SlideShare a Scribd company logo
Very Low Temperature Anemometry
Device microfabrication
13/07/2017 Hot Wire Anemometer - CVD 1
Hot Wire Anemometer
Hot Wire Anemometer - CVD 213/07/2017
Hot Wire Anemometery :
measure of the amount of heat transferred from a metallic wire
heated by joule effect and the flowing fluid
In the stationary state there is balance between:
• Joule effect
• Forced convection
• Other heat transfert mechanisms (usually neglected)
If the elecrical resistance of the wire changes with the
temperature it is possible to evaluate the fluid velocity :
!"#$%
& '():
+,
+, − +.
/0
= 2 + 4 5
Several possible configurations:
• CCA (Constant Current)
• CTA (Constant Temperature)
• …
I
U L≈1mm
d≈1÷10μm
Smaller devices could have better resolution :
• Mass↘ → temporal resolution↗
• Length↘ → spatial resolution↗
with l/d>>200 in order to neglect thermal conduction
Micromachined anemometer
(NSTAP – Nano-Scale Thermal Anemometry Probe)
« Fabrication and characterization of a novel Nanoscale thermal anemometry probe »
M.Vallikivi, A. J. Smits
IEEE Journal of microelectromechanical systems
L≈ 50÷100μm
d≈1÷4μm
e≈100nm
Fabrication process
Hot Wire Anemometer - CVD 313/07/2017
1
Substrate
preparation
2
Wire
deposition
(layer 1)
3
Contact pads
deposition
(layer 1B)
4
Backside
etching
(layer 2 )
5
Wire
release
Masks
Hot Wire Anemometer - CVD 413/07/2017
Mask 1 :
wires
Mask 2 :
prongs
Mask 1B :
contact Pads
Hot Wire Anemometer - CVD 513/07/2017
substrat
• Wafer Si 4 pouces
Substrat
ALD
• ALD : 5/10 nm Al2O3 (optional)
PECVD
• PECVD : 300/500/1000 nm SiO2
• Substrat : wafer Si 4 inch
– Thickness 500 ±25µm or 400 ±25µm
trade-off between mechanical resistance and ease of fabrication
– Single or double side polished
(single side polished is enough)
• Etch stop : Aluminum oxide
– Up to 20nm Al2O3 by Atomic Layer Deposition
it will protect the membrane from chemical etching by fluoride
during Reactive Ion Etching
But : we have to etch it at the end of the process (chlorine
plasma, TMAH, …)
• Membrane : Silicon Oxide
– Up to 1000 nm SiO2 by Plasma Enhanced Chemical Vapor Deposition
Easy to deposit, but brittle and stressed film (compression)
– Alternatives :
Thermal silicon oxide (constraining, alumina etch stop would not
be possible)
Silicon nitride by LPCVD (more difficult fabrication process)
Compensated Silicon nitride by PECVD (not readily available)
Reminder: Lift-off
Hot Wire Anemometer - CVD 613/07/2017
Positive resist double layer lift-off
1 - Optical lithography
2 - Metal Deposition3 - Cleaning
a. Lift-Off Resist (LOR)
spin coating
b. Positive resist
spin coating
c. UV Exposition
d. Development
And LOR etching
Hot Wire Anemometer - CVD 713/07/2017
e-beam
evaporation
•Etch Ar+ : 24s@250V
•Ti : 10nm @0,1nm/s
•Pt : 100nm @0,1nm/s
Lift-off
• Soak : Acétone
• IPA + US rinsing
• N2 drying
• soak : AZ326MIF
• EDI rinsing
• N2 drying
• Solvent cleaning
• Dehydration : 2min@150°C
• LOR10A: 4000/2000/50
• Bake : 5min @170°C
• UV5(0,6) : 4000/2000/60
• Bake : 1min 30sec @130°C
• Exposure MJB4 DUV : 1,3ec:
• Bake : 1min @130°C
• soak : 2min en AZ326MIF
• EDI rinsing
• N2 drying
DUV
Lithography
Pt wires by evaporation
SiO2
LOR+UV5
SiO2
Pt
Double layer lithography After lift-off:
Pt
Pt
After e-beam evaporation:
e-
e-beam evaporation
Pt wires by evaporation
Hot Wire Anemometer - CVD 813/07/2017
Suspended Pt layers
PtSi
SiO2
Pt
Transversal image
Structure Zone Model
In « zone T » :
• Competitive growth
• Inhomogeneous film
« granular » layer
The layer structure is determined by
kinetic limitations :
• Nucleation
• Cristal growth
• Grain growth
Tdeposition / Tmelting
Si
SiO2
Pt
!"#
!$
= &' − &#
)#
1 − +#
T↘
• Intrinsic stress :
it comes from the structure of the layer and it is linked to the
deposition process
In evaporated polycristallin films it comes from the coalescence of
cristals → quite important for Pt layers
Pt stress and brittleness
Hot Wire Anemometer - CVD 913/07/2017
• Evaporated thin Pt films are brittle
Pt
« Nanoscale size effects on the mechanical properties of platinum thin films and cross-
sectional grain morphology »
K. Abbas et al., J.Micromrch. Mictoeng. 26 (2016) 015007
• Thermal stress :
The film is made at a different temperature than the temperature
at which the device will be used. Differences in linear thermal
expansion coefficient between film and substrate induce a stress in
the film
« Stress and strain in polycrystalline thin films»
G.C.A.M. Janssen, Thin Solid Film 515 (2017) 6654-6664
Lowering the temperature the film will develop a tensile if it wants
to shrink more than the substrate allows it.
Pt - What can we do?
Hot Wire Anemometer - CVD 1013/07/2017
•Decrease the deposition rate :
• This should reduce the stress level of the Pt layer
•Increase the thickness:
• Stress modification
• The layer should be less brittle
•Heat the substrate during deposition / Bake :
