SlideShare a Scribd company logo
Eirini Koutantou
Supervisor: Prof. D. Valougeorgis
Holweck pump
modeling
Department of Mechanical Engineering,
University of Thessaly
Presentation contents:
1) Introduction
2) Statement of the problem
3) Computational scheme
4) Results and discussion
5) Concluding remarks
2
3
Vacuum:
the pressure of the
gas is much lower
than the one of its
environment
Pump:
device that is used
to move fluids
Vacuum pump:
movement of gas
molecules due to flow
induced by a vacuum
system
Was invented in:
1650
by:
Otto von Guericke
General Terminology:
4
• Pressure:
• Ideal gas equation:
• Mean free path:
• Reynolds number:
• Knudsen number:
mfp:
F
p
A
B
mRT
pV Nk T
M
2 2
1 1
2 2n d n d
where: 8kT
m
Re
ud
v
1
2
Kn
d
Absolute vacuum:
density of
molecules=0
5
Vacuum Terminology:
• Mass flow:
• Pumping speed:
• Pump throughput:
• Conductance/Conductivity:
• Compression ratio:
m
M
t
 [kg/h, g/s]
dV
S
dt
[m3/s, m3/h]
pV
V mRT
Q p
t tM
pV
dV
Q S p p
dt
[Pa m3/s =W]
pVQ
C
p
in row:
1/Ctot = 1/C1 + 1/C2
parallel:
Ctot = C1 + C2 + …
2
0
1
p
K
p
P1: inlet pressure
P2: outlet pressure
6
vacuum
(mfp range)
rough vacuum:
mfp << 10-4 m
medium vacuum:
10-4 m - 10-1 m
high vacuum:
10-1 m - 103 m
ultra high vacuum:
mfp >> 103 m
vacuum
(pressure range)
rough vacuum:
105 Pa - 100 Pa
fine vacuum:
100 Pa - 10-1 Pa
high vacuum:
10-1 Pa - 10-5 Pa
ultra high vacuum (UHV):
10-5 Pa - 10-10 Pa
extreme high vacuum(XHV):
10-10 Pa - 10-12 Pa
Definition of vacuum
ranges:
Gas flow regimes:
Kn > 0.5:
Free Molecular
-Equation of Boltzmann
(without the collision term)
-ultra, extreme high
vacuum
0.01 < Kn < 0.5:
Transition regime
-Equation of Boltzmann
(empirical approaches)
- fine, medium vacuum
Kn << 0.01:
Viscous or continuum flow
(laminar or turbulent)
-Described by the equations NS
- rough vacuum
7
fluid displaced
by a space and is
forwarded to
another
gases are removed
by extracting them
in the atmosphere
change of the
kinetic state of
the moving fluid
cause condensation
or chemical
trapping of gas
Pump tree:
Gas transfer: Positive displacement
8
• Diaphragm pump:
- Well known for
environmental reasons
- low maintenance cost
- noiseless
Rotary pumps
• Roots pump:
- design principle was discovered:
in 1848 by Isaiah Davies
- implemented in practice:
Francis and Philander Roots
- in vacuum science: only since 1954
Reciprocating pumps
9
Gas transfer: Kinetic
- 1913 :Gaede - molecular
- 1957 :Dr.W.Becker - turbomolecular
• (Turbo) molecular pump:
Entrapment pumps
• Cryopump:
- concentration on cold
surface
- profitable for some
gases
Drag pumps
10
Examples!
AUDI
MERCEDESBMW
MEDICAL APPLICATIONAEROSPACE APPLICATION
Applications:
- Refrigeration systems
- Food industry
- Laboratory experimentation
- Mechanical vacuum
- Medicine
- Aerospace industry
- Formula 1 and
Automotive industries
Holweck pump:
11
Invented by:
Fernand Holweck
Constructed by:
Charles Beaudouin
Molecular pump:
- Outer cylinder with
grooves, spiral form
- Inner cylinder with
smooth surface
The rotation of the
smooth cylinder causes
the gas flow
Fernand Holweck
(1890-1941)
3D problem
12
Simulation: much computational effort
Neglect: end effects and the curvature
of the geometry
(total effect = 0.05 )
4 independent problems: 2D flow
in grooved channel
region of solution:
Geometry:
13
H : distance between plates
W x D : groove cross section
W : groove width
D : groove depth
L : period
Isothermal walls:
Τ=Τ0
Characteristic length:
Η
Boundaries of flow domain:
- Inlet: (x΄= -L/2)
- Outlet: (x΄= L/2)
- Top wall: (y΄= Η)
- Bottom wall: (y΄=-D)
General description of
individual problems:
14
1. Longitudinal Couette flow
2. Longitudinal Poiseuille flow
3. Transversal Couette flow
4. Transversal Poiseuille flow( , )i
f f
Q f f
t i
Boltzmann equation:
BGK model:
( )M
i
f f
v f f
t i
23
[ ( , )]
2
2 ( , )
( , )
2 ( , )
i i
B
m u i t
k T i tM
B
m
f n i t e
k T i t
Maxwell distribution function:
Steady state flow:
Taylor expansion:( )M
i
f
v f f
i
0
0
n n
n
0
0
T T
T
2
0
0 0
3
1
2 2
M i iu
f f
RT RT
where:
Polar system coordinates:
2 2
x yc c
1
tan y
x
c
c
cos sinx y
d
c c
x y x y ds
Linear differentiation of distribution function
15
Longitudinal Couette: Longitudinal Poiseuille:
Fluid flow: in direction z’
Cause of flow: moving wall
in direction z’
Cause of flow: pressure gradient
in direction z’
0,0, ,zu u x y
0 0
1
o
U
f f h
u
0
1
o
U
u
Linearization0
1f f hXp z Xp 1Xp
x
x
H
y
y
H 0
x
xc
u 0
y
yc
u 0
z
zc
u
0
0
P
v 0
0 0
P H
u 02ou RT
Non dimensional
variables
'
0
z
z
u
u
U
0
0
u
U 0
ou
U
'
0
z
z
u
u
u Xp Xp Xp
reduced
BGK equations
after projection
x y zc c u
x y
where:
21
, , , , , , , zc
x y x y z z zx y c c h x y c c c c e dc
1
2
x y zc c u
x y
Macroscopic velocity:
1616
Fluid flow: in direction x’
Cause of flow: moving wall
in direction x’
Cause of flow: pressure gradient
in direction x’
Linearization
x
x
H
y
y
H 0
x
xc
u 0
y
yc
u 0
z
zc
u
0
0
P
v 0
0 0
P H
u 02ou RT
Non dimensional
variables
( , ), ( , ),0x yu u x y u x yTransversal Couette: Transversal Poiseuille:
0 0
1
o
U
f f h
u
0
1
o
U
u
0
1f f hXp x Xp 1Xp
0
0
u
U 0
ou
U Xp Xp
where:
'
0
x
x
u
u
U
'
0
y
y
u
u
U
'
0
x
x
u
u
u Xp
'
0
y
y
u
u
u Xp
2
1 2 cos sinx yu u
x y
2
1 2 cos sin cosx yu u
x y
2
x yc c
x y
21
, , , , , , , zc
x y x y z zx y c c h x y c c c e dc
2
21 1
, , , , , , ,
2
zc
x y x y z z zx y c c h x y c c c c e dcand
reduced
BGK equations
after projection
Macroscopic velocity:
Macroscopic quantities:
17
Longitudinal flows:
22
0 0
1
,zu x y e d d
22
0 0
1
, sinyzP x y e d d
1
0
2 ,
2
z
L
G u y dy
H
/2
/2
2
( ,1)
L H
yz
L H
H
Cd P x dx
L

