY/Pd3z85TjKOFPa93877oOHO4929x57T54+e77fOnhxrdJcEjomKU/lNMKKcpbQsWaa02kmKRYRp5NodVb1J3dUKpYmn3SR0VDgZcJiRrC21Lz162xeIingu0ybjp7Hh3q9Z4kyFvun6BwLgbvwA0QqF7Z5R0n51RzW67dmLYxBHCdLTiESWN8QzMup6Wy01reLTmcowrK8NWhZOX724QTehp2Nj7aKWnDPoHEo6km6EMn6inmr7feC4WDY70O/59dlwWB4cnQ0gEHDtEFTl/MDZwctUpILmmjCsVKzwM90WGKpGeHUeChXNMNkhZd0ZmGCBVVhWYdr4FvLLGCcSvslGtbs/RMlFkoVIrLKanL1d68i/9Wb5To+CUuWZLmmCVlfFOcc6hRWLwUXTFKieWEBJpLZWSG5wRITbd/T27KqzYkMS5rb5LZ+yFKxxCvjeZ4NbpMO/D+47veCQc+/et8ejZoI98Br8AZ0QACOwQhcgEswBsR55Xx0zp0L98r94n53f6ylrtOceQm2yv35B1j+4NU=</latexit> C3pt(tf , tins, t0; ) = X ~ x,~ z,~ y hX(~ x, tf ) [q̄ 0 Wq](~ z, t) X̄(~ y, t0)i M. Peardon et. al. arXiv: 0905.2160 <latexit sha1_base64="RbJdi9FM93Q0Ih66kTr/LKalENI=">AAACN3icdVBNSyNBFOxRd9W4H1GPXhqD4LJLmAlrNAchIIgnUTAqZOLwptOTNPb0DN1vhDDMv/Li3/CmFw+KePUf2BPjsrtoQUN11Xt0V4WpFAZd98aZmp759Hl2br6y8OXrt+/VxaVjk2Sa8Q5LZKJPQzBcCsU7KFDy01RziEPJT8LzndI/ueDaiEQd4SjlvRgGSkSCAVopqO77MeCQgcx3iyD3QaZDCMyv/cAUdJv6kke47v30Iw3sj+srCCWcNYq8HPO1GAzxx9n4ElRrbt1rNVuNBnXr7hiWNFtbGxtN6k2UGpngIKhe+/2EZTFXyCQY0/XcFHs5aBRM8qLiZ4anwM5hwLuWKoi56eXj3AVds0qfRom2RyEdq39v5BAbM4pDO1mmNP97pfie180w2urlQqUZcsVeH4oySTGhZYm0LzRnKEeWANPC/pWyIdiO0FZdsSW8JaUfk+NG3WvW3cPftXZ7UsccWSGrZJ14ZJO0yR45IB3CyCW5Jffkwbly7pxH5+l1dMqZ7CyTf+A8vwCBJ62Q</latexit> F↵s,Ns = ✓ 1 + ↵sr2 Ns ◆Ns
  • 9. Lattice evaluation Simulation details Lattice action / configurations: ‣ Wilson-Clover fermion action, ‣ lattice volume: ‣ ‣ , ‣ , Nf = 2 + 1 323 × 64 β = 6.3 , a = 0.091 fm (a−1 = 2.16 GeV) mπ = 0.350 GeV mN = 1.160 GeV L = 2.9 fm mπL = 5.15 W&M / JLab Parameters and statistics: ‣ 350 gauge configurations ‣ distillation vectors: ‣ 6 ‣ 4 time sources ‣ boost momentum ‣ displacements ‣ 5600 statistics Nev = 64 tsep ≡ (tf − t0) = [4a, 6a, …, 14a] → 0.4…1.3 fm t0/a = [ti 0, + T/4, + T/2, + 3T/4] Pz = 2π/L × [0, ± 1,…, ± 6] → 0…2.55 GeV z3 = 0, ± 1a, …, ± 8a → 0…0.73 fm Runs performed at JLab computer clusters and at Frontera (TACC) using the Chroma software suite and in-house analysis packages t0 tf tins W(z3) <latexit sha1_base64="Umwm2f9JJtZZfaCxTOYf7ULsBnQ=">AAACz3icdVHdbtMwGHUCYyP8rIMbJG4sKqRWmqqksG7VBKq0i+1yk+haqQ6V4zqdVTvJbGcQIiNueR3ehrfBSVNpRfBJkY/Pd3z85TjKOFPa93877oOHO4929x57T54+e77fOnhxrdJcEjomKU/lNMKKcpbQsWaa02kmKRYRp5NodVb1J3dUKpYmn3SR0VDgZcJiRrC21Lz162xeIingu0ybjp7Hh3q9Z4kyFvun6BwLgbvwA0QqF7Z5R0n51RzW67dmLYxBHCdLTiESWN8QzMup6Wy01reLTmcowrK8NWhZOX724QTehp2Nj7aKWnDPoHEo6km6EMn6inmr7feC4WDY70O/59dlwWB4cnQ0gEHDtEFTl/MDZwctUpILmmjCsVKzwM90WGKpGeHUeChXNMNkhZd0ZmGCBVVhWYdr4FvLLGCcSvslGtbs/RMlFkoVIrLKanL1d68i/9Wb5To+CUuWZLmmCVlfFOcc6hRWLwUXTFKieWEBJpLZWSG5wRITbd/T27KqzYkMS5rb5LZ+yFKxxCvjeZ4NbpMO/D+47veCQc+/et8ejZoI98Br8AZ0QACOwQhcgEswBsR55Xx0zp0L98r94n53f6ylrtOceQm2yv35B1j+4NU=</latexit> C3pt(tf , tins, t0; ) = X ~ x,~ z,~ y hX(~ x, tf ) [q̄ 0 Wq](~ z, t) X̄(~ y, t0)i Pz
  • 10. Matrix elements: ground state dominance i) Summation method ii) Plateau method (ask for more!) Ratio of 3pt/2pt functions: <latexit sha1_base64="2ky8d8js9KtiZKQAZr1JfrTdLRE=">AAACl3icdZFba9swFMdld5cuu2XrXsZexMIggdbIdtt0G2OBjNGXQTqWthCnRlZkR1S+IB1vS42/0j7M3vZtJqcO7HpA6PA/v8O5RYUUGgj5YdlbN27eur19p3P33v0HD7uPHp/qvFSMT1kuc3UeUc2lyPgUBEh+XihO00jys+hy3MTPPnOlRZ59glXB5ylNMhELRsFIYffbx/4kvNq9Cv3XEFaaF/Wu+UWm6wF+g4NYUVaNwypQKfYLqDcw/ouuN5i3wVpiUAdflUiWQJXKv8xafg9CEiQJpvOq5fbayFqtcZBSWDIqqw91P8jKpuiFNwi7PeJ4vusPfUwc4g33D1zjHLw8JMMj7DpkbT3U2iTsfg8WOStTngGTVOuZSwqYV1SBYJLXnaA0tSm7pAmfGTejKdfzar3XGr8wygLHuTIvA7xWf82oaKr1Ko0M2XSr/4w14r9isxLio7mZtiiBZ+y6UFxKDDlujoQXQnEGcmUcypQwvWK2pOYWYE7ZMUvYTIr/75x6jnvokJP93mjUrmMbPUPPUR+5aIhG6BhN0BQx64n1yhpb7+yn9lv7vX18jdpWm7ODfjP75CdN6sul</latexit> R(Pz, z3; tsep, tins) = C3pt(Pz, z3; tsep, tins) C2pt(Pz, tsep) tsep tins a ! tins t0 a M(⌫, z2 3) 1 2 3 4 5 6 7 Re[R sum (P z = 2; z 3 = 2)] Linear fit tlow sep = 4 Linear fit tlow sep = 6 Linear fit tlow sep = 8 0.46 0.48 0.50 0.52 0.54 0.56 Re[R r°sum (P z = 2; z 3 = 2)] 2 4 