• Recrystallization of the layer
• Increase the grain size
•Change the wire design :
• In order to allow deformation of the wire
•Change material
• We can try to use another metal
(Au? Ni? W?)
•Change deposition technique :
• Sputtering for compressive layer
To improve reliabity :
Pt PROBLEM :
Pt wires can work at room
temperature
BUT
they break at low
temperature
Hot Wire Anemometer - CVD 1113/07/2017
e-beam
evaporation
•Etch Ar+ : 24s@250V
•Ni : 100/400nm @0,25nm/s
Lift
Lithography
Ni wires by evaporation
AFC21
AFC24 AFC28 :
Ti/Ni/Ti
AFC29 :
Cr/Ni/Cr
Adhesion problem :
Interface layer is
needed
Hot Wire Anemometer - CVD 1213/07/2017
Pulvérisation
•Ti : 5000nm
PDC : 300-500W
p : 3-5 10-3mbar
Lift
Lithographie
Ti wires by sputtering
Double layer lithography After lift-off:After e-beam evaporation:
Energetic particle bombardment of the
layer during deposition can generate a
compressive stress of the layer. This is
suitable for our devices, in order to
compensate thermal stress.
The main parameter that control atomic
peening is pressure during deposition.
Lowering the pressure leads to a higher
polarization voltage for a given current
and an higher mean free path for
particles in the chamber, which means
more energetic particles striking the
surface of the layer.
ATOMIC PEENING:
Ar
-
+
Sputtering
Hot Wire Anemometer - CVD 1313/07/2017
Ti wires by sputtering - SEM
p↗
P↘
AFC27
AFC31
AFC31
PDC : 500W
p : 3*10-3mbar
AFC27
AFC27
AFC27
AFC26
PDC : 300W
p : 5*10-3mbar
Hot Wire Anemometer - CVD 1413/07/2017
Au pads
Evaporation
•Etch Ar+ : 24s@250V
•Ti : 10nm @0,1nm/s
•Au : 200nm @0,1÷ 0,5nm/s
lift
• Acetone soak
• IPA with US rinse
• N2drying
• AZ326MIF soak
• EDI rinsing
• N2 drying
• Solvent cleaning
• Dehydration : 2min@150°C
• LOR10A: 4000/2000/50
• Bake : 5min @170°C
• AZ1512HS: 4000/2000/60
• Bake : 1min 30sec @100°C
• Alignment
• Exposure MJB4 UV : 25sec
• 2min30 sec in AZ326MIF
• EDI rinsing
• N2 Drying
Lithographie
UV
PbSn and Au are a ternary eutectic
systems : when you put melted
PbSn on the Au pad you melt the
layer
• Add a coating on the pad
(e.g. Cr : 10nm @0,1nm/s)
• Use another solder (silver
conductive glue or other )
Pt
LOR+UV5
Au
Optional step:
Au contact pads in order to reduce the
series resistance of the wire
PROBLEM
Pb-Sn welding on Au :
Double layer lithography After lift-off:
Hot Wire Anemometer - CVD 1513/07/2017
Reminder : Deep Reactive Ion Etching
(DRIE)
Litho Bosch cycle…… clean
Passivation
Etching
Boost
Anisotropic
etching of CF-
polymer
Main
Isotropic etching
of silicon
isotropic
deposicion of CF-
polymer
Etching mask
fabrication
(usually thick resist or hard
mask)
Repetition of bosch
cycle
parameter adjustment could be
necessary
CF- polymer and etching mask
removal
..…repeat
Back side shaping
Hot Wire Anemometer - CVD 1613/07/2017
1. DRIE
0
50
100
150
200
250
0 50 100 150 200
Depth(µm)
width (µm)
ARDE - Aspect Ratio Dependent Etching
2. isotropic etch
3. cleaning
4. smoothing
Hot Wire Anemometer - CVD 1713/07/2017
Back side: prongs (1)
Prongs
Structuration
• DRIE with ramping to etch
properly almost through the
entire wafer
• “soft” DRIE to reach the SiO2
layer
• Solvent cleaning
• Dehydration bake: 2min@150°C
• HMDS (back) : 4000/2000/50
• Bake : 1min @110°C
• AZ4562 (back) : 4000/2000/70
• Bake : 5min @110°C
• AZ4562 (front) : 4000/2000/90
• Bake : 2min @110°C
• Back face alignement
• Exposition MA8 :20sec
• 3-4 min en AZ326MIF
• EDI rinsing
• drying N2
Backside
Lithography
•Control the slope in
order to keep the Si
structure as lond as
possible
•Avoid « grass »
formation
Litho : During DRIE
Focus
« Up»
Focus
« down »
Hot Wire Anemometer - CVD 1813/07/2017
Back side: prongs (2)
Nettoyage
• O2 plasma cleaning
Fin gravure
et lissage
• Isotropic etch 1 to attack the Si
sacrificial structure
• Isotropic etch 2 to smooth the
surfaces without damaging the
SiO2 membrane
•Do not damage the
Si02 layer
•Fixation method of
the sample on the
holder has to be
improved for a
better thermal
contact
Nettoyage
• O2 palsma cleaning
Nettoyage
• Plasma O2 cleaning (front)
Probe release
Hot Wire Anemometer - CVD 1913/07/2017
HF vapor
• Dehydration : 5 min @170°C
•HF vapor 100/150 nm
retrieving
• Retrieve the devices by
breaking the links
Si
SiO2
Pt
Before HF etching After HF etching
After HF etching
Probe release – new samples
Hot Wire Anemometer - CVD 2013/07/2017
AFC30
AFC31
Sputtered Ti (AFC30, AFC31).
New mask 2 - without links between wafer
and sensors.
The sensors stands on the silicon membrane
until HF-vapor etching .
Much better yield (up to 59 chips over 60)
Probe release – new samples
Hot Wire Anemometer - CVD 2113/07/2017
Shaped prongs
Hot Wire Anemometer - CVD 2213/07/2017
canne cryogénique
Tests
Hot Wire Anemometer - CVD 2313/07/2017
Puces montées sur leur support
Tête de la canne cryogénique
Pour l’immersion des puces dans le He liquide et
la mésure de résistance et température
