SlideShare a Scribd company logo
1 of 23
Download to read offline
PLASMA ARC MACHINING
PRINCIPLE OF PLASMA ARC MACHINING:
•plasma is considered as the fourth state of matter, beside of the solid, liquid and gas
states. when gas is heated to a high temperature of order 2000oC ,the molecules separate
out as atoms.
•If the temperature is raised to 3000oC , the electrons from some of the atoms dissociate
and the gas become ionized consisting of ions and electrons. This state of gas is called as
plasma.
• Plasma becomes electrically conductive as well responsive to magnetism.
•The source of heat generation in plasma is the recombination of electrons and ions into
atoms , or recombination of atoms into molecules . This liberated bonding energy is
responsible for increased kinetic energy of the atoms formed by recombination.
•The temperature of plasma can be of the order of 33,000oC .when such a high
temperature source reacts with work material ,work melts out and vaporizes. Many
material like aluminium , stainless steel have high thermal conductivity ,large heat
capacity and good oxidation resistance.
•As a result ,such materials cannnot be cut using conventional techniques like oxyfuel
cutting.But these material can be easily cut by plasma arc machning.
characteristics of plasma
• High electric conductivity
•Very good interaction capacity with the electric and magnetic fields
• Permanent source of electromagnetic radiations
Working principle
Plasma arc cutting is a very complex process that is used in order to cut steel and other
metals(or sometimes other materials) using a plasma torch. In this process, an inert gas
is blown at high speed out of a nozzle.
At the same time an electrical arc is formed through that gas from the nozzle to the
surface being cut, turning some of that gas to plasma.
Due to the height concentration of the energy in a limited space, the material of the
workpiece is wormed till the melting of a layer and the melted material is removed
from the cut by the plasma jet
Pilot arc ignition Arc transfer
•The cutting procedure begins with arc ignition, which is a process consisting of
several steps.
between the electrode•It starts with igniting a pilot arc, an arc discharge
(cathode) and nozzle, done in two different ways .
•one is with a short HF pulse applied to the electrode-nozzle gap, another is
retract starting.
• Retract starting uses the pressure of the air supplied to the torch to drive back a
piston to which the electrode is ultimately connected.
• The electrode and nozzle start out in contact with an electric current running
through them.
• When the electrode retracts a pilot arc is created Once the pilot arc is created, the
gas flow blows the pilot arc out of the nozzle thus creating an arc loop protruding
out of the nozzle.
• If the work-piece is in position (typically within 5–15mm from the end of the
nozzle), the arc will attach to the work-piece, the power supply will sense arc
transfer and the nozzle will be removed from the circuit.
• The work piece becomes the anode and the main current establishes in the
electrode-work gap.
TRANSFERRED AND NON-TRANSFERRED MODES
•A plasma jet can be operated in the transferred mode, where the electric current flows
between the plasma torch electrode (cathode) and the workpiece (anode).
•It can also be operated in the non-transferred mode where the electric current flows
between the electrode and the torch nozzle
Although a stream of hot plasma emerges from the nozzle in both modes of
operation, the transferred mode is invariably used in plasma cutting because the
usable heat input to the workpiece is more efficiently applied when the arc is in
electrical contact with the workpiece.
PLASMA ARC MACHINING
MECHANISM OF MATERIALREMOVAL
In this process, an inert gas is blown at high speed out of a nozzle. At the
same time an electrical arc is formed through that gas from the nozzle to the surface
being cut.
•Due to the height concentration of the energy in a limited space, the material of the
workpiece is warmed till the melting of a layer; afterwards, the melted material is
removed from the cut by the plasma jet.
ARC GENERATION
•It starts with igniting a pilot arc, an arc discharge between the electrode (cathode)
and nozzle.
•Once the pilot arc is created, the gas flow blows the pilot arc out of the nozzle thus
creating an arc loop protruding out of the nozzle. If the work-piece is in position
typically within 5–15mm from the end of the nozzle, the arc will attach to the work-
piece,
ELEMENTS OF PLASMA ARC MACHNING
Power supply Control console Cooling water
system
Plasma torch Gas supply
1.Air plasma torch
2.Oxygen injected torch
3.Dual gas system
4.Water injected torch
AIR PLASMA TORCH:
•It uses a compressed air as the gas that ionizes and does cutting.The air to be used
should be uncontaminated.
•The nozzle of this torch may result in prematured failure because of double arcing ie
arcing between the electrode and the nozzle and between the nozzle and the
workpiece.
•Air plasma cutting results in a high degree of tapered machined surface.
•Zirconium or halfnium are used as electrode material because of their higher
resistance to oxidation.Because of poor oxidation resistance,tungsten electrode doesnot
last for more than few seconds.
DUAL FLOW PLASMA ARC(1962)
•The dual flow technique was developed and patented by Thermal Dynamics Corporation
and James Browning,in 1963. It involved a slight modification of the conventional plasma
cutting process.
•Essentially, it incorporated the same features as conventional plasma cutting, except that a
secondary gas shield was added around the plasma nozzle.
•Usually, in dual flow operation the cutting or plasma gas was nitrogen and the
secondary shielding gas was selected according to the metal to be cut.
•Secondary shield gases typically used were air or oxygen for mild steel, carbon