6 8 10 12 14 16 tsep/a 0.2 0.4 0.6 0.8 1.0 Im[R sum (P z = 2; z 3 = 2)] 2 4 0.055 0.060 0.065 0.070 Im[R r°sum (P z = 2; z 3 = 2)] 1 2 3 4 5 6 7 Re[R sum (P z = 2; z 3 = 2)] Linear fit tlow sep = 4 Linear fit tlow sep = 6 Linear fit tlow sep = 8 0.46 0.48 0.50 0.52 0.54 0.56 Re[R r°sum (P z = 2; z 3 = 2)] 0.6 0.8 1.0 (P z = 2; z 3 = 2)] 0.065 0.070 (P z = 2; z 3 = 2)] 1 2 3 4 5 6 7 Re[R sum (P z = 2; z 3 = 2)] Linear fit tlow sep = 4 Linear fit tlow sep = 6 Linear fit tlow sep = 8 0.46 0.48 0.50 0.52 0.54 0.56 Re[R r°sum (P z = 2; z 3 = 2)] 2 4 6 8 10 12 14 16 tsep/a 0.2 0.4 0.6 0.8 1.0 Im[R sum (P z = 2; z 3 = 2)] 2 4 6 8 10 12 14 tsep/a 0.055 0.060 0.065 0.070 Im[R r°sum (P z = 2; z 3 = 2)] <latexit sha1_base64="xrvQzIEPHvfGUDzeXrOv1TxZg2A=">AAACd3icdVBdaxNBFJ2sVtv1K7WPfXAwKCnaZTZNmvpQCKjgixjBtMXsusxO7iZDZj+YuSuky/63/g3/gK/66puTNEIjeuHC4dxzv05cKGmQsW8N59btrTt3t3fce/cfPHzU3H18ZvJSCxiJXOX6IuYGlMxghBIVXBQaeBorOI/nr5f186+gjcyzT7goIEz5NJOJFBwtFTU/n1IR+fQFDVKOM8FV9b5uD6PLl5fR0UGAMgVDMaoMFPVN0Yc6UJBgG75Uh8EbUMjp27WspoGW0xkeRM0W8zrs6FWnQ5nH+t2ezyzoHbP+SZf6HltFi6xjGO02toJJLsoUMhSKGzP2WYFhxTVKoaB2g9Iu4GLOpzC2MOP2urBamVDTZ5aZ0CTXNjOkK/ZmR8VTYxZpbJXLL8zftSX5r9q4xOQkrGRWlAiZuF6UlIpiTpeO0onUIFAtLOBCS3srFTOuuUDru7sxajVc6LCC0rq48ZClEs3nteu61rg/7tD/g7OO5/c89rHbGgzWFm6TffKUtIlP+mRA3pEhGRFBrsh38oP8bPxynjjPnfa11Gmse/bIRjj+b3x2wAY=</latexit> = c1 + M(Pz, z3) ⇥ tsep + O e Etsep <latexit sha1_base64="MDeB3dEcH/2OyxZi1NTkz+5hqpo=">AAACc3icdVDPS+NAGJ3GH6vR1apHL4NVUNAwqdUqi1DYi8eubKvQZsOX6USHziRhZrJQQ/6z/Uf2ulf3uved1ghW9MHA473vx3wvygTXhpDfNWdhcWn508qqu7b+eWOzvrXd12muKOvRVKTqLgLNBE9Yz3Aj2F2mGMhIsNto/HXq3/5kSvM0+W4mGQsk3Cc85hSMlcJ6/yYshkpincvysBs+Hj+Gp19MWGiWlUf4Cg+tERZW4Ikur6D8UVTmCZT45m3HcVV4FNYbxGuS08tmExOPtFtnPrHk7Jy0L1rY98gMDVShG27VloajlOaSJYYK0Hrgk8wEBSjDqWClO8ztAqBjuGcDSxOQTAfFLIASH1hlhONU2ZcYPFNfdxQgtZ7IyFZKMA/6rTcV3/MGuYkvAntSlhuW0OdFcS6wSfE0TTziilEjJpYAVdz+FdMHUECNzdydGzUbTlVQsJyCmDvISrGCcem6rg3uJR38Mek3Pf/cI99ajU6ninAF7aI9dIh81EYddI26qIco+oX+oCf0t/bP2XX2nP3nUqdW9eygOTgn/wEPBMAB</latexit> Rsum(Pz, z3; tsep) = tsep a X tins=a R(Pz, z3; tsep, tins) Perform linear fits, increase lower value of until convergence tsep L. Maiani et. al. Nucl.Phys. B293 (1987) Lattice evaluation 0.040 0.042 0.044 0.046 0.048 °8 °6 °4 °2 0 2 4 6 8 [tins ° tsep/2]/a 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 Pz = 2 , z3 = 2 4 Im[R(P z , z 3 )] 0.040 0.042 0.044 0.046 0.048 0.050 Pz = 2 , z3 = 1 tsep = 4a tsep = 6a tsep = 8a tsep = 10a tsep = 12a tsep = 14a Plateau fits °8 °6 °4 °2 0 2 4 6 8 [tins ° tsep/2]/a 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 Pz = 2 , z3 = 2 4 6 8 t Im[R(P z , z 3 )] 0.040 0.042 0.044 0.046 0.048 0.050 Pz = 2 , z3 = 1 tsep = 4a tsep = 6a tsep = 8a tsep = 10a tsep = 12a tsep = 14a Platea °8 °6 °4 °2 0 2 4 6 8 [tins ° tsep/2]/a 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 Pz = 2 , z3 = 2 4 Im[R(P z , z 3 )]
  • 11. 0.82 0.83 0.84 0.85 0.86 0.87 Pz = 2 , z3 = 0 tsep = 4a tsep = 6a tsep = 8a tsep = 10a tsep = 12a tsep = 14a Summ. linear 0.485 0.490 0.495 0.500 0.505 0.510 0.515 Pz = 2 , z3 = 2 0.112 0.114 0.116 0.118 0.120 0.122 0.124 0.126 Pz = 2 , z3 = 5 °8 °6 °4 °2 0 2 4 6 8 [tins ° tsep/2]/a 0.016 0.018 0.020 0.022 0.024 Pz = 2 , z3 = 8 4 6 8 tlow sep/a Re[R(P z , z 3 )] 0.040 0.042 0.044 0.046 0.048 0.050 Pz = 2 , z3 = 1 tsep = 4a tsep = 6a tsep = 8a tsep = 10a tsep = 12a tsep = 14a Summ. linear 0.0600 0.0625 0.0650 0.0675 0.0700 0.0725 0.0750 Pz = 2 , z3 = 2 0.042 0.044 0.046 0.048 0.050 0.052 0.054 Pz = 2 , z3 = 5 °8 °6 °4 °2 0 2 4 6 8 [tins ° tsep/2]/a 0.012 0.014 0.016 0.018 Pz = 2 , z3 = 8 4 6 8 tlow sep/a Im[R(P z , z 3 )] Lattice evaluation Matrix elements: select data