Transversal flows:
2
2
0 0
1
,x y e d d
2
2
2
0 0
1 2
, 1
3
x y e d d
2
2
2
0 0
1
, cosxu x y e d d
2
2
2
0 0
1
, sinyu x y e d d
2
2
3
0 0
1
, sin cosxyP x y e d d
/2
/2
2
,1
L
xyL
H
Cd P x dx
L

1
0
2 ,
2
x
L
G u y dy
H
Density deviation:
Temperature deviation:
Macroscopic velocity:
Stress tensor:
Flow rate:
Drag coefficient:
18
Boundary conditions:
Couette
Poiseuille
eq
wf f
2
02
3
2
02
wu
RTeq w
w
n
f e
RT
, , , , , ,
2 2
L L
y y
H H
Inlet – Outlet: Periodic
Interface gas-wall: Maxwell - diffusion
0 0ncStationary walls:
Moving wall: 2 zc 0yc
Stationary walls:
2 coswn 0yc
Longitudinal
Transversal Stationary walls:
Moving wall:
0 0nc
0 0nc
wnStationary walls: 0nc
where
0
0
Longitudinal
Transversal
where nw is defined by the no-penetration condition: 0u n
• Discretization:
- Physical space [ (x,y) or (x,z)] : (i,j)
where i=1,2,…,I and j=1,2,…,J
- Molecular velocity space (μm,θn) : (ζm , θn)
where 0 < ζm < ∞ and 0 < θn < 2π
m=1,2,…,M and n=1,2,…N
19
Discrete Velocity Method
DVM
Set consists of:
Μ × Ν discrete velocities
(16 × 50 × 4)
3200
• Discretized kinetic equations:
(e.g. transversal Couette flow)
, ,
, , , 2
, , , , , 1 2 cos sini j i j
i j m n
m i j m n i j i j m m x n y n
d
u u
ds
, , , ,
, , ,
2
i j m n i j
m i j m n
d
ds
Set of
algebraic equations:
2 × Μ × Ν
equations/node
Algorithm:
20
Parameters:
δ μm θn Ny_cha
D (D/H) W (W/H) L (L/H)
Couette: U0 / Poiseuille: Χp
• Grid format :
Channel and Cavity
• Grid reverse:
Scan of grid:
1st 2nd
3rd
4th
end of scanning
• Geometries:
21
L = 2:
L = 2.5:
L = 3:
• Rarefaction parameter:
δ 0 10-3
10-
² 10-
¹ 1 10 100
Total runs:
18 geometries 7 δ
=
126
• Results:
Mass flow rate
Drag coefficient
Macroscopic velocities
22
Transversal Poiseuille flow:
Knudsen minimum: δ=1
Normalization of results:
F. Sharipov
L=3 , W=1.5 , D=0.5
δ
L W D 0 10-3 10-² 10-1 1 10 100
2 0.5 0.5 3,211 3,157 2,815 1,976 1,511 2,766 15,544
2 0.5 1 3,212 3,158 2,814 1,975 1,509 2,752 15,433
2 1 0.5 3,149 3,096 2,760 1,945 1,534 2,996 17,228
2 1 1 3,159 3,106 2,769 1,953 1,539 2,984 16,625
2 1.5 0.5 3,159 3,107 2,777 1,983 1,651 3,523 20,918
2 1.5 1 3,159 3,107 2,775 1,978 1,641 3,514 20,856
2.5 0.5 0.5 3,227 3,173 2,829 1,988 1,516 2,754 15,450
2.5 0.5 1 3,227 3,173 2,828 1,986 1,513 2,740 15,340
2.5 1 0.5 3,183 3,129 2,789 1,961 1,532 2,927 16,742
2.5 1 1 3,191 3,137 2,796 1,968 1,535 2,914 16,625
2.5 1.5 0.5 3,171 3,119 1,219 1,241 1,617 3,312 19,412
2.5 1.5 1 3,173 3,120 2,785 1,980 1,610 3,301 19,333
3 0.5 0.5 3,239 3,184 2,839 1,996 1,520 2,746 15,387
3 0.5 1 3,239 3,184 2,838 1,993 1,517 2,732 15,277
3 1 0.5 3,202 3,148 2,806 1,974 1,530 2,880 16,428