dioxide for stainless steel, and an argon/hydrogen mixture for aluminium.
•The major advantage of this approach was that the nozzle could be recessed within
a ceramic gas cup or shield cup as shown in Figure above, preventing the nozzle
from shorting with the workpiece, and reducing the tendency for double arcing.
•The shield gas also covered the cutting zone, improving cut quality and speeds as
well as cooling the nozzle and shield cap.
WATER INJECTIONCUTTING
•In the water injection plasma cutting process, water was radially injected into the arc
in a uniform manner as shown in Figure below. The radial impingement of the water at
the arc provided a higher degree of arc constriction than could be achieved by just the
copper nozzle alone.
• cutting gas – nitrogen .(1MPa)
WATER CONSTRICTION GIVES MANY ADVANTAGES :
•Improved cut squareness, increased cutting speeds
•Single gas requirement made the process more economical and easier to use
•Nozzle life was greatly increased with the water injection technique because the steam
boundary layer insulated the nozzle from the intense heat of the arc.
Water Muffler and Water Table(1972)
Since the plasma arc process was a highly concentrated heat source of up to 50,000K,
there were some negative side effect,to reduce side effects water muffler was used
Water Muffler
The Water Muffler system created a high flow water shield around the torch which
produced the following benefits
•The high noise level of the plasma arc was sharply reduced through the muffling
effect of the water curtain.
• smoke and toxic gases were confined .
• Arc glare was reduced to a level that was less dangerous to the eyes.
• With the proper dye in the water, ultraviolet radiation was diminished.
Electrical parameters:
• Plasma arc current intensity
•Plasma arc voltage
•Properties of the material
workpiece
•Thickness of the workpiece
Other factors:
• Plasmogen gas type and flow
•Working speed,
•Working distance
PLASMA CUTTING PROCESS
PARAMETERS
• Roughness of the obtain surface, Ra;
• The shape of the obtained surfaces;
• Thickness of heat affected zone. ZIT;
• Cutting precision;
• Productivity;
• The wear of the nozzle;
• Cutting width
PLASMA ARC CURRENT INTENSITY, IP,
The value of plasma arc current, Ip, is depending on:
1.The geometrical parameters of the plate to be cut (b - cutting width average, s
– thickness of the workpiece)
2. The cutting speed, vt
3.The gas flow, Q
plasma arc current intensity values till 800 – 1000 A.
PLASMA ARC VOLTAGE, Vp,
The value of plasma arc voltage, Vp, is establish function of the nature of the plasmogen
gases, the ionization voltage of the gas and the gas flow, Dgp .
The maximum value for the Vp could reach 300 V.
CUTTING SPEED,Vt
As the cutting speed increases ,volumetric material removal rate is found to attain a
maximum value and then starts decreasing.
Factors affecting cutting speed:
• The thickness of the material (t)
•The type of material being cut
•Current(I)
TOLERANCE
Poor tolerance: + 0.8 mm (T<25mm) ; + 3 mm (T >25mm)
SURFACE FINISH : 5 – 75 µm
WIDTH OF CUT : 2.5- 9 mm
HAZ : 0.75 TO 5 mm φ (t,material type , cutting conditions)
TAPER : 5- 70
ADVANTAGES OF PLASMAARCMACHINING
Rapid Cutting Speeds:
•plasma arc cutting is faster than oxyfuel for cutting steel up to 50 mm thick and is
competitive for greater thickness.
•Plasma cutting achieves speeds greater than those of laser cutting systems for thickness
over 3 mm.
•The fast cutting speeds result in increased production, enabling systems to pay for
themselves in as little as 6 months for smaller units.
ThankstoD.PALANIKUMAR
Wide Range of Materials and Thickness: Plasma cutting systems can yield quality
cuts on both ferrous and nonferrous metals. Thickness from gauge to 80 mm can becut
effectively.
Easy to Use: Plasma cutting requires only minimal operator training. The torch is easy
to operate, and new operators can make excellent cuts almost immediately. Plasma
cutting systems are rugged, are well suitable for production environments, and do not
require the potentially complicated adjustments associated with laser cutting systems.
Economical: Plasma cutting is more economical than oxyfuel for thickness under 25
mm, and comparable up to about 50 mm. For example, for 12 mm steel, plasma cutting
costs are about half those of oxyfuel.
DISADVANTAGES OF PLASMA ARC MACHINING
•The cutter's electrode and nozzle sometimes require frequent replacement which adds to the
cost of operation.
•Non-conductive materials such as wood or plastic cannot be cut with plasma cutters with
transferred arc type.
•Another minor drawback is that the plasma arc typically leaves a 4-6 degree bevel on the cut
edge, although this angle is almost invisible on thinner material, it is noticeable on thicker
pieces.
APPLICATIONS:
•Multiple torch system –varieties of shapes on plate
•Bevel cut on the end of a pipe as edge preparation before welding
•CNC PAC system – punching type operation on light duty plates made of steel aluminium
and copper
SUMMARY
•The plasma process for cutting was developed approximately thirty years ago, for metals
difficult to be cut by classic operations, and uses a high energy stream of dissociated,
ionized gas, known as plasma, as the heat source.
•Material removal mechanism – melting & vaporization .molten material blow off by high
velocity gas
•Capable of cutting high-alloy refractory and stainless steels and other materials of
high thermal conductivity ,high oxidation resistance with maximum productivity, through
the automation capacity, through the low expenses towards traditional techniques
•Types of plasma torch – air plasma, dual gas ,water injection cuuting plasma torch
•preferred due to the quality of the cut and low thickness of the thermal influence zone
(TIZ), within 1.50 mm and avg.surface roughness of 40 µm .
.
Thanks to D.PALANI KUMAR