  • 12. PDF results Pseudo-ITDs 0 1 2 3 4 5 6 7 8 9 10 ∫ °0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Re[M Lsumm (∫, z 2 3 )] Pz = 0 Pz = 1 Pz = 2 Pz = 3 Pz = 4 Pz = 5 Pz = 6 <latexit sha1_base64="x4YNioFrma8b5rW3tPEcqbq+dPo=">AAACSXicbVBNT9tAEF2HAsF8NKHHXlaNkEBCkR0q4BiJC5dKtGpIpNhE6804WWW9tnbHSMHyn+DXcKXX/gJ+BreqJ9Yhhwb6pJWe3puZnXlRJoVBz3tyamsf1jc261vu9s7u3sdGc//apLnm0OOpTPUgYgakUNBDgRIGmQaWRBL60eyi8vu3oI1I1U+cZxAmbKJELDhDK40ax0WgE/oDykBCjMMgYTiNNZsV38rDQOXHd6OTm85RoMVkiuGo0fLa3gL0PfGXpEWWuBo1nfVgnPI8AYVcMmOGvpdhWDCNgkso3SA3kDE+YxMYWqpYAiYsFmeV9MAqYxqn2j6FdKH+21GwxJh5EtnKam3z1qvE/3nDHOPzsBAqyxEUf/0oziXFlFYZ0bHQwFHOLWFcC7sr5VOmGUebpLsyajGc67CAnDO5cpCVqiRL13VtcP7bmN6T607bP21737+2up1lhHXymXwhh8QnZ6RLLskV6RFO7skDeSS/nN/Os/PH+ftaWnOWPZ/ICmprL/mEsVo=</latexit> Re ⇥ M(⌫, z 2 3 ) ⇤ 0 1 2 3 4 5 6 7 8 9 10 ∫ °0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Im[M Lsumm (∫, z 2 3 )] Pz = 0 Pz = 1 Pz = 2 Pz = 3 Pz = 4 Pz = 5 Pz = 6 <latexit sha1_base64="Ytv6KAbYVi9nG4xqfS7e/mR/+z0=">AAACSXicbVBNSyNBEO2J667Ofhj16KUxLChImImyehS86EFQMCpkxtDTqUmadPcM3TVCHOZP+Gu8utf9Bfsz9iae7Ik5GN0HDY/3qqqrXpJLYTEI/nqNhU+Ln78sLftfv33/sdJcXbu0WWE4dHkmM3OdMAtSaOiiQAnXuQGmEglXyfio9q9uwViR6Quc5BArNtQiFZyhk/rNnTIyip6oKpKQYi9SDEepYePytNqKdLFz19+96WxHRgxHGPebraAdTEE/knBGWmSGs/6qtxgNMl4o0Mgls7YXBjnGJTMouITKjwoLOeNjNoSeo5opsHE5PauiP50yoGlm3NNIp+rbjpIpaycqcZX12va9V4v/83oFpgdxKXReIGj++lFaSIoZrTOiA2GAo5w4wrgRblfKR8wwji5Jf27UdDg3cQkFZ3LuICfVSVa+77vgwvcxfSSXnXb4qx2c77UOO7MIl8gG2SRbJCT75JAckzPSJZzckwfySH57f7x/3pP3/Fra8GY962QOjYUX956xWQ==</latexit> Im ⇥ M(⌫, z 2 3 ) ⇤ ‣ get rid of logarithmic divergences ‣ renormalization of vector current ‣ higher-twist contaminations partially suppressed 𝒪(z2 3Λ2 QCD) <latexit sha1_base64="ufDO2bwQ0PTVfOHwZZ1L74vdHXM=">AAAC8HicjVFNj9MwEHUCC0v46sKRi0WF1JVWlVPYsj0UrcSFC1KR6O5KTYgc12mtOk5kO0jd4P/BDXHl73Di3zDJBokiVjCSpfF7b8aeN2kphbGE/PD8Gzf3bt3evxPcvXf/wcPewaMzU1Sa8TkrZKEvUmq4FIrPrbCSX5Sa0zyV/DzdvG74849cG1Go93Zb8jinKyUywagFKOl9j3Jq15mmm/qtG0SqOrpMnn8YHeIpjiTP7CACjtWtilHZiGbJJWg6nbue+pTUkEyJc5EWq7U9jKzIufm/vlAM9yk56lr8W+kc7t5Jen0yDCfjyWiEyZC0Acl4cnJ8PMZhh/RRF7PkwNuLlgWrcq4sk9SYRUhKG9dUW8Ekd0FUGV5StqErvoBUUZgjrlv3HX4GyBJnhYajLG7R3ytqmhuzzVNQNjOYP7kG/Bu3qGx2EtdClZXlil09lFUS2wI3q8RLoTmzcgsJZVrAXzFbU7DVwsKDnVZtc6bjmlfg4c5AADXrd0EQgHG/3MHXJ2ejYTgekncv+qevOgv30RP0FA1QiF6iU/QGzdAcMW/iJd7aE772P/tf/K9XUt/rah6jnfC//QTi8OuL</latexit> M(⌫, z2 3) = ✓ M(Pzz3, z2 3) M(Pzz3, z2 3)|z3=0 ◆ ⇥ ✓ M(Pzz3, z2 3)|Pz=0,z3=0 M(Pzz3, z2 3)|Pz=0 ◆
  • 13. Evolution and matching to : Light-cone ITDs MS evolution to common scale 1/z0 conversion to scheme MS light-cone ITD <latexit sha1_base64="6I2IXBKK/mWdKBImIj3ojFH7TM8=">AAACRXicdZDdahNBFMdnq9W69SOtl94MhkKkuMyuiakXhaA3vaxg2kJ2DbOTs8mQ2Q9mzhTCsq/g03hbb30GH8K70ls7SSMY0QMDf/7na84vrZQ0yNgPb+ve/e0HD3ce+buPnzx91trbPzOl1QKGolSlvki5ASULGKJEBReVBp6nCs7T+Ydl/vwStJFl8QkXFSQ5nxYyk4Kjs8atzvuOfUWPaawgw1GcaS7q8NB+jpo6fG0bGms5nWEyPhy32iyI2Jt3UURZwPrdXsic6L1l/aMuDQO2ijZZx+l4z9uOJ6WwORQoFDdmFLIKk5prlEJB48fWQMXFnE9h5GTBczBJvTqpoQfOmdCs1O4VSFfunx01z41Z5KmrzDnOzN+5pfmv3MhidpTUsqgsQiHuFmVWUSzpkg+dSA0C1cIJLrR0f6Vixh0WdBT9jVGr4UInNVjB1cZBznIo543v+w7cbzr0/+IsCsJewD5224PBGuEOeUFekg4JSZ8MyAk5JUMiyBfylVyRb95376d37d3clW55657nZCO8X7cxNa95</latexit> B(u) =  1 + u2 1 u + <latexit sha1_base64="+3l2zM+HYCOdXsduRi0NJzyHHwI=">AAACUXicdZBNa9swGMdlb107dy9pd9xFLAxSRo3sOU17GAR22WGHDpa2EJsgK3IiIstGelQIxl9kn6bX7brTPspuU9wMlrE9IPHX/3mR9MtrKQwQ8sPzHzzce7R/8Dg4fPL02fPe0fGVqaxmfMIqWembnBouheITECD5Ta05LXPJr/PV+03++pZrIyr1GdY1z0q6UKIQjIKzZr3k48Ce4Hc4lbyAaZIWmrImlWoQndqTtnF7i0/j7oRTLRZLyGZvZr0+CWPy9iKOMQnJKBlGxInhGRmdJzgKSRd9tI3L2ZG3l84rZkuugElqzDQiNWQN1SCY5G2QWsNrylZ0wadOKlpykzXd91r82jlzXFTaLQW4c//saGhpzLrMXWVJYWn+zm3Mf+WmForzrBGqtsAVu7+osBJDhTes8FxozkCunaBMC/dWzJbUEQJHNNgZ1Q1nOmu4ZVTufMhZjuqqDYLAgftNB/9fXMVhNAzJp6Q/Hm8RHqCX6BUaoAiN0Bh9QJdoghj6gu7QV/TN++799JHv35f63rbnBdoJ//AXOmCvzg==</latexit> L(u) =  4 ln(1 u) 1 u 2(1 u) + ‣ treat each independently ‣ need polynomial parametrization w.r.t. ‣ evolution/matching processes separately or combined can give rise to different systematics ‣ 1-loop matching: ~10% effect to pseudo-ITD data ‣ small