3 1 1 3,208 3,154 2,811 1,978 1,533 2,867 16,313
3 1.5 0.5 3,193 3,139 2,801 1,985 1,594 3,171 18,496
3 1.5 1 3,196 3,142 2,802 1,984 1,588 3,160 18,408
0.01 0.10 1.00 10.00
0.5
1.0
1.5
2.0
2.5
Mass flow rate:
23
Transversal Poiseuille flow:
Normalization of results:
F. Sharipov
L=3 , W=1.5 , D=0.5
δ
L W D 0 10-3 10-² 10-1 1 10 100
2 0.5 0.5 0,470 0,470 0,471 0,476 0,488 0,488 0,393
2 0.5 1 0,471 0,471 0,472 0,477 0,489 0,488 0,393
2 1 0.5 0,436 0,436 0,438 0,449 0,483 0,499 0,403
2 1 1 0,443 0,443 0,445 0,456 0,488 0,500 0,400
2 1.5 0.5 0,414 0,414 0,417 0,436 0,493 0,522 0,420
2 1.5 1 0,415 0,415 0,418 0,436 0,493 0,522 0,420
2.5 0.5 0.5 0,476 0,476 0,477 0,480 0,490 0,487 0,392
2.5 0.5 1 0,477 0,477 0,478 0,481 0,491 0,487 0,392
2.5 1 0.5 0,449 0,449 0,450 0,459 0,486 0,496 0,399
2.5 1 1 0,455 0,455 0,456 0,464 0,489 0,497 0,400
2.5 1.5 0.5 0,431 0,431 0,434 0,449 0,494 0,513 0,413
2.5 1.5 1 0,432 0,320 0,434 0,449 0,494 0,513 0,412
3 0.5 0.5 0,480 0,480 0,481 0,484 0,491 0,487 0,392
3 0.5 1 0,481 0,481 0,481 0,484 0,492 0,487 0,392
3 1 0.5 0,457 0,457 0,459 0,466 0,488 0,494 0,398
3 1 1 0,462 0,462 0,464 0,470 0,491 0,495 0,398
3 1.5 0.5 0,442 0,443 0,445 0,457 0,495 0,508 0,408
3 1.5 1 0,443 0,443 0,445 0,457 0,494 0,508 0,408
0.010 0.100 1.000 10.000
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Drag coefficient:
24
channel inlet:
Longitudinal Couette:
Transversal Couette:
L=3, W=1, D=1
L=3, W=1, D=1
Macroscopic velocities
channel middle:
L=3, W=1, D=1
L=3, W=1, D=1
cavity start:
L=3, W=1, D=1
L=3, W=1, D=1
25
channel inlet:
Macroscopic velocities
channel middle:cavity start:
Longitudinal Poiseuille:
Transversal Poiseuille:
L=3, W=1, D=1L=3, W=1, D=1
L=3, W=1, D=1 L=3, W=1, D=1
L=3, W=1, D=1
L=3, W=1, D=1
26
Longitudinal Couette:
Longitudinal Poiseuille:
Macroscopic velocities
velocity contours:
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
27
Transversal Couette:
Transversal Poiseuille:
Macroscopic velocities
velocity streamlines:
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
L=2 , W=1 , D=1
δ=0.1
L=2 , W=1 , D=1
δ=1
L=2 , W=1 , D=1
δ=10
• Four different flow configurations have been examined:
1. Longitudinal Couette flow
2. Longitudinal Poiseuille flow
3. Transversal Couette flow
4. Transversal Poiseuille flow
• Results have been obtained in the whole range of Knudsen number
and for various values of the geometrical parameters: L/H , W/H
, D/H.
• Synthesizing these results in a proper manner designed parameters
such as pumping speed and throughput can be obtained.
• Optimization of the Holweck pump will follow soon!!!
28
29
Thank you for your attention !!!