Intérieur du cryostat d’étalonnage
la puce tourne à vitesse connue pour
simuler l’écoulement et retrouver les
paramètres de la loi de King
canne cryogénique Cryostat d’étalonnage
What to do ?
Hot Wire Anemometer - CVD 2413/07/2017
•Optimize DRIE parameters:
•We should keep in place the Si Structure as long as possible
•Modify Mask 2
•Inhomogeneities compensation
•Get rid of useless parts in the mark
•Reshape the links between probes and wafer ?.
•Increase etch selectivity towards SiO2
•Modify the etching parameters
•Bake the substrate
•Increase thickness
•etch-stop
•Effects on the stress levels should be verified
•Improve sample mounting and cleaning in the ICP :
•Better thermal contact during etch
•Avoid polymer redeposition on the front
•Use ar non-metallic material for the wires
•e.g. : insulating NbN
We can deposit it by reactive sputtering at SBT
Matthiessen’s law « non-métallic »
resistivity
T
ρ
0 T
ρ
0
• Improve sensibility at low temperature
• Improve mechanical reistance
→ New substracive process needed
(deposition-lithography-etching)
Hot Wire Anemometer - CVD 2513/07/2017
The End
Labs
Hot Wire Anemometer - CVD 2613/07/2017
CEA
INAC (Institute for Nanoscience and Cryogenics)
SBT (Low Temperatures service)
LRTH (Refrigeration and Thermohydraulics Laboratory)
“Turbulence” group
Main interest :
behavior of helium at very high Reynolds number
r est un nombre entre 0 et ½ qui
indique l’inverse du nombre dans
lequel se scindent les tourbillons.
η est l’échelle de dissipation.
Pour SHREK elle est de l’ordre du
micron jusqu’à quelques dizaines
SHREK
700m2 class 1000 (ISO 6) clean room
• 350m2 at 10.05
• 350m2 at BCAi (50A),
More infos : pta-grenoble.com
→ Lithography
→ Deposition
→ Etching
→ Caracterisation
Plateforme
Technologique
Amont
• masse↘ → résolution temporelle↗
• longueur ↘ → résolution spatiale ↗
avec l/d>>200 pour minimiser la conduction
thermique
Anémomètre à fil chaud
Hot Wire Anemometer - CVD 2713/07/2017
Fil métallique résistif traversé par un courant dans un fluide en
mouvement → refroidissement éolien (wind chill)
Dans un état stationnaire, on a équilibre entre :
• Effet joule
• Convection forcé
• …
Si la résistance du fil varie avec la température on peut évaluer
la vitesse du fluide :
!"# $% &#'( ∶
*+
*+ − *-
./
= 1 + 3 4
Différents montages possibles :
• CCA (Constant Current)
• CTA (Constant Temperature)
• …
I
U
• Anémomètre microfabriqué
« Fabrication and characterization of a novel Nanoscale thermal anemometry probe »
M.Vallikivi, A. J. Smits
IEEE Journal of microelectromechanical systems
L≈1mm
d≈1÷10μm
L≈ 50÷100μm
d≈1÷4μm
e≈100nm
Bilan de puissance
Hot Wire Anemometer - CVD 2813/07/2017
I
U
L≈1mm
d≈1÷10μm
Dissipation de la chaleur :
• Conduction vers le fluide
• Convection vers le fluide
• Conduction vers les supports
• Rayonnement thermique
On peut négliger les derniers deux
Flux de chaleur (loi de Fourier) :
!" = −%&'(
À intégrer sur A=πdL
̇* = +
,
!"-. = ℎ. (0 − (1
h=coef de transfert
Fil métallique résistif traversé par un courant dans un
fluide en mouvement → refroidissement éolien (wind
chill)
Principe : la puissance importée par le fluide donne une
mesure indirecte de la vitesse du fluide
Bilan de puissance :
23
24
= ̇W − ̇Q
Où:
•
23
24
: variation d’énergie stockée sous forme de
chaleur dans le fil
• ̇W = 70 89 : puissance dissipée par effet Joule
• ̇Q : puissance transférée depuis le fil vers l’exterieur
Nombre de Nusselt (Nu)
Hot Wire Anemometer - CVD 2913/07/2017
I
U
L≈1mm
d≈1÷10μm
Nombre de Nusselt :
!" =
ℎ %
&'
Efficacité du transport par convection par rapport
à la conduction
!" =
(")**+,-. /0+,*1é0é. /3/+4.
(")**+,-. /0+,*1é0é. (+0 -3,%"-/)3,
̇6 = 7
!" &'
%
89 − 8; = π 4 &' 89 − 8; !"
Le bilan devient :
dE
dt
= @9AB − π 4 &' 89 − 8; !"
Si CDE
CF
G; alors
MN
MO
= 0
Donc
@9AB = π 4 &' 89 − 8; !"
il faut savoir comment varie Nu en
fonction de U
Nu=Nu(Re)
Hot Wire Anemometer - CVD 3013/07/2017
Nombre de Reynold basé sur le fil !"# :
!"# =
% &
'(
Où
• % : vitesse « à l’infini » (quelque d à l’amont du fil )
• '( : viscosité cinématique à la température du film
On va considérer que Nu ne dépend que de Re.
Pour un nombre de Pradl )* = ⁄,
- ≃ 1
On a 0 ≃ 01
Avec les hypothèses d ’écoulement 2D potentiel et
stationnaire :
Lois de KING :
Nu = 1 + 2 6 !"7#
NB : Nu ∝ !"#
⁄9 :
→ écoulement laminaire ( à l’échelle
du fil)
Avec des Hypothèses moins restrictives :
Loi de KRAMER :
Nu = 0,42 )* ⁄9 >
+ 0,57 !#
⁄9 :
)* ⁄9 A
En général :
BC = DE + FE !"#
Le bilan devient :
!#G:
= π I J( K# − KE M
N
DE
+ FE !"#
Expérimentalement on a accès
à " = !#G
Si !# = !# K on peut avoir
accès à la température du fil
Nu=Nu(Re)
Hot Wire Anemometer - CVD 3113/07/2017
Relation fondamentale de
l’anémométrie
Loi de King
!"#$
!" − !&
= ( + * +
Avec :
( =
, - ./
0 !&
(&
* =
, - ./
0 !&
1
23
*&
Pour une dépendance
linéaire :
!" 4
= !& 1 + 0 4" − 4&
⇒ 4" − 4& =
!" − !&
0 !&
Avec 0 =
7
89
:89
:;