More Related Content

What's hot

Plasma Arc Welding by Himanshu Vaid
Plasma Arc Welding by Himanshu VaidPlasma Arc Welding by Himanshu Vaid
Plasma Arc Welding by Himanshu VaidHimanshu Vaid
 
plasma arc machining
plasma arc machining plasma arc machining
plasma arc machining POLAYYA CHINTADA
 
Plasma arc machining PAM
Plasma arc machining PAMPlasma arc machining PAM
Plasma arc machining PAMLunavath Suresh
 
Presentation on plasma arc welding
Presentation on plasma arc weldingPresentation on plasma arc welding
Presentation on plasma arc weldingShashi Ranjan
 
plasma arc and laser beam machining
plasma arc and laser beam machiningplasma arc and laser beam machining
plasma arc and laser beam machiningshubham chaurasiya
 
Plasma arc welding
Plasma arc weldingPlasma arc welding
Plasma arc weldingkhalid48261
 
Class exercise group discussion
Class exercise group discussionClass exercise group discussion
Class exercise group discussionkadappidapi
 
Plasma arc welding
Plasma arc weldingPlasma arc welding
Plasma arc weldingEkeeda
 
Plasma arc machining
Plasma arc machiningPlasma arc machining
Plasma arc machiningNayanGaykwad
 