More Related Content

What's hot

Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
sravanthi chandanala
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
Yesuf3
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsTarun Gehlot
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesNishant Prabhakar
 
Estados de Tensión y Deformación - Resolución Ejercicio N° 2.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 2.pptxEstados de Tensión y Deformación - Resolución Ejercicio N° 2.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 2.pptx
gabrielpujol59
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equationnaveensapare
 
2020-2021 EDA 101 Handout.pdf
2020-2021 EDA 101 Handout.pdf2020-2021 EDA 101 Handout.pdf
2020-2021 EDA 101 Handout.pdf
MECHANICALENGINEERIN55
 
Fm ppt unit 5
Fm ppt unit 5Fm ppt unit 5
Fm ppt unit 5
MD ATEEQUE KHAN
 
design and analysis of cantilever beam ppt
design and analysis of cantilever beam pptdesign and analysis of cantilever beam ppt
design and analysis of cantilever beam ppt
College
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
Arun Sarasan
 
How many things do you THiiiNK are possible with the magic of the Foot & Golf...
How many things do you THiiiNK are possible with the magic of the Foot & Golf...How many things do you THiiiNK are possible with the magic of the Foot & Golf...
How many things do you THiiiNK are possible with the magic of the Foot & Golf...
www.thiiink.com
 
Bessel equation
Bessel equationBessel equation
Bessel equation
Ni'am Fathonah
 
Fluid Dynamics (Continuity Equation - Bernoulli Equation - head loss - Appli...
Fluid Dynamics  (Continuity Equation - Bernoulli Equation - head loss - Appli...Fluid Dynamics  (Continuity Equation - Bernoulli Equation - head loss - Appli...
Fluid Dynamics (Continuity Equation - Bernoulli Equation - head loss - Appli...
Safen D Taha
 
ME 570 Finite Element Methods
ME 570 Finite Element MethodsME 570 Finite Element Methods
ME 570 Finite Element Methods
Md.Asif Rahman
 
W8
W8W8
03 tensors
03 tensors03 tensors
03 tensorsTino Lc
 
Thermal stress and strains
Thermal stress and strainsThermal stress and strains
Thermal stress and strains
Deepak Rotti
 
CFD Introduction using Ansys Fluent
CFD Introduction using Ansys FluentCFD Introduction using Ansys Fluent
CFD Introduction using Ansys Fluent
savani4611
 
Finite difference equation
Finite difference equationFinite difference equation
Finite difference equation
Achmad Rachmad Tullah
 
Stresses in Beams
Stresses in BeamsStresses in Beams
Stresses in Beams
Ravi Vishwakarma
 

What's hot (20)

Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanics
 
Chapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategiesChapter 5 formulation and solution strategies
Chapter 5 formulation and solution strategies
 
Estados de Tensión y Deformación - Resolución Ejercicio N° 2.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 2.pptxEstados de Tensión y Deformación - Resolución Ejercicio N° 2.pptx
Estados de Tensión y Deformación - Resolución Ejercicio N° 2.pptx
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equation
 
2020-2021 EDA 101 Handout.pdf
2020-2021 EDA 101 Handout.pdf2020-2021 EDA 101 Handout.pdf
2020-2021 EDA 101 Handout.pdf
 
Fm ppt unit 5
Fm ppt unit 5Fm ppt unit 5
Fm ppt unit 5
 
design and analysis of cantilever beam ppt
design and analysis of cantilever beam pptdesign and analysis of cantilever beam ppt
design and analysis of cantilever beam ppt
 
Numerical methods for 2 d heat transfer
Numerical methods for 2 d heat transferNumerical methods for 2 d heat transfer
Numerical methods for 2 d heat transfer
 
How many things do you THiiiNK are possible with the magic of the Foot & Golf...
How many things do you THiiiNK are possible with the magic of the Foot & Golf...How many things do you THiiiNK are possible with the magic of the Foot & Golf...
How many things do you THiiiNK are possible with the magic of the Foot & Golf...
 
Bessel equation
Bessel equationBessel equation
Bessel equation
 
Fluid Dynamics (Continuity Equation - Bernoulli Equation - head loss - Appli...
Fluid Dynamics  (Continuity Equation - Bernoulli Equation - head loss - Appli...Fluid Dynamics  (Continuity Equation - Bernoulli Equation - head loss - Appli...
Fluid Dynamics (Continuity Equation - Bernoulli Equation - head loss - Appli...
 
ME 570 Finite Element Methods
ME 570 Finite Element MethodsME 570 Finite Element Methods
ME 570 Finite Element Methods
 
W8
W8W8
W8
 
03 tensors
03 tensors03 tensors
03 tensors
 
Thermal stress and strains
Thermal stress and strainsThermal stress and strains
Thermal stress and strains
 
CFD Introduction using Ansys Fluent
CFD Introduction using Ansys FluentCFD Introduction using Ansys Fluent
CFD Introduction using Ansys Fluent
 
Finite difference equation
Finite difference equationFinite difference equation
Finite difference equation
 
Stresses in Beams
Stresses in BeamsStresses in Beams
Stresses in Beams
 

Similar to Holweck pump

Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
Dr. Ezzat Elsayed Gomaa
 
Quishpe mireya practica6
Quishpe mireya practica6Quishpe mireya practica6
Quishpe mireya practica6
MIREYAMISHELLQUISHPE
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamicsCik Minn
 
FluidDynamics.ppt
FluidDynamics.pptFluidDynamics.ppt
FluidDynamics.ppt
MuddassirMudassar
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
Dr.Risalah A. Mohammed
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
Adnan Aslam
 
Hardycross method
Hardycross methodHardycross method
Hardycross method
Muhammad Nouman
 
FYP Presentation v2.0
FYP Presentation v2.0FYP Presentation v2.0
FYP Presentation v2.0Bianchi Dy
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
Saif al-din ali
 
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Liqiang Lu
 
Pipe sizing
Pipe sizingPipe sizing
Pipe sizing
Ajay Kumar Sharma
 
Application on bernoulli equation
Application on bernoulli equationApplication on bernoulli equation
Application on bernoulli equation
Dr.Risalah A. Mohammed
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
Rodolfo Gonçalves
 
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Salman Jailani
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
Elisée Ndjabu
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
KOSIREDDYASHOKDEVAKU
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal Wells
Sohil Shah
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdf
PrAtYuShGauR1
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
Edhole.com
 

Similar to Holweck pump (20)

Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
Quishpe mireya practica6
Quishpe mireya practica6Quishpe mireya practica6
Quishpe mireya practica6
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
FluidDynamics.ppt
FluidDynamics.pptFluidDynamics.ppt
FluidDynamics.ppt
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
1stSymposiumTALK_Closed_Conduit-Paul_Ghamry
1stSymposiumTALK_Closed_Conduit-Paul_Ghamry1stSymposiumTALK_Closed_Conduit-Paul_Ghamry
1stSymposiumTALK_Closed_Conduit-Paul_Ghamry
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Hardycross method
Hardycross methodHardycross method
Hardycross method
 
FYP Presentation v2.0
FYP Presentation v2.0FYP Presentation v2.0
FYP Presentation v2.0
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...Coarse CFD-DEM simulation of Rare Earth Element leaching reactor,  FCC re-gen...
Coarse CFD-DEM simulation of Rare Earth Element leaching reactor, FCC re-gen...
 