higher-twist effects z3 ν <latexit sha1_base64="bUpnZ+DHs1y67TuCAYb3jWu66Ow=">AAACQHicdVBNa9tAEF25dZKqbeI0x16WmkIKRawUO05vhl5yKaRQJwZLNaP1yl68Won9SDDCP6C/ptf2mn+Rf5Bb6LWnrhwX6tA8WHi8NzM789JScG0IufEaT542t7Z3nvnPX7zc3WvtvzrXhVWUDWghCjVMQTPBJRsYbgQblopBngp2kc4/1v7FJVOaF/KLWZQsyWEqecYpGCeNW+04BzPLFMyrT8tDG0v7Ps7t1+hdrPh0ZkCp4spVkSAiRx+iCJOA9DrdkDjSPSa9kw4OA7JCG61xNt73mvGkoDZn0lABWo9CUpqkAmU4FWzpx1azEugcpmzkqISc6aRaXbPEb50ywVmh3JMGr9R/OyrItV7kqausd9cPvVr8nzeyJjtJKi5La5ik9x9lVmBT4DoaPOGKUSMWjgBV3O2K6QwUUOMC9DdGrYZTlVTMUhAbBzmpjnPp+74L7m86+HFyHgVhNyCfO+1+fx3hDnqN3qBDFKIe6qNTdIYGiKJv6Dv6gX56196td+f9ui9teOueA7QB7/cfeYSvVg==</latexit> M(u⌫, µ2 ) ! <latexit sha1_base64="n3hk3Z2isDnt98tfGQCNOjveN/w=">AAAC6HicdVHdbtMwGHUCgxF+1sElNxYVUqeNKqnWsl4gVUxMXIC0SXSdVKfBcZ3W1HEi/yCVKO/AHeKW1+EJ9jY4SYcogk+KdHzO9x0754tzzpT2/WvHvXV7587d3Xve/QcPH+219h9fqsxIQsck45m8irGinAk61kxzepVLitOY00m8Oq30yWcqFcvEB73OaZjihWAJI1hbKmr9RCnWS4J5cVF2kDBHKDWz3gF8BWshkXhVvG+ULxX/AiLLkQJhni9xpOBpdFYWPZSzEjGhI38WwLlBR9vj5vc84jTRU8RFgzqWrG9sXOnMWi1wmuLozWFQlsVxiSRbLPVBbRcnxetyakJ4CG/O76pz0xNGrbbfDYaDYa8H/a5flwWD4Um/P4DBhmmDTZ1H+84OmmfEpFRowrFS08DPdVhgqRnhtPSQUTTHZIUXdGqhwClVYVGnXsLnlpnDJJP2ExrW7J8TBU6VWqex7aweq/7WKvJf2tTo5CQsmMiNpoI0FyWGQ53BaoVwziQlmq8twEQy+1ZIltjmp+2ivS2r2pzIsKDG7njrhyxVraf0PM8Gd5MO/D+47HWDfte/OG6PRpsId8FT8Ax0QABeghF4C87BGBAncCbORwe7n9yv7jf3e9PqOpuZJ2Cr3B+/ALS46MI=</latexit> Q(⌫, µ2 ) = M(⌫, z2 ) ↵sCF 2⇡ Z 1 0 du M(u⌫, z2 )  ln ✓ z2 µ2 e2 E +1 4 ◆ B[u] + L[u] <latexit sha1_base64="30bquwHjvCKgXjdaoVM2+yOL7uY=">AAACgnicdVFdixMxFE3HXV3Hj+3qoy/BIrSKJdNt7QoKBV98EVawuwudccikd9rQTGZIboQy9Bf6C/wZvuqLmW5F68eFwOHcc09uTrJKSYuMfWkFNw4Ob946uh3euXvv/nH75MGFLZ0RMBWlKs1Vxi0oqWGKEhVcVQZ4kSm4zFZvmv7lJzBWlvoDritICr7QMpeCo6fSNsRSY8o+RjQuOC5zw1f1u03Xxdr16Czvul6SPqOv6S+Zghy7f4uf71ENExu5WGKv8UjbHdYfsNOXgwFlfTYejiLmwegFG58NadRn2+qQXZ2nJ63DeF4KV4BGobi1s4hVmNTcoBQKNmHsLFRcrPgCZh5qXoBN6m0eG/rEM3Oal8YfjXTL/j5R88LadZF5ZbO0/bPXkP/qzRzmZ0ktdeUQtLi+KHeKYkmbcOlcGhCo1h5wYaTflYolN1yg/4Jwz2prLkxSgxNc7T3IU02OmzAMfXA/06H/BxeDfjTqs/fDzmSyi/CIPCKPSZdEZEwm5C05J1MiyGfylXwj34OD4GkQBafX0qC1m3lI9ip49QMeP8LD</latexit> Z 1 0 M(u⌫)[f(u)]+ = Z 1 0 (M(u⌫) M(⌫)) f(u) Common scale: <latexit sha1_base64="2wZvWsh4IXg2kLWFd/Nh6LwksVQ=">AAAChnicdVFda9swFFW8dcu8r3R73ItYGHSQerZpnIaREhhje+xgSQuxZ2RFTkUk20hyIRX6jX3uD+nrNsX1xjK2C4LDufecKx1lFaNS+f5Nx7l3f+/Bw+4j9/GTp8+e9/ZfzGVZC0xmuGSlOM+QJIwWZKaoYuS8EgTxjJGzbP1h2z+7JELSsviqNhVJOFoVNKcYKUulPXqV+gcxryehjgWHn8jcvIUTGOcCYR2Sb/owXiHOUfoRHgbvQmO0HTYT3/OjUTxoNDk38WAQv29FgdHW01iT0Bsfwd+2aa/ve8E4GochtPKmLIjGx8NhBIOW6YO2TtP9zl68LHHNSaEwQ1IuAr9SiUZCUcyIceNakgrhNVqRhYUF4kQmusnEwDeWWcK8FPYUCjbsnwqNuJQbntlJjtSF/Lu3Jf/VW9QqP040LapakQLfLcprBlUJtwHDJRUEK7axAGFB7V0hvkA2GWW/wd2xasyxSDSpMWI7D7KUTXNtXNe1wf1KB/4fzEMviDz/y1F/etJG2AWvwGtwAAIwAlPwGZyCGcDgGtyC7+CH03U8Z+iM7kadTqt5CXbKmf4EyRrBsw==</latexit> z0(µ = 2GeV) = 2e E 1/2 µ = 0.067 fm , 1 z0 = 2.94GeV PDF results 0 1 2 3 4 5 6 7 8 9 10 ∫ °0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Re[Q(∫, µ 2 )] M(∫, z2 3) Pz = 0 Pz = 1 Pz = 2 Pz = 3 Pz = 4 Pz = 5 Pz = 6 <latexit sha1_base64="kck6YtsZYdhnTQsjPFVQMizaNeQ=">AAACNHicbVDLSsNAFJ1UqzW+Wl24cBMsQgUpSRV1WXDjRqhgH9DEMJlO2qGTSZiZCDXka9zq1n8R3Ilbv8FJmoWtHhg4nHPvnXuPF1EipGm+a6WV1fLaemVD39za3tmt1vZ6Iow5wl0U0pAPPCgwJQx3JZEUDyKOYeBR3Pem15nff8RckJDdy1mEnQCOGfEJglJJbvXADqCc+BxOk9u0YbP49Mk9e2iduNW62TRzGH+JVZA6KNBxa1rZHoUoDjCTiEIhhpYZSSeBXBJEcarbscARRFM4xkNFGQywcJL8gtQ4VsrI8EOuHpNGrv7uSGAgxCzwVGW2r1j2MvE/bxhL/8pJCItiiRmaf+TH1JChkcVhjAjHSNKZIhBxonY10ARyiKQKTV8YlQ9H3ElwjCBdOEhJWYSprusqOGs5pr+k12paF03z7rzebhURVsAhOAINYIFL0AY3oAO6AIEUPIMX8Kq9aR/ap/Y1Ly1pRc8+WID2/QOrbqlE</latexit> M(⌫, z2 3)