Ebm
EbmEbm
Ebma.b1986
 
Plasma arc welding by p.v.s.g.v
Plasma arc welding by p.v.s.g.vPlasma arc welding by p.v.s.g.v
Plasma arc welding by p.v.s.g.vsree aero
 
Plasma arc welding
Plasma arc weldingPlasma arc welding
Plasma arc weldingLahiru Dilshan
 
Plasma Arc Welding
Plasma Arc WeldingPlasma Arc Welding
Plasma Arc Weldingfaheem maqsood
 
Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)Dinesh Panchal
 
Laser Beam Welding
Laser Beam WeldingLaser Beam Welding
Laser Beam Weldingfaheem maqsood
 
Electron beam machining by Himanshu Vaid
Electron beam machining by Himanshu VaidElectron beam machining by Himanshu Vaid
Electron beam machining by Himanshu VaidHimanshu Vaid
 

What's hot (20)

Plasma Arc Welding by Himanshu Vaid
Plasma Arc Welding by Himanshu VaidPlasma Arc Welding by Himanshu Vaid
Plasma Arc Welding by Himanshu Vaid
 
plasma arc machining
plasma arc machining plasma arc machining
plasma arc machining
 
Plasma-arc Welding
Plasma-arc WeldingPlasma-arc Welding
Plasma-arc Welding
 
Plasma arc machining PAM
Plasma arc machining PAMPlasma arc machining PAM
Plasma arc machining PAM
 
Presentation on plasma arc welding
Presentation on plasma arc weldingPresentation on plasma arc welding
Presentation on plasma arc welding
 
Plasma
PlasmaPlasma
Plasma
 
plasma arc and laser beam machining
plasma arc and laser beam machiningplasma arc and laser beam machining
plasma arc and laser beam machining
 
Plasma arc welding
Plasma arc weldingPlasma arc welding
Plasma arc welding
 
Class exercise group discussion
Class exercise group discussionClass exercise group discussion
Class exercise group discussion
 
Plasma arc welding
Plasma arc weldingPlasma arc welding
Plasma arc welding
 
PPT of Plasma arc welding , detailed overview (PAW)
PPT of Plasma arc welding , detailed overview (PAW)PPT of Plasma arc welding , detailed overview (PAW)
PPT of Plasma arc welding , detailed overview (PAW)
 
Plasma arc machining
Plasma arc machiningPlasma arc machining
Plasma arc machining
 
Plasma Arc Machining process
Plasma Arc Machining processPlasma Arc Machining process
Plasma Arc Machining process
 
Ebm
EbmEbm
Ebm
 
Plasma arc welding by p.v.s.g.v
Plasma arc welding by p.v.s.g.vPlasma arc welding by p.v.s.g.v
Plasma arc welding by p.v.s.g.v
 
Plasma arc welding
Plasma arc weldingPlasma arc welding
Plasma arc welding
 
Plasma Arc Welding
Plasma Arc WeldingPlasma Arc Welding
Plasma Arc Welding
 
Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)Plasma Arc Machining (Modern Manufacturing Process)
Plasma Arc Machining (Modern Manufacturing Process)
 
Laser Beam Welding
Laser Beam WeldingLaser Beam Welding
Laser Beam Welding
 
Electron beam machining by Himanshu Vaid
Electron beam machining by Himanshu VaidElectron beam machining by Himanshu Vaid
Electron beam machining by Himanshu Vaid
 

Similar to Plasma arc machining 5 unit

MP plasma arc mechine
MP plasma arc mechineMP plasma arc mechine
MP plasma arc mechineRehanRaza56
 
UNIT 2.pptx
UNIT 2.pptxUNIT 2.pptx
UNIT 2.pptxKawinKit
 
THERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESTHERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESravikumarmrk
 
Plasma arc and thermit welding
Plasma arc and thermit weldingPlasma arc and thermit welding
Plasma arc and thermit weldingPravinkumar
 
INTRODUCTION TO PLASMA ARC MACHINING
INTRODUCTION TO PLASMA ARC MACHININGINTRODUCTION TO PLASMA ARC MACHINING
INTRODUCTION TO PLASMA ARC MACHININGSubramaniSrisho
 