Pipe sizing
Pipe sizingPipe sizing
Pipe sizing
 
Application on bernoulli equation
Application on bernoulli equationApplication on bernoulli equation
Application on bernoulli equation
 
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
OMAE2013-10454: Experimental Study on Flow Around Circular Cylinders with Low...
 
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal Wells
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdf
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
 

More from irinikou

συστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιισυστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιιirinikou
 
κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1irinikou
 
κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3irinikou
 
κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1irinikou
 
τριγωνικη τραπεζοειδής διατομή
τριγωνικη   τραπεζοειδής διατομήτριγωνικη   τραπεζοειδής διατομή
τριγωνικη τραπεζοειδής διατομήirinikou
 
τυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητριατυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητριαirinikou
 

More from irinikou (8)

συστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιισυστημα κλιματισμου συστ αυτ ιι
συστημα κλιματισμου συστ αυτ ιι
 
κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1κινητηρεσ αεροσκαφων 1
κινητηρεσ αεροσκαφων 1
 
κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3κλιματισμοσ I κεφ 3
κλιματισμοσ I κεφ 3
 
κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1κλιματισμοσ I κεφ 1
κλιματισμοσ I κεφ 1
 
τριγωνικη τραπεζοειδής διατομή
τριγωνικη   τραπεζοειδής διατομήτριγωνικη   τραπεζοειδής διατομή
τριγωνικη τραπεζοειδής διατομή
 
m.v.c.
m.v.c.m.v.c.
m.v.c.
 
τυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητριατυρβωδης ροη ανεμογεννητρια
τυρβωδης ροη ανεμογεννητρια
 
απε
απεαπε
απε
 

Recently uploaded

Exploring Patterns of Connection with Social Dreaming
Exploring Patterns of Connection with Social DreamingExploring Patterns of Connection with Social Dreaming
Exploring Patterns of Connection with Social Dreaming
Nicola Wreford-Howard
 
FINAL PRESENTATION.pptx12143241324134134
FINAL PRESENTATION.pptx12143241324134134FINAL PRESENTATION.pptx12143241324134134
FINAL PRESENTATION.pptx12143241324134134
LR1709MUSIC
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
taqyed
 
Recruiting in the Digital Age: A Social Media Masterclass
Recruiting in the Digital Age: A Social Media MasterclassRecruiting in the Digital Age: A Social Media Masterclass
Recruiting in the Digital Age: A Social Media Masterclass
LuanWise
 
Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024
FelixPerez547899
 
3.0 Project 2_ Developing My Brand Identity Kit.pptx
3.0 Project 2_ Developing My Brand Identity Kit.pptx3.0 Project 2_ Developing My Brand Identity Kit.pptx
3.0 Project 2_ Developing My Brand Identity Kit.pptx
tanyjahb
 
Cracking the Workplace Discipline Code Main.pptx
Cracking the Workplace Discipline Code Main.pptxCracking the Workplace Discipline Code Main.pptx
Cracking the Workplace Discipline Code Main.pptx
Workforce Group
 
RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...
RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...
RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...
BBPMedia1
 
Mastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnapMastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnap
Norma Mushkat Gaffin
 
amptalk_RecruitingDeck_english_2024.06.05
amptalk_RecruitingDeck_english_2024.06.05amptalk_RecruitingDeck_english_2024.06.05
amptalk_RecruitingDeck_english_2024.06.05
marketing317746
 
What is the TDS Return Filing Due Date for FY 2024-25.pdf
What is the TDS Return Filing Due Date for FY 2024-25.pdfWhat is the TDS Return Filing Due Date for FY 2024-25.pdf
What is the TDS Return Filing Due Date for FY 2024-25.pdf
seoforlegalpillers
 
20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf
tjcomstrang
 
Digital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and TemplatesDigital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and Templates
Aurelien Domont, MBA
 
Introduction to Amazon company 111111111111
Introduction to Amazon company 111111111111Introduction to Amazon company 111111111111
Introduction to Amazon company 111111111111
zoyaansari11365
 
ModelingMarketingStrategiesMKS.CollumbiaUniversitypdf
ModelingMarketingStrategiesMKS.CollumbiaUniversitypdfModelingMarketingStrategiesMKS.CollumbiaUniversitypdf
ModelingMarketingStrategiesMKS.CollumbiaUniversitypdf
fisherameliaisabella
 
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdfMeas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
dylandmeas
 
Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143
Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143
Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143
bosssp10
 
The key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EUThe key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EU
Allensmith572606
 