  • 14. Evolution and matching to : Light-cone ITDs MS evolution to common scale 1/z0 conversion to scheme MS light-cone ITD <latexit sha1_base64="6I2IXBKK/mWdKBImIj3ojFH7TM8=">AAACRXicdZDdahNBFMdnq9W69SOtl94MhkKkuMyuiakXhaA3vaxg2kJ2DbOTs8mQ2Q9mzhTCsq/g03hbb30GH8K70ls7SSMY0QMDf/7na84vrZQ0yNgPb+ve/e0HD3ce+buPnzx91trbPzOl1QKGolSlvki5ASULGKJEBReVBp6nCs7T+Ydl/vwStJFl8QkXFSQ5nxYyk4Kjs8atzvuOfUWPaawgw1GcaS7q8NB+jpo6fG0bGms5nWEyPhy32iyI2Jt3UURZwPrdXsic6L1l/aMuDQO2ijZZx+l4z9uOJ6WwORQoFDdmFLIKk5prlEJB48fWQMXFnE9h5GTBczBJvTqpoQfOmdCs1O4VSFfunx01z41Z5KmrzDnOzN+5pfmv3MhidpTUsqgsQiHuFmVWUSzpkg+dSA0C1cIJLrR0f6Vixh0WdBT9jVGr4UInNVjB1cZBznIo543v+w7cbzr0/+IsCsJewD5224PBGuEOeUFekg4JSZ8MyAk5JUMiyBfylVyRb95376d37d3clW55657nZCO8X7cxNa95</latexit> B(u) =  1 + u2 1 u + <latexit sha1_base64="+3l2zM+HYCOdXsduRi0NJzyHHwI=">AAACUXicdZBNa9swGMdlb107dy9pd9xFLAxSRo3sOU17GAR22WGHDpa2EJsgK3IiIstGelQIxl9kn6bX7brTPspuU9wMlrE9IPHX/3mR9MtrKQwQ8sPzHzzce7R/8Dg4fPL02fPe0fGVqaxmfMIqWembnBouheITECD5Ta05LXPJr/PV+03++pZrIyr1GdY1z0q6UKIQjIKzZr3k48Ce4Hc4lbyAaZIWmrImlWoQndqTtnF7i0/j7oRTLRZLyGZvZr0+CWPy9iKOMQnJKBlGxInhGRmdJzgKSRd9tI3L2ZG3l84rZkuugElqzDQiNWQN1SCY5G2QWsNrylZ0wadOKlpykzXd91r82jlzXFTaLQW4c//saGhpzLrMXWVJYWn+zm3Mf+WmForzrBGqtsAVu7+osBJDhTes8FxozkCunaBMC/dWzJbUEQJHNNgZ1Q1nOmu4ZVTufMhZjuqqDYLAgftNB/9fXMVhNAzJp6Q/Hm8RHqCX6BUaoAiN0Bh9QJdoghj6gu7QV/TN++799JHv35f63rbnBdoJ//AXOmCvzg==</latexit> L(u) =  4 ln(1 u) 1 u 2(1 u) + <latexit sha1_base64="n3hk3Z2isDnt98tfGQCNOjveN/w=">AAAC6HicdVHdbtMwGHUCgxF+1sElNxYVUqeNKqnWsl4gVUxMXIC0SXSdVKfBcZ3W1HEi/yCVKO/AHeKW1+EJ9jY4SYcogk+KdHzO9x0754tzzpT2/WvHvXV7587d3Xve/QcPH+219h9fqsxIQsck45m8irGinAk61kxzepVLitOY00m8Oq30yWcqFcvEB73OaZjihWAJI1hbKmr9RCnWS4J5cVF2kDBHKDWz3gF8BWshkXhVvG+ULxX/AiLLkQJhni9xpOBpdFYWPZSzEjGhI38WwLlBR9vj5vc84jTRU8RFgzqWrG9sXOnMWi1wmuLozWFQlsVxiSRbLPVBbRcnxetyakJ4CG/O76pz0xNGrbbfDYaDYa8H/a5flwWD4Um/P4DBhmmDTZ1H+84OmmfEpFRowrFS08DPdVhgqRnhtPSQUTTHZIUXdGqhwClVYVGnXsLnlpnDJJP2ExrW7J8TBU6VWqex7aweq/7WKvJf2tTo5CQsmMiNpoI0FyWGQ53BaoVwziQlmq8twEQy+1ZIltjmp+2ivS2r2pzIsKDG7njrhyxVraf0PM8Gd5MO/D+47HWDfte/OG6PRpsId8FT8Ax0QABeghF4C87BGBAncCbORwe7n9yv7jf3e9PqOpuZJ2Cr3B+/ALS46MI=</latexit> Q(⌫, µ2 ) = M(⌫, z2 ) ↵sCF 2⇡ Z 1 0 du M(u⌫, z2 )  ln ✓ z2 µ2 e2 E +1 4 ◆ B[u] + L[u] <latexit sha1_base64="30bquwHjvCKgXjdaoVM2+yOL7uY=">AAACgnicdVFdixMxFE3HXV3Hj+3qoy/BIrSKJdNt7QoKBV98EVawuwudccikd9rQTGZIboQy9Bf6C/wZvuqLmW5F68eFwOHcc09uTrJKSYuMfWkFNw4Ob946uh3euXvv/nH75MGFLZ0RMBWlKs1Vxi0oqWGKEhVcVQZ4kSm4zFZvmv7lJzBWlvoDritICr7QMpeCo6fSNsRSY8o+RjQuOC5zw1f1u03Xxdr16Czvul6SPqOv6S+Zghy7f4uf71ENExu5WGKv8UjbHdYfsNOXgwFlfTYejiLmwegFG58NadRn2+qQXZ2nJ63DeF4KV4BGobi1s4hVmNTcoBQKNmHsLFRcrPgCZh5qXoBN6m0eG/rEM3Oal8YfjXTL/j5R88LadZF5ZbO0/bPXkP/qzRzmZ0ktdeUQtLi+KHeKYkmbcOlcGhCo1h5wYaTflYolN1yg/4Jwz2prLkxSgxNc7T3IU02OmzAMfXA/06H/BxeDfjTqs/fDzmSyi/CIPCKPSZdEZEwm5C05J1MiyGfylXwj34OD4GkQBafX0qC1m3lI9ip49QMeP8LD</latexit> Z 1 0 M(u⌫)[f(u)]+ = Z 1 0 (M(u⌫) M(⌫)) f(u) Common scale: <latexit sha1_base64="2wZvWsh4IXg2kLWFd/Nh6LwksVQ=">AAAChnicdVFda9swFFW8dcu8r3R73ItYGHSQerZpnIaREhhje+xgSQuxZ2RFTkUk20hyIRX6jX3uD+nrNsX1xjK2C4LDufecKx1lFaNS+f5Nx7l3f+/Bw+4j9/GTp8+e9/ZfzGVZC0xmuGSlOM+QJIwWZKaoYuS8EgTxjJGzbP1h2z+7JELSsviqNhVJOFoVNKcYKUulPXqV+gcxryehjgWHn8jcvIUTGOcCYR2Sb/owXiHOUfoRHgbvQmO0HTYT3/OjUTxoNDk38WAQv29FgdHW01iT0Bsfwd+2aa/ve8E4GochtPKmLIjGx8NhBIOW6YO2TtP9zl68LHHNSaEwQ1IuAr9SiUZCUcyIceNakgrhNVqRhYUF4kQmusnEwDeWWcK8FPYUCjbsnwqNuJQbntlJjtSF/Lu3Jf/VW9QqP040LapakQLfLcprBlUJtwHDJRUEK7axAGFB7V0hvkA2GWW/wd2xasyxSDSpMWI7D7KUTXNtXNe1wf1KB/4fzEMviDz/y1F/etJG2AWvwGtwAAIwAlPwGZyCGcDgGtyC7+CH03U8Z+iM7kadTqt5CXbKmf4EyRrBsw==</latexit> z0(µ = 2GeV) = 2e E 1/2 µ = 0.067 fm , 1 z0 = 2.94GeV PDF results 0 1 2 3 4 5 6 7 8 9 10 ∫ °0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Im[Q(∫, µ 2 )] M(∫, z2 3) Pz = 0 Pz = 1 Pz = 2 Pz = 3 Pz = 4 Pz = 5 Pz = 6 <latexit sha1_base64="kck6YtsZYdhnTQsjPFVQMizaNeQ=">AAACNHicbVDLSsNAFJ1UqzW+Wl24cBMsQgUpSRV1WXDjRqhgH9DEMJlO2qGTSZiZCDXka9zq1n8R3Ilbv8FJmoWtHhg4nHPvnXuPF1EipGm+a6WV1fLaemVD39za3tmt1vZ6Iow5wl0U0pAPPCgwJQx3JZEUDyKOYeBR3Pem15nff8RckJDdy1mEnQCOGfEJglJJbvXADqCc+BxOk9u0YbP49Mk9e2iduNW62TRzGH+JVZA6KNBxa1rZHoUoDjCTiEIhhpYZSSeBXBJEcarbscARRFM4xkNFGQywcJL8gtQ4VsrI8EOuHpNGrv7uSGAgxCzwVGW2r1j2MvE/bxhL/8pJCItiiRmaf+TH1JChkcVhjAjHSNKZIhBxonY10ARyiKQKTV8YlQ9H3ElwjCBdOEhJWYSprusqOGs5pr+k12paF03z7rzebhURVsAhOAINYIFL0AY3oAO6AIEUPIMX8Kq9aR/ap/Y1Ly1pRc8+WID2/QOrbqlE</latexit> M(⌫, z2 