More Related Content

What's hot

Strain guage
Strain guageStrain guage
Strain guage
sam shivhare
 
Radiation pyrometer
Radiation pyrometerRadiation pyrometer
Radiation pyrometer
Vivek5103
 
Measuring instruments
Measuring instrumentsMeasuring instruments
Measuring instrumentsSayyed Raza
 
Temperature measurement part II
Temperature measurement   part IITemperature measurement   part II
Temperature measurement part II
Burdwan University
 
mechanical guages for pressure measuring
mechanical guages for pressure measuringmechanical guages for pressure measuring
mechanical guages for pressure measuring
sunny_19
 
Force measurement
Force measurementForce measurement
Force measurement
Er Ashvin Deogade
 
strain measurement
strain measurement strain measurement
strain measurement
SagnikChakraborty22
 
“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors
“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors
“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors
Er. Ashish Pandey
 
thermocouple ppt
thermocouple pptthermocouple ppt
thermocouple ppt
Shyamakant Sharan
 
Strain Gauges
Strain GaugesStrain Gauges
Strain Gauges
Ridwanul Hoque
 
Pyrometer
PyrometerPyrometer
Piezoelectric transducer and its working
Piezoelectric transducer and its workingPiezoelectric transducer and its working
Piezoelectric transducer and its working
karoline Enoch
 
Thermocouple
ThermocoupleThermocouple
Thermocouple
Keshava Krishnan
 
Strain Gauge: Principle, Types, Features and Applications
Strain Gauge: Principle, Types, Features and ApplicationsStrain Gauge: Principle, Types, Features and Applications
Strain Gauge: Principle, Types, Features and Applications
Arushi Bhalla
 
Force and torque measurement
Force and torque measurementForce and torque measurement
Force and torque measurement
GAURAVBHARDWAJ160
 
Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)
Shubham Mohindru
 
RTD
RTDRTD
Indicating instruments
Indicating instrumentsIndicating instruments
Indicating instrumentsKausik das
 

What's hot (20)

Strain guage
Strain guageStrain guage
Strain guage
 
Radiation pyrometer
Radiation pyrometerRadiation pyrometer
Radiation pyrometer
 
Measuring instruments
Measuring instrumentsMeasuring instruments
Measuring instruments
 
Temperature measurement part II
Temperature measurement   part IITemperature measurement   part II
Temperature measurement part II
 
mechanical guages for pressure measuring
mechanical guages for pressure measuringmechanical guages for pressure measuring
mechanical guages for pressure measuring
 
Force measurement
Force measurementForce measurement
Force measurement
 
strain measurement
strain measurement strain measurement
strain measurement
 
Rtd
RtdRtd
Rtd
 
“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors
“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors
“Temperature Sensors” Thermocouple | Thermistor | Resister Temperature Detectors
 
thermocouple ppt
thermocouple pptthermocouple ppt
thermocouple ppt
 
Strain Gauges
Strain GaugesStrain Gauges
Strain Gauges
 
Pyrometer
PyrometerPyrometer
Pyrometer
 
Piezoelectric transducer and its working
Piezoelectric transducer and its workingPiezoelectric transducer and its working
Piezoelectric transducer and its working
 
Thermocouple
ThermocoupleThermocouple
Thermocouple
 
Strain Gauge: Principle, Types, Features and Applications
Strain Gauge: Principle, Types, Features and ApplicationsStrain Gauge: Principle, Types, Features and Applications
Strain Gauge: Principle, Types, Features and Applications
 
Force and torque measurement
Force and torque measurementForce and torque measurement
Force and torque measurement
 
Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)Permanent Magnet Moving Coil (PPMC)
Permanent Magnet Moving Coil (PPMC)
 
RTD
RTDRTD
RTD
 
Transducers
TransducersTransducers
Transducers
 
Indicating instruments
Indicating instrumentsIndicating instruments
Indicating instruments
 

Similar to Hot wire Anemometer: microfabrication

Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...
Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...
Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...
KEMET Electronics Corporation
 
MLCC Automotive Trends Webinar
MLCC Automotive Trends WebinarMLCC Automotive Trends Webinar
MLCC Automotive Trends Webinar
Randall Ghany
 
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsDevelopment of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
KEMET Electronics Corporation
 
ASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil Reliability
ASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil ReliabilityASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil Reliability
ASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil Reliability
Fluxtrol Inc.
 
Heat treatment 2 dr.sss
Heat treatment 2 dr.sssHeat treatment 2 dr.sss
Heat treatment 2 dr.sss
saravana kumar
 
Unit 2
Unit 2Unit 2
Unit 2
Unit 2Unit 2
UNIT 2.pptx
UNIT 2.pptxUNIT 2.pptx
UNIT 2.pptx
KawinKit
 
2015NNINreuRA_King
2015NNINreuRA_King2015NNINreuRA_King
2015NNINreuRA_KingAndrew King
 
THERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESTHERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSES
ravikumarmrk
 
11.00 dhr Lauwers
11.00 dhr Lauwers11.00 dhr Lauwers
11.00 dhr LauwersThemadagen
 
SiC FOR HIGH TEMPERATURE APPLICATIONS
SiC FOR HIGH TEMPERATURE APPLICATIONSSiC FOR HIGH TEMPERATURE APPLICATIONS
SiC FOR HIGH TEMPERATURE APPLICATIONS
SOUMEN GIRI
 
Heat treatment 2
Heat treatment 2Heat treatment 2
Heat treatment 2
senthamarai kannan
 