CADAVER AS OUR FIRST TEACHER anatomt in your.pptx
CADAVER AS OUR FIRST TEACHER anatomt in your.pptxCADAVER AS OUR FIRST TEACHER anatomt in your.pptx
CADAVER AS OUR FIRST TEACHER anatomt in your.pptx
fakeloginn69
 
RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...
RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...
RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...
BBPMedia1
 

Recently uploaded (20)

Exploring Patterns of Connection with Social Dreaming
Exploring Patterns of Connection with Social DreamingExploring Patterns of Connection with Social Dreaming
Exploring Patterns of Connection with Social Dreaming
 
FINAL PRESENTATION.pptx12143241324134134
FINAL PRESENTATION.pptx12143241324134134FINAL PRESENTATION.pptx12143241324134134
FINAL PRESENTATION.pptx12143241324134134
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
 
Recruiting in the Digital Age: A Social Media Masterclass
Recruiting in the Digital Age: A Social Media MasterclassRecruiting in the Digital Age: A Social Media Masterclass
Recruiting in the Digital Age: A Social Media Masterclass
 
Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024
 
3.0 Project 2_ Developing My Brand Identity Kit.pptx
3.0 Project 2_ Developing My Brand Identity Kit.pptx3.0 Project 2_ Developing My Brand Identity Kit.pptx
3.0 Project 2_ Developing My Brand Identity Kit.pptx
 
Cracking the Workplace Discipline Code Main.pptx
Cracking the Workplace Discipline Code Main.pptxCracking the Workplace Discipline Code Main.pptx
Cracking the Workplace Discipline Code Main.pptx
 
RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...
RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...
RMD24 | Debunking the non-endemic revenue myth Marvin Vacquier Droop | First ...
 
Mastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnapMastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnap
 
amptalk_RecruitingDeck_english_2024.06.05
amptalk_RecruitingDeck_english_2024.06.05amptalk_RecruitingDeck_english_2024.06.05
amptalk_RecruitingDeck_english_2024.06.05
 
What is the TDS Return Filing Due Date for FY 2024-25.pdf
What is the TDS Return Filing Due Date for FY 2024-25.pdfWhat is the TDS Return Filing Due Date for FY 2024-25.pdf
What is the TDS Return Filing Due Date for FY 2024-25.pdf
 
20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf
 
Digital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and TemplatesDigital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and Templates
 
Introduction to Amazon company 111111111111
Introduction to Amazon company 111111111111Introduction to Amazon company 111111111111
Introduction to Amazon company 111111111111
 
ModelingMarketingStrategiesMKS.CollumbiaUniversitypdf
ModelingMarketingStrategiesMKS.CollumbiaUniversitypdfModelingMarketingStrategiesMKS.CollumbiaUniversitypdf
ModelingMarketingStrategiesMKS.CollumbiaUniversitypdf
 
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdfMeas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
 
Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143
Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143
Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta 143
 
The key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EUThe key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EU
 
CADAVER AS OUR FIRST TEACHER anatomt in your.pptx
CADAVER AS OUR FIRST TEACHER anatomt in your.pptxCADAVER AS OUR FIRST TEACHER anatomt in your.pptx
CADAVER AS OUR FIRST TEACHER anatomt in your.pptx
 
RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...
RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...
RMD24 | Retail media: hoe zet je dit in als je geen AH of Unilever bent? Heid...
 