3) ‣ treat each independently ‣ need polynomial parametrization w.r.t. ‣ evolution/matching processes separately or combined can give rise to different systematics ‣ 1-loop matching: ~10% effect to pseudo-ITD data ‣ small higher-twist effects z3 ν <latexit sha1_base64="bUpnZ+DHs1y67TuCAYb3jWu66Ow=">AAACQHicdVBNa9tAEF25dZKqbeI0x16WmkIKRawUO05vhl5yKaRQJwZLNaP1yl68Won9SDDCP6C/ptf2mn+Rf5Bb6LWnrhwX6tA8WHi8NzM789JScG0IufEaT542t7Z3nvnPX7zc3WvtvzrXhVWUDWghCjVMQTPBJRsYbgQblopBngp2kc4/1v7FJVOaF/KLWZQsyWEqecYpGCeNW+04BzPLFMyrT8tDG0v7Ps7t1+hdrPh0ZkCp4spVkSAiRx+iCJOA9DrdkDjSPSa9kw4OA7JCG61xNt73mvGkoDZn0lABWo9CUpqkAmU4FWzpx1azEugcpmzkqISc6aRaXbPEb50ywVmh3JMGr9R/OyrItV7kqausd9cPvVr8nzeyJjtJKi5La5ik9x9lVmBT4DoaPOGKUSMWjgBV3O2K6QwUUOMC9DdGrYZTlVTMUhAbBzmpjnPp+74L7m86+HFyHgVhNyCfO+1+fx3hDnqN3qBDFKIe6qNTdIYGiKJv6Dv6gX56196td+f9ui9teOueA7QB7/cfeYSvVg==</latexit> M(u⌫, µ2 ) !
  • 15. Full picture: -dependence x <latexit sha1_base64="ec+jDU0k1TeZXl/5C2j/fnt2hyI=">AAACWnicdVBdSxtBFJ1sa6urbWPtW18GgxDBht3QxOQhEPCljwqNCtlNmJ3c1SGzs9v5kIRhf01/TV/tU8Ef00lcwZR6YOBw7rn3zj1JwZnSQfCn5r16vfXm7faOv7v37v2H+v7HS5UbSWFEc57L64Qo4EzASDPN4bqQQLKEw1UyP1vVr+5AKpaL73pZQJyRG8FSRol20rQ+iDKibynh9qJsRsKcRJmZtI/xAEdM6Kn9EpYTG5azBYaJZc6AF+WP5qKyTeuNoBX2u/12GwetYA1Huv1ep9PFYaU0UIXz6X5tK5rl1GQgNOVEqXEYFDq2RGpGOZR+ZBQUhM7JDYwdFSQDFdv1nSU+csoMp7l0T2i8Vp93WJIptcwS51xdpf6trcT/1cZGp73YMlEYDYI+LkoNxzrHq9DwjEmgmi8dIVQy91dMb4kkVLto/Y1R6+FUxhaMS3XjICelksxL3/ddcE/p4JfJZbsVdlrBxdfGcFhFuI0+o0PURCE6RUP0DZ2jEaLoJ/qF7tHv2oPneTve7qPVq1U9B2gD3qe/VIO0Yg==</latexit> Q(⌫, µ2 ) = Z 1 1 dxei⌫x q(x, µ2 ) discrete data in -space ν continuous function in -space x <latexit sha1_base64="s43+tV+ttccgFKZTQDnTszK+27k=">AAACZHicdVBda9RAFJ2N1tZYdWvxSZCLi7AFWZLFrl2hUPBBH1tx28ImDZPZm3bYySSdj7JLyE/qr/FJ0Fd/h5NtBFf0wMCZc+69M/ekpeDaBMG3jnfv/saDza2H/qPtx0+edneenerCKoYTVohCnadUo+ASJ4YbgeelQpqnAs/S+YfGP7tBpXkhv5hliXFOLyXPOKPGSUn3YxWpHD5jHb2JcmquGBXVSd2PpHV3ezHcg0OIuDRJcBHCbAERK3TjwmIPrpOb/qItS7q9YBCOR+PhEIJBsIIjo/HB/v4IwlbpkRbHyU5nI5oVzOYoDRNU62kYlCauqDKcCaz9yGosKZvTS5w6KmmOOq5WG9fw2ikzyArljjSwUv/sqGiu9TJPXWWzlf7ba8R/eVNrsoO44rK0BiW7eyizAkwBTXww4wqZEUtHKFPc/RXYFVWUGReyvzZqNZypuELrUl1byEmZovPa930X3O904P/kdDgIR4Pg5G3v6H0b4RZ5QV6RPgnJO3JEPpFjMiGM3JKv5Dv50fnpbXu73vO7Uq/T9uySNXgvfwGkqLcY</latexit> Re Q(⌫, µ2 ) = Z 1 0 dx cos(⌫x)qv(x, µ2 ) valence quark distribution: Inverse problem! Way around: ‣ choose a physically meaningful functional form for ‣ introduce model bias in determination, but… ‣ general form: i) 2-parameter fit: ii) 3-parameter fit: q(x, μ2 ) α, β ≠ 0, γ, δ = 0 α, β, δ ≠ 0, γ = 0 <latexit sha1_base64="NIw3nN6MJgQRlsFY51X2P+E1QmU=">AAACqHicdVFdb9MwFHUCgxE+1sEDD7wYKqSWbiUprKwPoAleeCwSXYearLpxndaqnWS2M6WK8gv2C/cz+Ae4aRgrgitZOjrn3Gv73DDlTGnXvbbsO3d37t3ffeA8fPT4yV5j/+mpSjJJ6IgkPJFnISjKWUxHmmlOz1JJQYScjsPll7U+vqRSsST+rlcpDQTMYxYxAtpQ08bVxfSylbfxR+xHEkiRn/vA0wW0vMO8fe6HVBvY8ecgBPjqQuoiLzv+jHINOG+XxefWxt/xDipzx2vXbnwjvXvbuyVuem/EP1I5bTTdrjfoD3o97HbdqgzoD46PjvrYq5kmqms43bd2/FlCMkFjTTgoNfHcVAcFSM0Ip6XjZ4qmQJYwpxMDYxBUBUWVWolfG2aGo0SaE2tcsbc7ChBKrURonAL0Qv2trcl/aZNMR8dBweI00zQmm4uijGOd4PUK8IxJSjRfGQBEMvNWTBZg0tdmUc7WqGo4kUFBMwJ860OGMhtblo7jmOB+p4P/D057Xa/fdb+9b558qiPcRS/QK9RCHvqATtBXNEQjRNBP67mFrZf2G3toj+0fG6tt1T3P0FbZ4S+xocwD</latexit> qv(x) = x↵ (1 x) (1 + p x + x) B(↵ + 1, + 1) + B(↵ + 3/2, + 1) + B(↵ + 2, + 1) : beta-function B(i, j) <latexit sha1_base64="21L9iKzfhLn/lpdw4rNnqmdi5e0=">AAACt3icdVFda9swFJW9deu8r3R73MtlYSOBLLXNmjWMjsJg7LGBpi1EtlEUORGxZFeSS4LxH9k/27+ZnGTQjO6C0NG5515J506LjGvj+78d99HjgydPD595z1+8fPW6dfTmSuelomxM8yxXN1OiWcYlGxtuMnZTKEbENGPX0+X3Jn99x5Tmubw064JFgswlTzklxlJJ6xemCx6HcAZYlyKpsCzP/DpudntQAgRZ1TXgVBFajTqW7mFRxmEXPsFoq/hxWd/j6wprPhckGcVhjXs9/PVhXXMjlybx4wBmK8A019CkYdWF2+Sus+omrbbfD4aDYRiC3/c3YcFgeHpyMoBgx7TRLi6SI+cAz3JaCiYNzYjWk8AvTFQRZTjNWO3hUrOC0CWZs4mFkgimo2pjYg0fLDODNFd2SQMb9n5FRYTWazG1SkHMQv+ba8iHcpPSpKdRxWVRGibp9qK0zMDk0EwEZlwxarK1BYQqbt8KdEGs38bOzdtrtWlOVVSxkpJs70OWsjNa1p7nWeP+ugP/B1dhPxj0/dHn9vm3nYWH6B16jzooQF/QOfqJLtAYUQc5H51jx3eHbuKm7mIrdZ1dzVu0F+7tHyo+0X4=</latexit> 2 = ⌫max X ⌫=0 Q(⌫, µ2 ) QFT(⌫, µ2 ) 2 Q , QFT(⌫, µ2 ) = Z 1 0 dx cos(⌫x)qv(x) PDF results 0 1 2 3 4 5 6 7 8 9 10 ∫ °0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Re[Q(∫, µ 2 )] 2-param 3-param Pz = 0 Pz = 1 Pz = 2 Pz = 3 Pz = 4 Pz = 5 Pz = 6 χ2 ∼ 2.3