Plasma assistad machining of Heat resistant super alloys
Plasma assistad machining of Heat resistant super alloysPlasma assistad machining of Heat resistant super alloys
Plasma assistad machining of Heat resistant super alloysAkhil S
 
plasmaarcwelding-180326141313.pptx
plasmaarcwelding-180326141313.pptxplasmaarcwelding-180326141313.pptx
plasmaarcwelding-180326141313.pptxSURENDAARD
 
Manufacturing Processes (Arc Welding)
Manufacturing Processes (Arc Welding)Manufacturing Processes (Arc Welding)
Manufacturing Processes (Arc Welding)Dhrumit Patel
 
Plasma Technology In Metallurgy & Metal Working Industry
Plasma Technology In Metallurgy & Metal Working IndustryPlasma Technology In Metallurgy & Metal Working Industry
Plasma Technology In Metallurgy & Metal Working IndustryRajesh Joshi
 
Sem2
Sem2Sem2
Sem2Kiran NK
 
L2-Arc Welding Process.pptx
L2-Arc Welding Process.pptxL2-Arc Welding Process.pptx
L2-Arc Welding Process.pptxMahesh Goswami
 
Electron beam machining
Electron beam machiningElectron beam machining
Electron beam machiningPrashant thakur
 

Similar to Plasma arc machining 5 unit (20)

MP plasma arc mechine
MP plasma arc mechineMP plasma arc mechine
MP plasma arc mechine
 
pam.pptx
pam.pptxpam.pptx
pam.pptx
 
UNIT 2.pptx
UNIT 2.pptxUNIT 2.pptx
UNIT 2.pptx
 
Unit 2
Unit 2Unit 2
Unit 2
 
Unit 2
Unit 2Unit 2
Unit 2
 
THERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSESTHERMAL AND ELECTRICAL BASED PROCESSES
THERMAL AND ELECTRICAL BASED PROCESSES
 
UNIT-5.pptx
UNIT-5.pptxUNIT-5.pptx
UNIT-5.pptx
 
Plasma arc and thermit welding
Plasma arc and thermit weldingPlasma arc and thermit welding
Plasma arc and thermit welding
 
INTRODUCTION TO PLASMA ARC MACHINING
INTRODUCTION TO PLASMA ARC MACHININGINTRODUCTION TO PLASMA ARC MACHINING
INTRODUCTION TO PLASMA ARC MACHINING
 
Plasma assistad machining of Heat resistant super alloys
Plasma assistad machining of Heat resistant super alloysPlasma assistad machining of Heat resistant super alloys
Plasma assistad machining of Heat resistant super alloys
 
plasmaarcwelding-180326141313.pptx
plasmaarcwelding-180326141313.pptxplasmaarcwelding-180326141313.pptx
plasmaarcwelding-180326141313.pptx
 
Manufacturing Processes (Arc Welding)
Manufacturing Processes (Arc Welding)Manufacturing Processes (Arc Welding)
Manufacturing Processes (Arc Welding)
 
Workshop
WorkshopWorkshop
Workshop
 
Workshop
WorkshopWorkshop
Workshop
 
UCM-UNIT 2.pptx
UCM-UNIT 2.pptxUCM-UNIT 2.pptx
UCM-UNIT 2.pptx
 
EBM
EBM EBM
EBM
 
Plasma Technology In Metallurgy & Metal Working Industry
Plasma Technology In Metallurgy & Metal Working IndustryPlasma Technology In Metallurgy & Metal Working Industry
Plasma Technology In Metallurgy & Metal Working Industry
 
Sem2
Sem2Sem2
Sem2
 
L2-Arc Welding Process.pptx
L2-Arc Welding Process.pptxL2-Arc Welding Process.pptx
L2-Arc Welding Process.pptx
 
Electron beam machining
Electron beam machiningElectron beam machining
Electron beam machining
 

More from DrPrashanthaS1

Thermal metal removal process 4 unit
Thermal metal removal process  4 unitThermal metal removal process  4 unit
Thermal metal removal process 4 unitDrPrashanthaS1
 