Plasma arc machining 5 unit
Plasma arc machining 5 unitPlasma arc machining 5 unit
Plasma arc machining 5 unit
DrPrashanthaS1
 
Plasma arc machining 5 unit
Plasma arc machining 5 unitPlasma arc machining 5 unit
Plasma arc machining 5 unit
DrPrashanthaS1
 
Chapter5_Oxidation.ppt
Chapter5_Oxidation.pptChapter5_Oxidation.ppt
Chapter5_Oxidation.ppt
TungVDuy
 
CT TUBES AND ITS TYPES.pptx...............
CT TUBES AND ITS TYPES.pptx...............CT TUBES AND ITS TYPES.pptx...............
CT TUBES AND ITS TYPES.pptx...............
justinfan550
 
Laser cladding applications for valve manufacturing
Laser cladding applications for valve manufacturingLaser cladding applications for valve manufacturing
Laser cladding applications for valve manufacturing
Lambrecht Jan
 
Laser Cladding for Valve Applications
Laser Cladding for Valve ApplicationsLaser Cladding for Valve Applications
Laser Cladding for Valve Applications
Tom De Bruyne
 

Similar to Hot wire Anemometer: microfabrication (20)

Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...
Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...
Comparison Between Solders & Transient Liquid Phase Sintered Interconnects in...
 
MLCC Automotive Trends Webinar
MLCC Automotive Trends WebinarMLCC Automotive Trends Webinar
MLCC Automotive Trends Webinar
 
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCsDevelopment of Transient Liquid Phase Sintering (TLPS) for MLCCs
Development of Transient Liquid Phase Sintering (TLPS) for MLCCs
 
ASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil Reliability
ASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil ReliabilityASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil Reliability
ASM 2013 Fluxtrol Presentation - Enhancing Inductor Coil Reliability
 
Heat treatment 2 dr.sss
Heat treatment 2 dr.sssHeat treatment 2 dr.sss
Heat treatment 2 dr.sss
 
Unit 2
Unit 2Unit 2
Unit 2
 
Unit 2
Unit 2Unit 2
Unit 2
 
UNIT 2.pptx
UNIT 2.pptxUNIT 2.pptx
UNIT 2.pptx
 
2015NNINreuRA_King
2015NNINreuRA_King2015NNINreuRA_King
2015NNINreuRA_King
 
ResearchSummary
ResearchSummaryResearchSummary
ResearchSummary
 
THERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESTHERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSES
 
11.00 dhr Lauwers
11.00 dhr Lauwers11.00 dhr Lauwers
11.00 dhr Lauwers
 
SiC FOR HIGH TEMPERATURE APPLICATIONS
SiC FOR HIGH TEMPERATURE APPLICATIONSSiC FOR HIGH TEMPERATURE APPLICATIONS
SiC FOR HIGH TEMPERATURE APPLICATIONS
 
Heat treatment 2
Heat treatment 2Heat treatment 2
Heat treatment 2
 
Plasma arc machining 5 unit
Plasma arc machining 5 unitPlasma arc machining 5 unit
Plasma arc machining 5 unit
 
Plasma arc machining 5 unit
Plasma arc machining 5 unitPlasma arc machining 5 unit
Plasma arc machining 5 unit
 
Chapter5_Oxidation.ppt
Chapter5_Oxidation.pptChapter5_Oxidation.ppt
Chapter5_Oxidation.ppt
 
CT TUBES AND ITS TYPES.pptx...............
CT TUBES AND ITS TYPES.pptx...............CT TUBES AND ITS TYPES.pptx...............
CT TUBES AND ITS TYPES.pptx...............
 
Laser cladding applications for valve manufacturing
Laser cladding applications for valve manufacturingLaser cladding applications for valve manufacturing
Laser cladding applications for valve manufacturing
 
Laser Cladding for Valve Applications
Laser Cladding for Valve ApplicationsLaser Cladding for Valve Applications
Laser Cladding for Valve Applications
 

More from davidecamm

Ponts Nitrure de Niobium
Ponts Nitrure de NiobiumPonts Nitrure de Niobium
Ponts Nitrure de Niobium
davidecamm
 
Cuivre hipims
Cuivre hipimsCuivre hipims
Cuivre hipims
davidecamm
 
dépôt d'oxyde d'oxyde de d'indium-étain
dépôt d'oxyde d'oxyde de d'indium-étaindépôt d'oxyde d'oxyde de d'indium-étain
dépôt d'oxyde d'oxyde de d'indium-étain
davidecamm
 
Anode Silicium por cellules à colorants
Anode Silicium por cellules à colorantsAnode Silicium por cellules à colorants
Anode Silicium por cellules à colorants
davidecamm
 
Dopage Laser de Ge et Si - Projet fin étude
Dopage Laser de Ge et Si - Projet fin étudeDopage Laser de Ge et Si - Projet fin étude
Dopage Laser de Ge et Si - Projet fin étudedavidecamm
 
épitaxie latérale de Ge sur Si oxydé - Soutenance thèse
épitaxie latérale de Ge sur Si oxydé - Soutenance thèseépitaxie latérale de Ge sur Si oxydé - Soutenance thèse
épitaxie latérale de Ge sur Si oxydé - Soutenance thèsedavidecamm
 

More from davidecamm (6)

Ponts Nitrure de Niobium
Ponts Nitrure de NiobiumPonts Nitrure de Niobium
Ponts Nitrure de Niobium
 
Cuivre hipims
Cuivre hipimsCuivre hipims
Cuivre hipims
 
dépôt d'oxyde d'oxyde de d'indium-étain
dépôt d'oxyde d'oxyde de d'indium-étaindépôt d'oxyde d'oxyde de d'indium-étain
dépôt d'oxyde d'oxyde de d'indium-étain
 
Anode Silicium por cellules à colorants
Anode Silicium por cellules à colorantsAnode Silicium por cellules à colorants
Anode Silicium por cellules à colorants
 
Dopage Laser de Ge et Si - Projet fin étude
Dopage Laser de Ge et Si - Projet fin étudeDopage Laser de Ge et Si - Projet fin étude
Dopage Laser de Ge et Si - Projet fin étude
 