  • 16. Full picture: -dependence x <latexit sha1_base64="ec+jDU0k1TeZXl/5C2j/fnt2hyI=">AAACWnicdVBdSxtBFJ1sa6urbWPtW18GgxDBht3QxOQhEPCljwqNCtlNmJ3c1SGzs9v5kIRhf01/TV/tU8Ef00lcwZR6YOBw7rn3zj1JwZnSQfCn5r16vfXm7faOv7v37v2H+v7HS5UbSWFEc57L64Qo4EzASDPN4bqQQLKEw1UyP1vVr+5AKpaL73pZQJyRG8FSRol20rQ+iDKibynh9qJsRsKcRJmZtI/xAEdM6Kn9EpYTG5azBYaJZc6AF+WP5qKyTeuNoBX2u/12GwetYA1Huv1ep9PFYaU0UIXz6X5tK5rl1GQgNOVEqXEYFDq2RGpGOZR+ZBQUhM7JDYwdFSQDFdv1nSU+csoMp7l0T2i8Vp93WJIptcwS51xdpf6trcT/1cZGp73YMlEYDYI+LkoNxzrHq9DwjEmgmi8dIVQy91dMb4kkVLto/Y1R6+FUxhaMS3XjICelksxL3/ddcE/p4JfJZbsVdlrBxdfGcFhFuI0+o0PURCE6RUP0DZ2jEaLoJ/qF7tHv2oPneTve7qPVq1U9B2gD3qe/VIO0Yg==</latexit> Q(⌫, µ2 ) = Z 1 1 dxei⌫x q(x, µ2 ) discrete data in -space ν continuous function in -space x <latexit sha1_base64="s43+tV+ttccgFKZTQDnTszK+27k=">AAACZHicdVBda9RAFJ2N1tZYdWvxSZCLi7AFWZLFrl2hUPBBH1tx28ImDZPZm3bYySSdj7JLyE/qr/FJ0Fd/h5NtBFf0wMCZc+69M/ekpeDaBMG3jnfv/saDza2H/qPtx0+edneenerCKoYTVohCnadUo+ASJ4YbgeelQpqnAs/S+YfGP7tBpXkhv5hliXFOLyXPOKPGSUn3YxWpHD5jHb2JcmquGBXVSd2PpHV3ezHcg0OIuDRJcBHCbAERK3TjwmIPrpOb/qItS7q9YBCOR+PhEIJBsIIjo/HB/v4IwlbpkRbHyU5nI5oVzOYoDRNU62kYlCauqDKcCaz9yGosKZvTS5w6KmmOOq5WG9fw2ikzyArljjSwUv/sqGiu9TJPXWWzlf7ba8R/eVNrsoO44rK0BiW7eyizAkwBTXww4wqZEUtHKFPc/RXYFVWUGReyvzZqNZypuELrUl1byEmZovPa930X3O904P/kdDgIR4Pg5G3v6H0b4RZ5QV6RPgnJO3JEPpFjMiGM3JKv5Dv50fnpbXu73vO7Uq/T9uySNXgvfwGkqLcY</latexit> Re Q(⌫, µ2 ) = Z 1 0 dx cos(⌫x)qv(x, µ2 ) valence quark distribution: 0.0 0.2 0.4 0.6 0.8 1.0 x 0 1 2 3 4 5 6 q v (x) CJ15 MSTW NNPDF q (3) v (x) 0.0 0.2 0.4 0.6 0.8 1.0 x 0 1 2 3 4 5 6 q v (x) q (2) v (x) q (3) v (x) CJ15: A. Accardi et. al. arXiv: 1602.03154 MSTW: A.D.Martin etl al. arXiv: 0901.0002 NNPDF: R.D.Ball et. al. arXiv: 1706.00428 Inverse problem! Way around: ‣ choose a physically meaningful functional form for ‣ introduce model bias in determination, but… ‣ general form: i) 2-parameter fit: ii) 3-parameter fit: q(x, μ2 ) α, β ≠ 0, γ, δ = 0 α, β, δ ≠ 0, γ = 0 <latexit sha1_base64="NIw3nN6MJgQRlsFY51X2P+E1QmU=">AAACqHicdVFdb9MwFHUCgxE+1sEDD7wYKqSWbiUprKwPoAleeCwSXYearLpxndaqnWS2M6WK8gv2C/cz+Ae4aRgrgitZOjrn3Gv73DDlTGnXvbbsO3d37t3ffeA8fPT4yV5j/+mpSjJJ6IgkPJFnISjKWUxHmmlOz1JJQYScjsPll7U+vqRSsST+rlcpDQTMYxYxAtpQ08bVxfSylbfxR+xHEkiRn/vA0wW0vMO8fe6HVBvY8ecgBPjqQuoiLzv+jHINOG+XxefWxt/xDipzx2vXbnwjvXvbuyVuem/EP1I5bTTdrjfoD3o97HbdqgzoD46PjvrYq5kmqms43bd2/FlCMkFjTTgoNfHcVAcFSM0Ip6XjZ4qmQJYwpxMDYxBUBUWVWolfG2aGo0SaE2tcsbc7ChBKrURonAL0Qv2trcl/aZNMR8dBweI00zQmm4uijGOd4PUK8IxJSjRfGQBEMvNWTBZg0tdmUc7WqGo4kUFBMwJ860OGMhtblo7jmOB+p4P/D057Xa/fdb+9b558qiPcRS/QK9RCHvqATtBXNEQjRNBP67mFrZf2G3toj+0fG6tt1T3P0FbZ4S+xocwD</latexit> qv(x) = x↵ (1 x) (1 + p x + x) B(↵ + 1, + 1) + B(↵ + 3/2, + 1) + B(↵ + 2, + 1) : beta-function B(i, j) <latexit sha1_base64="21L9iKzfhLn/lpdw4rNnqmdi5e0=">AAACt3icdVFda9swFJW9deu8r3R73MtlYSOBLLXNmjWMjsJg7LGBpi1EtlEUORGxZFeSS4LxH9k/27+ZnGTQjO6C0NG5515J506LjGvj+78d99HjgydPD595z1+8fPW6dfTmSuelomxM8yxXN1OiWcYlGxtuMnZTKEbENGPX0+X3Jn99x5Tmubw064JFgswlTzklxlJJ6xemCx6HcAZYlyKpsCzP/DpudntQAgRZ1TXgVBFajTqW7mFRxmEXPsFoq/hxWd/j6wprPhckGcVhjXs9/PVhXXMjlybx4wBmK8A019CkYdWF2+Sus+omrbbfD4aDYRiC3/c3YcFgeHpyMoBgx7TRLi6SI+cAz3JaCiYNzYjWk8AvTFQRZTjNWO3hUrOC0CWZs4mFkgimo2pjYg0fLDODNFd2SQMb9n5FRYTWazG1SkHMQv+ba8iHcpPSpKdRxWVRGibp9qK0zMDk0EwEZlwxarK1BYQqbt8KdEGs38bOzdtrtWlOVVSxkpJs70OWsjNa1p7nWeP+ugP/B1dhPxj0/dHn9vm3nYWH6B16jzooQF/QOfqJLtAYUQc5H51jx3eHbuKm7mIrdZ1dzVu0F+7tHyo+0X4=</latexit> 2 = ⌫max X ⌫=0 Q(⌫, µ2 ) QFT(⌫, µ2 ) 2 Q , QFT(⌫, µ2 ) = Z 1 0 dx cos(⌫x)qv(x) PRELIMINARY PDF results