Plasma arc machining 5 unit
Plasma arc machining 5 unitPlasma arc machining 5 unit
Plasma arc machining 5 unitDrPrashanthaS1
 
Thermal metal removal process 4 unit
Thermal metal removal process  4 unitThermal metal removal process  4 unit
Thermal metal removal process 4 unitDrPrashanthaS1
 
Thermal metal removal process 4 unit
Thermal metal removal process  4 unitThermal metal removal process  4 unit
Thermal metal removal process 4 unitDrPrashanthaS1
 

More from DrPrashanthaS1 (10)

Ebm 5 unit
Ebm 5 unitEbm 5 unit
Ebm 5 unit
 
Thermal metal removal process 4 unit
Thermal metal removal process  4 unitThermal metal removal process  4 unit
Thermal metal removal process 4 unit
 
Plasma arc machining 5 unit
Plasma arc machining 5 unitPlasma arc machining 5 unit
Plasma arc machining 5 unit
 
Lbm 5 unit
Lbm 5 unitLbm 5 unit
Lbm 5 unit
 
Thermal metal removal process 4 unit
Thermal metal removal process  4 unitThermal metal removal process  4 unit
Thermal metal removal process 4 unit
 
Wjm
WjmWjm
Wjm
 
Thermal metal removal process 4 unit
Thermal metal removal process  4 unitThermal metal removal process  4 unit
Thermal metal removal process 4 unit
 
Lbm 5 unit
Lbm 5 unitLbm 5 unit
Lbm 5 unit
 
4 & 5 Unit NTM
4 & 5 Unit NTM4 & 5 Unit NTM
4 & 5 Unit NTM
 
Scan0001
Scan0001Scan0001
Scan0001
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 