épitaxie latérale de Ge sur Si oxydé - Soutenance thèse
épitaxie latérale de Ge sur Si oxydé - Soutenance thèseépitaxie latérale de Ge sur Si oxydé - Soutenance thèse
épitaxie latérale de Ge sur Si oxydé - Soutenance thèse
 

Recently uploaded

WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 

Recently uploaded (20)

WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 

Hot wire Anemometer: microfabrication

  • 1. Very Low Temperature Anemometry Device microfabrication 13/07/2017 Hot Wire Anemometer - CVD 1
  • 2. Hot Wire Anemometer Hot Wire Anemometer - CVD 213/07/2017 Hot Wire Anemometery : measure of the amount of heat transferred from a metallic wire heated by joule effect and the flowing fluid In the stationary state there is balance between: • Joule effect • Forced convection • Other heat transfert mechanisms (usually neglected) If the elecrical resistance of the wire changes with the temperature it is possible to evaluate the fluid velocity : !"#$% & '(): +, +, − +. /0 = 2 + 4 5 Several possible configurations: • CCA (Constant Current) • CTA (Constant Temperature) • … I U L≈1mm d≈1÷10μm Smaller devices could have better resolution : • Mass↘ → temporal resolution↗ • Length↘ → spatial resolution↗ with l/d>>200 in order to neglect thermal conduction Micromachined anemometer (NSTAP – Nano-Scale Thermal Anemometry Probe) « Fabrication and characterization of a novel Nanoscale thermal anemometry probe » M.Vallikivi, A. J. Smits IEEE Journal of microelectromechanical systems L≈ 50÷100μm d≈1÷4μm e≈100nm
  • 3. Fabrication process Hot Wire Anemometer - CVD 313/07/2017 1 Substrate preparation 2 Wire deposition (layer 1) 3 Contact pads deposition (layer 1B) 4 Backside etching (layer 2 ) 5 Wire release
  • 4. Masks Hot Wire Anemometer - CVD 413/07/2017 Mask 1 : wires Mask 2 : prongs Mask 1B : contact Pads
  • 5. Hot Wire Anemometer - CVD 513/07/2017 substrat • Wafer Si 4 pouces Substrat ALD • ALD : 5/10 nm Al2O3 (optional) PECVD • PECVD : 300/500/1000 nm SiO2 • Substrat : wafer Si 4 inch – Thickness 500 ±25µm or 400 ±25µm trade-off between mechanical resistance and ease of fabrication – Single or double side polished (single side polished is enough) • Etch stop : Aluminum oxide – Up to 20nm Al2O3 by Atomic Layer Deposition it will protect the membrane from chemical etching by fluoride during Reactive Ion Etching But : we have to etch it at the end of the process (chlorine plasma, TMAH, …) • Membrane : Silicon Oxide – Up to 1000 nm SiO2 by Plasma Enhanced Chemical Vapor Deposition Easy to deposit, but brittle and stressed film (compression) – Alternatives : Thermal silicon oxide (constraining, alumina etch stop would not be possible) Silicon nitride by LPCVD (more difficult fabrication process) Compensated Silicon nitride by PECVD (not readily available)
  • 6. Reminder: Lift-off Hot Wire Anemometer - CVD 613/07/2017 Positive resist double layer lift-off 1 - Optical lithography 2 - Metal Deposition3 - Cleaning a. Lift-Off Resist (LOR) spin coating b. Positive resist spin coating c. UV Exposition d. Development And LOR etching
  • 7. Hot Wire Anemometer - CVD 713/07/2017 e-beam evaporation •Etch Ar+ : 24s@250V •Ti : 10nm @0,1nm/s •Pt : 100nm @0,1nm/s Lift-off • Soak : Acétone • IPA + US rinsing • N2 drying • soak : AZ326MIF • EDI rinsing • N2 drying • Solvent cleaning • Dehydration : 2min@150°C • LOR10A: 4000/2000/50 • Bake : 5min @170°C • UV5(0,6) : 4000/2000/60 • Bake : 1min 30sec @130°C • Exposure MJB4 DUV : 1,3ec: • Bake : 1min @130°C • soak : 2min en AZ326MIF • EDI rinsing • N2 drying DUV Lithography Pt wires by evaporation SiO2 LOR+UV5 SiO2 Pt Double layer lithography After lift-off: Pt Pt After e-beam evaporation: e- e-beam evaporation
  • 8. Pt wires by evaporation Hot Wire Anemometer - CVD 813/07/2017 Suspended Pt layers PtSi SiO2 Pt Transversal image Structure Zone Model In « zone T » : • Competitive growth • Inhomogeneous film « granular » layer The layer structure is determined by kinetic limitations : • Nucleation • Cristal growth • Grain growth Tdeposition / Tmelting Si SiO2 Pt
  • 9. !"# !$ = &' − &# )# 1 − +# T↘ • Intrinsic stress : it comes from the structure of the layer and it is linked to the deposition process In evaporated polycristallin films it comes from the coalescence of cristals → quite important for Pt layers Pt stress and brittleness Hot Wire Anemometer - CVD 913/07/2017 • Evaporated thin Pt films are brittle Pt « Nanoscale size effects on the mechanical properties of platinum thin films and cross- sectional grain morphology » K. Abbas et al., J.Micromrch. Mictoeng. 26 (2016) 015007 • Thermal stress : The film is made at a different temperature than the temperature at which the device will be used. Differences in linear thermal expansion coefficient between film and substrate induce a stress in the film « Stress and strain in polycrystalline thin films» G.C.A.M. Janssen, Thin Solid Film 515 (2017) 6654-6664 Lowering the temperature the film will develop a tensile if it wants to shrink more than the substrate allows it.