  • 17. Conclusions Summary & Outlook ‣ Lattice QCD via pseudo-PDF framework: in good position to give reliable insight on nucleon PDFs ‣ Distillation: valuable alternative to standard smearing techniques ‣ controllable statistical uncertainties and excited state effects ‣ Some stretch between lattice and phenomenological -dependence exists: ‣ lattice artifacts finite volume and lattice spacing, non-physical simulations ‣ parametrization of PDFs be systematic: try different approaches, compare with other lattice evaluations On the horizon: ‣ results from two other ensembles, one at almost physical pion mass study volume effects, remove systematics ‣ plans for analyzing ensembles with smaller lattice spacing continuum extrapolation ‣ helicity, transversity distributions & GPDs on the way! ‣ coming soon: disconnected diagrams x → → → →
  • 18. Conclusions Summary & Outlook ‣ Lattice QCD via pseudo-PDF framework: in good position to give reliable insight on nucleon PDFs ‣ Distillation: valuable alternative to standard smearing techniques ‣ controllable statistical uncertainties and excited state effects ‣ Some stretch between lattice and phenomenological -dependence exists: ‣ lattice artifacts finite volume and lattice spacing, non-physical simulations ‣ parametrization of PDFs be systematic: try different approaches, compare with other lattice evaluations On the horizon: ‣ results from two other ensembles, one at almost physical pion mass study volume effects, remove systematics ‣ plans for analyzing ensembles with smaller lattice spacing continuum extrapolation ‣ helicity, transversity distributions & GPDs on the way! ‣ coming soon: disconnected diagrams x → → → → Thank you
  • 20. (Bonus!) Matrix elements Ensuring ground state dominance i) Plateau method 0.695 0.700 0.705 0.710 0.715 Pz = 1 , z3 = 1 tsep = 4a tsep = 6a tsep = 8a tsep = 10a tsep = 12a tsep = 14a Plateau fits °8 °6 °4 °2 0 2 4 6 8 [tins ° tsep/2]/a 0.210 0.212 0.214 0.216 0.218 Pz = 1 , z3 = 4 4 6 8 10 12 14 tsep/a Re[R(P z , z 3 )] Ratio of 3pt/2pt functions: <latexit sha1_base64="B0WpVQZDUMfB2zKuvzkTsak6BfQ=">AAACTHicdZBLSwMxFIUz9V1fVZdugkVQkCHTsVYRoeDGZRWrQluGTJrRYOZBckeow/xANy7c+SvcuFBEMK0t+LwQcjj3u3kcP5FCAyGPVmFsfGJyanqmODs3v7BYWlo+03GqGG+yWMbqwqeaSxHxJgiQ/CJRnIa+5Of+9WG/f37DlRZxdAq9hHdCehmJQDAKxvJK7GSj4d1u3XruPniZ5km+ZXYR6XwTH+B2oCjLDr2srULsJpCPYPyLzkdYZYQNic3cK5WJXXEdt+ZiYpNKbbvqGFHd2yG1XezYZFBlNKyGV3pod2OWhjwCJqnWLYck0MmoAsEkz4vt1BxM2TW95C0jIxpy3ckGYeR43ThdHMTKrAjwwP06kdFQ617oGzKkcKV/9vrmX71WCsFux3w2SYFH7POiIJUYYtxPFneF4gxkzwjKlDBvxeyKmgDB5F80IYx+iv8XZxXbqdrkeLtcrw/jmEaraA1tIAfVUB0doQZqIobu0BN6Qa/WvfVsvVnvn2jBGs6soG9VmPwA/a+z/g==</latexit> R(Pz, z3; tsep, tins) = C3pt(Pz, z3; tsep, tins) C2pt(Pz, tsep) ‣ for each , perform constant fits for multiple ranges ‣ decrease each fit range by one point on each side ‣ best fit: longest for which tsep χ2 ≤ 0.9
  • 21. (Bonus!) Matrix elements Ensuring ground state dominance 0.75 0.80 0.85 0.90 0.95 Pz = 3 , z3 = 0 ts = 4a ts = 6a ts = 8a ts = 10a ts = 12a ts = 14a Plateau fits Summ. linear 0.425 0.450 0.475 0.500 0.525 0.550 0.575 Pz = 3 , z3 = 2 0.08 0.09 0.10 0.11 0.12 0.13 Pz = 3 , z3 = 5 °8 °6 °4 °2 0 2 4 6 8 [tins ° ts/2]/a 0.005 0.010 0.015 0.020 0.025 Pz = 3 , z3 = 8 4 6 8 10 12 14 ts/a 4 6 8 tlow s /a Re[R(P z , z 3 )] 0.022 0.023 0.024 0.025 0.026 Pz = 1 , z3 = 1 ts = 4a ts = 6a ts = 8a ts = 10a ts = 12a ts = 14a Plateau fits Summ. linear 0.033 0.034 0.035 0.036 0.037 0.038 0.039 Pz = 1 , z3 = 2 0.024 0.025 0.026 0.027 0.028 0.029 Pz = 1 , z3 = 5 °8 °6 °4 °2 0 2 4 6 8 [tins ° ts/2]/a 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110 Pz = 1 , z3 = 8 4 6 8 10 12 14 ts/a 4 6 8 tlow s /a Im[R(P z , z 3 )]