Plasma arc machining 5 unit

  • 2. PRINCIPLE OF PLASMA ARC MACHINING: •plasma is considered as the fourth state of matter, beside of the solid, liquid and gas states. when gas is heated to a high temperature of order 2000oC ,the molecules separate out as atoms. •If the temperature is raised to 3000oC , the electrons from some of the atoms dissociate and the gas become ionized consisting of ions and electrons. This state of gas is called as plasma. • Plasma becomes electrically conductive as well responsive to magnetism. •The source of heat generation in plasma is the recombination of electrons and ions into atoms , or recombination of atoms into molecules . This liberated bonding energy is responsible for increased kinetic energy of the atoms formed by recombination.
  • 3. •The temperature of plasma can be of the order of 33,000oC .when such a high temperature source reacts with work material ,work melts out and vaporizes. Many material like aluminium , stainless steel have high thermal conductivity ,large heat capacity and good oxidation resistance. •As a result ,such materials cannnot be cut using conventional techniques like oxyfuel cutting.But these material can be easily cut by plasma arc machning. characteristics of plasma • High electric conductivity •Very good interaction capacity with the electric and magnetic fields • Permanent source of electromagnetic radiations
  • 4. Working principle Plasma arc cutting is a very complex process that is used in order to cut steel and other metals(or sometimes other materials) using a plasma torch. In this process, an inert gas is blown at high speed out of a nozzle. At the same time an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to plasma. Due to the height concentration of the energy in a limited space, the material of the workpiece is wormed till the melting of a layer and the melted material is removed from the cut by the plasma jet
  • 5. Pilot arc ignition Arc transfer •The cutting procedure begins with arc ignition, which is a process consisting of several steps. between the electrode•It starts with igniting a pilot arc, an arc discharge (cathode) and nozzle, done in two different ways . •one is with a short HF pulse applied to the electrode-nozzle gap, another is retract starting.
  • 6. • Retract starting uses the pressure of the air supplied to the torch to drive back a piston to which the electrode is ultimately connected. • The electrode and nozzle start out in contact with an electric current running through them. • When the electrode retracts a pilot arc is created Once the pilot arc is created, the gas flow blows the pilot arc out of the nozzle thus creating an arc loop protruding out of the nozzle. • If the work-piece is in position (typically within 5–15mm from the end of the nozzle), the arc will attach to the work-piece, the power supply will sense arc transfer and the nozzle will be removed from the circuit. • The work piece becomes the anode and the main current establishes in the electrode-work gap.
  • 7. TRANSFERRED AND NON-TRANSFERRED MODES •A plasma jet can be operated in the transferred mode, where the electric current flows between the plasma torch electrode (cathode) and the workpiece (anode). •It can also be operated in the non-transferred mode where the electric current flows between the electrode and the torch nozzle Although a stream of hot plasma emerges from the nozzle in both modes of operation, the transferred mode is invariably used in plasma cutting because the usable heat input to the workpiece is more efficiently applied when the arc is in electrical contact with the workpiece.
  • 9. MECHANISM OF MATERIALREMOVAL In this process, an inert gas is blown at high speed out of a nozzle. At the same time an electrical arc is formed through that gas from the nozzle to the surface being cut. •Due to the height concentration of the energy in a limited space, the material of the workpiece is warmed till the melting of a layer; afterwards, the melted material is removed from the cut by the plasma jet. ARC GENERATION •It starts with igniting a pilot arc, an arc discharge between the electrode (cathode) and nozzle. •Once the pilot arc is created, the gas flow blows the pilot arc out of the nozzle thus creating an arc loop protruding out of the nozzle. If the work-piece is in position typically within 5–15mm from the end of the nozzle, the arc will attach to the work- piece,
  • 10. ELEMENTS OF PLASMA ARC MACHNING Power supply Control console Cooling water system Plasma torch Gas supply 1.Air plasma torch 2.Oxygen injected torch 3.Dual gas system 4.Water injected torch
  • 11. AIR PLASMA TORCH: •It uses a compressed air as the gas that ionizes and does cutting.The air to be used should be uncontaminated. •The nozzle of this torch may result in prematured failure because of double arcing ie arcing between the electrode and the nozzle and between the nozzle and the workpiece. •Air plasma cutting results in a high degree of tapered machined surface. •Zirconium or halfnium are used as electrode material because of their higher resistance to oxidation.Because of poor oxidation resistance,tungsten electrode doesnot last for more than few seconds.
  • 12. DUAL FLOW PLASMA ARC(1962) •The dual flow technique was developed and patented by Thermal Dynamics Corporation and James Browning,in 1963. It involved a slight modification of the conventional plasma cutting process. •Essentially, it incorporated the same features as conventional plasma cutting, except that a secondary gas shield was added around the plasma nozzle.