  • 10. Pt - What can we do? Hot Wire Anemometer - CVD 1013/07/2017 •Decrease the deposition rate : • This should reduce the stress level of the Pt layer •Increase the thickness: • Stress modification • The layer should be less brittle •Heat the substrate during deposition / Bake : • Recrystallization of the layer • Increase the grain size •Change the wire design : • In order to allow deformation of the wire •Change material • We can try to use another metal (Au? Ni? W?) •Change deposition technique : • Sputtering for compressive layer To improve reliabity : Pt PROBLEM : Pt wires can work at room temperature BUT they break at low temperature
  • 11. Hot Wire Anemometer - CVD 1113/07/2017 e-beam evaporation •Etch Ar+ : 24s@250V •Ni : 100/400nm @0,25nm/s Lift Lithography Ni wires by evaporation AFC21 AFC24 AFC28 : Ti/Ni/Ti AFC29 : Cr/Ni/Cr Adhesion problem : Interface layer is needed
  • 12. Hot Wire Anemometer - CVD 1213/07/2017 Pulvérisation •Ti : 5000nm PDC : 300-500W p : 3-5 10-3mbar Lift Lithographie Ti wires by sputtering Double layer lithography After lift-off:After e-beam evaporation: Energetic particle bombardment of the layer during deposition can generate a compressive stress of the layer. This is suitable for our devices, in order to compensate thermal stress. The main parameter that control atomic peening is pressure during deposition. Lowering the pressure leads to a higher polarization voltage for a given current and an higher mean free path for particles in the chamber, which means more energetic particles striking the surface of the layer. ATOMIC PEENING: Ar - + Sputtering
  • 13. Hot Wire Anemometer - CVD 1313/07/2017 Ti wires by sputtering - SEM p↗ P↘ AFC27 AFC31 AFC31 PDC : 500W p : 3*10-3mbar AFC27 AFC27 AFC27 AFC26 PDC : 300W p : 5*10-3mbar
  • 14. Hot Wire Anemometer - CVD 1413/07/2017 Au pads Evaporation •Etch Ar+ : 24s@250V •Ti : 10nm @0,1nm/s •Au : 200nm @0,1÷ 0,5nm/s lift • Acetone soak • IPA with US rinse • N2drying • AZ326MIF soak • EDI rinsing • N2 drying • Solvent cleaning • Dehydration : 2min@150°C • LOR10A: 4000/2000/50 • Bake : 5min @170°C • AZ1512HS: 4000/2000/60 • Bake : 1min 30sec @100°C • Alignment • Exposure MJB4 UV : 25sec • 2min30 sec in AZ326MIF • EDI rinsing • N2 Drying Lithographie UV PbSn and Au are a ternary eutectic systems : when you put melted PbSn on the Au pad you melt the layer • Add a coating on the pad (e.g. Cr : 10nm @0,1nm/s) • Use another solder (silver conductive glue or other ) Pt LOR+UV5 Au Optional step: Au contact pads in order to reduce the series resistance of the wire PROBLEM Pb-Sn welding on Au : Double layer lithography After lift-off:
  • 15. Hot Wire Anemometer - CVD 1513/07/2017 Reminder : Deep Reactive Ion Etching (DRIE) Litho Bosch cycle…… clean Passivation Etching Boost Anisotropic etching of CF- polymer Main Isotropic etching of silicon isotropic deposicion of CF- polymer Etching mask fabrication (usually thick resist or hard mask) Repetition of bosch cycle parameter adjustment could be necessary CF- polymer and etching mask removal ..…repeat
  • 16. Back side shaping Hot Wire Anemometer - CVD 1613/07/2017 1. DRIE 0 50 100 150 200 250 0 50 100 150 200 Depth(µm) width (µm) ARDE - Aspect Ratio Dependent Etching 2. isotropic etch 3. cleaning 4. smoothing
  • 17. Hot Wire Anemometer - CVD 1713/07/2017 Back side: prongs (1) Prongs Structuration • DRIE with ramping to etch properly almost through the entire wafer • “soft” DRIE to reach the SiO2 layer • Solvent cleaning • Dehydration bake: 2min@150°C • HMDS (back) : 4000/2000/50 • Bake : 1min @110°C • AZ4562 (back) : 4000/2000/70 • Bake : 5min @110°C • AZ4562 (front) : 4000/2000/90 • Bake : 2min @110°C • Back face alignement • Exposition MA8 :20sec • 3-4 min en AZ326MIF • EDI rinsing • drying N2 Backside Lithography •Control the slope in order to keep the Si structure as lond as possible •Avoid « grass » formation Litho : During DRIE Focus « Up» Focus « down »
  • 18. Hot Wire Anemometer - CVD 1813/07/2017 Back side: prongs (2) Nettoyage • O2 plasma cleaning Fin gravure et lissage • Isotropic etch 1 to attack the Si sacrificial structure • Isotropic etch 2 to smooth the surfaces without damaging the SiO2 membrane •Do not damage the Si02 layer •Fixation method of the sample on the holder has to be improved for a better thermal contact Nettoyage • O2 palsma cleaning Nettoyage • Plasma O2 cleaning (front)
  • 19. Probe release Hot Wire Anemometer - CVD 1913/07/2017 HF vapor • Dehydration : 5 min @170°C •HF vapor 100/150 nm retrieving • Retrieve the devices by breaking the links Si SiO2 Pt Before HF etching After HF etching After HF etching
  • 20. Probe release – new samples Hot Wire Anemometer - CVD 2013/07/2017 AFC30 AFC31 Sputtered Ti (AFC30, AFC31). New mask 2 - without links between wafer and sensors. The sensors stands on the silicon membrane until HF-vapor etching . Much better yield (up to 59 chips over 60)
  • 21. Probe release – new samples Hot Wire Anemometer - CVD 2113/07/2017
  • 22. Shaped prongs Hot Wire Anemometer - CVD 2213/07/2017