  • 13. •Usually, in dual flow operation the cutting or plasma gas was nitrogen and the secondary shielding gas was selected according to the metal to be cut. •Secondary shield gases typically used were air or oxygen for mild steel, carbon dioxide for stainless steel, and an argon/hydrogen mixture for aluminium. •The major advantage of this approach was that the nozzle could be recessed within a ceramic gas cup or shield cup as shown in Figure above, preventing the nozzle from shorting with the workpiece, and reducing the tendency for double arcing. •The shield gas also covered the cutting zone, improving cut quality and speeds as well as cooling the nozzle and shield cap.
  • 14. WATER INJECTIONCUTTING •In the water injection plasma cutting process, water was radially injected into the arc in a uniform manner as shown in Figure below. The radial impingement of the water at the arc provided a higher degree of arc constriction than could be achieved by just the copper nozzle alone. • cutting gas – nitrogen .(1MPa)
  • 15. WATER CONSTRICTION GIVES MANY ADVANTAGES : •Improved cut squareness, increased cutting speeds •Single gas requirement made the process more economical and easier to use •Nozzle life was greatly increased with the water injection technique because the steam boundary layer insulated the nozzle from the intense heat of the arc. Water Muffler and Water Table(1972) Since the plasma arc process was a highly concentrated heat source of up to 50,000K, there were some negative side effect,to reduce side effects water muffler was used Water Muffler The Water Muffler system created a high flow water shield around the torch which produced the following benefits •The high noise level of the plasma arc was sharply reduced through the muffling effect of the water curtain. • smoke and toxic gases were confined . • Arc glare was reduced to a level that was less dangerous to the eyes. • With the proper dye in the water, ultraviolet radiation was diminished.
  • 16. Electrical parameters: • Plasma arc current intensity •Plasma arc voltage •Properties of the material workpiece •Thickness of the workpiece Other factors: • Plasmogen gas type and flow •Working speed, •Working distance PLASMA CUTTING PROCESS PARAMETERS • Roughness of the obtain surface, Ra; • The shape of the obtained surfaces; • Thickness of heat affected zone. ZIT; • Cutting precision; • Productivity; • The wear of the nozzle; • Cutting width
  • 17. PLASMA ARC CURRENT INTENSITY, IP, The value of plasma arc current, Ip, is depending on: 1.The geometrical parameters of the plate to be cut (b - cutting width average, s – thickness of the workpiece) 2. The cutting speed, vt 3.The gas flow, Q plasma arc current intensity values till 800 – 1000 A. PLASMA ARC VOLTAGE, Vp, The value of plasma arc voltage, Vp, is establish function of the nature of the plasmogen gases, the ionization voltage of the gas and the gas flow, Dgp . The maximum value for the Vp could reach 300 V.
  • 18. CUTTING SPEED,Vt As the cutting speed increases ,volumetric material removal rate is found to attain a maximum value and then starts decreasing. Factors affecting cutting speed: • The thickness of the material (t) •The type of material being cut •Current(I) TOLERANCE Poor tolerance: + 0.8 mm (T<25mm) ; + 3 mm (T >25mm) SURFACE FINISH : 5 – 75 µm WIDTH OF CUT : 2.5- 9 mm HAZ : 0.75 TO 5 mm φ (t,material type , cutting conditions) TAPER : 5- 70
  • 19. ADVANTAGES OF PLASMAARCMACHINING Rapid Cutting Speeds: •plasma arc cutting is faster than oxyfuel for cutting steel up to 50 mm thick and is competitive for greater thickness. •Plasma cutting achieves speeds greater than those of laser cutting systems for thickness over 3 mm. •The fast cutting speeds result in increased production, enabling systems to pay for themselves in as little as 6 months for smaller units. ThankstoD.PALANIKUMAR
  • 20. Wide Range of Materials and Thickness: Plasma cutting systems can yield quality cuts on both ferrous and nonferrous metals. Thickness from gauge to 80 mm can becut effectively. Easy to Use: Plasma cutting requires only minimal operator training. The torch is easy to operate, and new operators can make excellent cuts almost immediately. Plasma cutting systems are rugged, are well suitable for production environments, and do not require the potentially complicated adjustments associated with laser cutting systems. Economical: Plasma cutting is more economical than oxyfuel for thickness under 25 mm, and comparable up to about 50 mm. For example, for 12 mm steel, plasma cutting costs are about half those of oxyfuel.
  • 21. DISADVANTAGES OF PLASMA ARC MACHINING •The cutter's electrode and nozzle sometimes require frequent replacement which adds to the cost of operation. •Non-conductive materials such as wood or plastic cannot be cut with plasma cutters with transferred arc type. •Another minor drawback is that the plasma arc typically leaves a 4-6 degree bevel on the cut edge, although this angle is almost invisible on thinner material, it is noticeable on thicker pieces.
  • 22. APPLICATIONS: •Multiple torch system –varieties of shapes on plate •Bevel cut on the end of a pipe as edge preparation before welding •CNC PAC system – punching type operation on light duty plates made of steel aluminium and copper
  • 23. SUMMARY •The plasma process for cutting was developed approximately thirty years ago, for metals difficult to be cut by classic operations, and uses a high energy stream of dissociated, ionized gas, known as plasma, as the heat source. •Material removal mechanism – melting & vaporization .molten material blow off by high velocity gas •Capable of cutting high-alloy refractory and stainless steels and other materials of high thermal conductivity ,high oxidation resistance with maximum productivity, through the automation capacity, through the low expenses towards traditional techniques •Types of plasma torch – air plasma, dual gas ,water injection cuuting plasma torch •preferred due to the quality of the cut and low thickness of the thermal influence zone (TIZ), within 1.50 mm and avg.surface roughness of 40 µm . . Thanks to D.PALANI KUMAR