  • 23. canne cryogénique Tests Hot Wire Anemometer - CVD 2313/07/2017 Puces montées sur leur support Tête de la canne cryogénique Pour l’immersion des puces dans le He liquide et la mésure de résistance et température Intérieur du cryostat d’étalonnage la puce tourne à vitesse connue pour simuler l’écoulement et retrouver les paramètres de la loi de King canne cryogénique Cryostat d’étalonnage
  • 24. What to do ? Hot Wire Anemometer - CVD 2413/07/2017 •Optimize DRIE parameters: •We should keep in place the Si Structure as long as possible •Modify Mask 2 •Inhomogeneities compensation •Get rid of useless parts in the mark •Reshape the links between probes and wafer ?. •Increase etch selectivity towards SiO2 •Modify the etching parameters •Bake the substrate •Increase thickness •etch-stop •Effects on the stress levels should be verified •Improve sample mounting and cleaning in the ICP : •Better thermal contact during etch •Avoid polymer redeposition on the front •Use ar non-metallic material for the wires •e.g. : insulating NbN We can deposit it by reactive sputtering at SBT Matthiessen’s law « non-métallic » resistivity T ρ 0 T ρ 0 • Improve sensibility at low temperature • Improve mechanical reistance → New substracive process needed (deposition-lithography-etching)
  • 25. Hot Wire Anemometer - CVD 2513/07/2017 The End
  • 26. Labs Hot Wire Anemometer - CVD 2613/07/2017 CEA INAC (Institute for Nanoscience and Cryogenics) SBT (Low Temperatures service) LRTH (Refrigeration and Thermohydraulics Laboratory) “Turbulence” group Main interest : behavior of helium at very high Reynolds number r est un nombre entre 0 et ½ qui indique l’inverse du nombre dans lequel se scindent les tourbillons. η est l’échelle de dissipation. Pour SHREK elle est de l’ordre du micron jusqu’à quelques dizaines SHREK 700m2 class 1000 (ISO 6) clean room • 350m2 at 10.05 • 350m2 at BCAi (50A), More infos : pta-grenoble.com → Lithography → Deposition → Etching → Caracterisation Plateforme Technologique Amont
  • 27. • masse↘ → résolution temporelle↗ • longueur ↘ → résolution spatiale ↗ avec l/d>>200 pour minimiser la conduction thermique Anémomètre à fil chaud Hot Wire Anemometer - CVD 2713/07/2017 Fil métallique résistif traversé par un courant dans un fluide en mouvement → refroidissement éolien (wind chill) Dans un état stationnaire, on a équilibre entre : • Effet joule • Convection forcé • … Si la résistance du fil varie avec la température on peut évaluer la vitesse du fluide : !"# $% &#'( ∶ *+ *+ − *- ./ = 1 + 3 4 Différents montages possibles : • CCA (Constant Current) • CTA (Constant Temperature) • … I U • Anémomètre microfabriqué « Fabrication and characterization of a novel Nanoscale thermal anemometry probe » M.Vallikivi, A. J. Smits IEEE Journal of microelectromechanical systems L≈1mm d≈1÷10μm L≈ 50÷100μm d≈1÷4μm e≈100nm
  • 28. Bilan de puissance Hot Wire Anemometer - CVD 2813/07/2017 I U L≈1mm d≈1÷10μm Dissipation de la chaleur : • Conduction vers le fluide • Convection vers le fluide • Conduction vers les supports • Rayonnement thermique On peut négliger les derniers deux Flux de chaleur (loi de Fourier) : !" = −%&'( À intégrer sur A=πdL ̇* = + , !"-. = ℎ. (0 − (1 h=coef de transfert Fil métallique résistif traversé par un courant dans un fluide en mouvement → refroidissement éolien (wind chill) Principe : la puissance importée par le fluide donne une mesure indirecte de la vitesse du fluide Bilan de puissance : 23 24 = ̇W − ̇Q Où: • 23 24 : variation d’énergie stockée sous forme de chaleur dans le fil • ̇W = 70 89 : puissance dissipée par effet Joule • ̇Q : puissance transférée depuis le fil vers l’exterieur
  • 29. Nombre de Nusselt (Nu) Hot Wire Anemometer - CVD 2913/07/2017 I U L≈1mm d≈1÷10μm Nombre de Nusselt : !" = ℎ % &' Efficacité du transport par convection par rapport à la conduction !" = (")**+,-. /0+,*1é0é. /3/+4. (")**+,-. /0+,*1é0é. (+0 -3,%"-/)3, ̇6 = 7 !" &' % 89 − 8; = π 4 &' 89 − 8; !" Le bilan devient : dE dt = @9AB − π 4 &' 89 − 8; !" Si CDE CF G; alors MN MO = 0 Donc @9AB = π 4 &' 89 − 8; !" il faut savoir comment varie Nu en fonction de U
  • 30. Nu=Nu(Re) Hot Wire Anemometer - CVD 3013/07/2017 Nombre de Reynold basé sur le fil !"# : !"# = % & '( Où • % : vitesse « à l’infini » (quelque d à l’amont du fil ) • '( : viscosité cinématique à la température du film On va considérer que Nu ne dépend que de Re. Pour un nombre de Pradl )* = ⁄, - ≃ 1 On a 0 ≃ 01 Avec les hypothèses d ’écoulement 2D potentiel et stationnaire : Lois de KING : Nu = 1 + 2 6 !"7# NB : Nu ∝ !"# ⁄9 : → écoulement laminaire ( à l’échelle du fil) Avec des Hypothèses moins restrictives : Loi de KRAMER : Nu = 0,42 )* ⁄9 > + 0,57 !# ⁄9 : )* ⁄9 A En général : BC = DE + FE !"# Le bilan devient : !#G: = π I J( K# − KE M N DE + FE !"# Expérimentalement on a accès à " = !#G Si !# = !# K on peut avoir accès à la température du fil
  • 31. Nu=Nu(Re) Hot Wire Anemometer - CVD 3113/07/2017 Relation fondamentale de l’anémométrie Loi de King !"#$ !" − !& = ( + * + Avec : ( = , - ./ 0 !& (& * = , - ./ 0 !& 1 23 *& Pour une dépendance linéaire : !" 4 = !& 1 + 0 4" − 4& ⇒ 4" − 4& = !" − !& 0 !& Avec 0 = 7 89 :89 :;