Holweck pump

  • 1. Eirini Koutantou Supervisor: Prof. D. Valougeorgis Holweck pump modeling Department of Mechanical Engineering, University of Thessaly
  • 2. Presentation contents: 1) Introduction 2) Statement of the problem 3) Computational scheme 4) Results and discussion 5) Concluding remarks 2
  • 3. 3 Vacuum: the pressure of the gas is much lower than the one of its environment Pump: device that is used to move fluids Vacuum pump: movement of gas molecules due to flow induced by a vacuum system Was invented in: 1650 by: Otto von Guericke
  • 4. General Terminology: 4 • Pressure: • Ideal gas equation: • Mean free path: • Reynolds number: • Knudsen number: mfp: F p A B mRT pV Nk T M 2 2 1 1 2 2n d n d where: 8kT m Re ud v 1 2 Kn d Absolute vacuum: density of molecules=0
  • 5. 5 Vacuum Terminology: • Mass flow: • Pumping speed: • Pump throughput: • Conductance/Conductivity: • Compression ratio: m M t  [kg/h, g/s] dV S dt [m3/s, m3/h] pV V mRT Q p t tM pV dV Q S p p dt [Pa m3/s =W] pVQ C p in row: 1/Ctot = 1/C1 + 1/C2 parallel: Ctot = C1 + C2 + … 2 0 1 p K p P1: inlet pressure P2: outlet pressure
  • 6. 6 vacuum (mfp range) rough vacuum: mfp << 10-4 m medium vacuum: 10-4 m - 10-1 m high vacuum: 10-1 m - 103 m ultra high vacuum: mfp >> 103 m vacuum (pressure range) rough vacuum: 105 Pa - 100 Pa fine vacuum: 100 Pa - 10-1 Pa high vacuum: 10-1 Pa - 10-5 Pa ultra high vacuum (UHV): 10-5 Pa - 10-10 Pa extreme high vacuum(XHV): 10-10 Pa - 10-12 Pa Definition of vacuum ranges: Gas flow regimes: Kn > 0.5: Free Molecular -Equation of Boltzmann (without the collision term) -ultra, extreme high vacuum 0.01 < Kn < 0.5: Transition regime -Equation of Boltzmann (empirical approaches) - fine, medium vacuum Kn << 0.01: Viscous or continuum flow (laminar or turbulent) -Described by the equations NS - rough vacuum
  • 7. 7 fluid displaced by a space and is forwarded to another gases are removed by extracting them in the atmosphere change of the kinetic state of the moving fluid cause condensation or chemical trapping of gas Pump tree:
  • 8. Gas transfer: Positive displacement 8 • Diaphragm pump: - Well known for environmental reasons - low maintenance cost - noiseless Rotary pumps • Roots pump: - design principle was discovered: in 1848 by Isaiah Davies - implemented in practice: Francis and Philander Roots - in vacuum science: only since 1954 Reciprocating pumps
  • 9. 9 Gas transfer: Kinetic - 1913 :Gaede - molecular - 1957 :Dr.W.Becker - turbomolecular • (Turbo) molecular pump: Entrapment pumps • Cryopump: - concentration on cold surface - profitable for some gases Drag pumps
  • 10. 10 Examples! AUDI MERCEDESBMW MEDICAL APPLICATIONAEROSPACE APPLICATION Applications: - Refrigeration systems - Food industry - Laboratory experimentation - Mechanical vacuum - Medicine - Aerospace industry - Formula 1 and Automotive industries
  • 11. Holweck pump: 11 Invented by: Fernand Holweck Constructed by: Charles Beaudouin Molecular pump: - Outer cylinder with grooves, spiral form - Inner cylinder with smooth surface The rotation of the smooth cylinder causes the gas flow Fernand Holweck (1890-1941)
  • 12. 3D problem 12 Simulation: much computational effort Neglect: end effects and the curvature of the geometry (total effect = 0.05 ) 4 independent problems: 2D flow in grooved channel region of solution:
  • 13. Geometry: 13 H : distance between plates W x D : groove cross section W : groove width D : groove depth L : period Isothermal walls: Τ=Τ0 Characteristic length: Η Boundaries of flow domain: - Inlet: (x΄= -L/2) - Outlet: (x΄= L/2) - Top wall: (y΄= Η) - Bottom wall: (y΄=-D)
  • 14. General description of individual problems: 14 1. Longitudinal Couette flow 2. Longitudinal Poiseuille flow 3. Transversal Couette flow 4. Transversal Poiseuille flow( , )i f f Q f f t i Boltzmann equation: BGK model: ( )M i f f v f f t i 23 [ ( , )] 2 2 ( , ) ( , ) 2 ( , ) i i B m u i t k T i tM B m f n i t e k T i t Maxwell distribution function: Steady state flow: Taylor expansion:( )M i f v f f i 0 0 n n n 0 0 T T T 2 0 0 0 3 1 2 2 M i iu f f RT RT where: Polar system coordinates: 2 2 x yc c 1 tan y x c c cos sinx y d c c x y x y ds Linear differentiation of distribution function
  • 15. 15 Longitudinal Couette: Longitudinal Poiseuille: Fluid flow: in direction z’ Cause of flow: moving wall in direction z’ Cause of flow: pressure gradient in direction z’ 0,0, ,zu u x y 0 0 1 o U f f h u 0 1 o U u Linearization0 1f f hXp z Xp 1Xp x x H y y H 0 x xc u 0 y yc u 0 z zc u 0 0 P v 0 0 0 P H u 02ou RT Non dimensional variables ' 0 z z u u U 0 0 u U 0 ou U ' 0 z z u u u Xp Xp Xp reduced BGK equations after projection x y zc c u x y where: 21 , , , , , , , zc x y x y z z zx y c c h x y c c c c e dc 1 2 x y zc c u x y Macroscopic velocity:
  • 16. 1616 Fluid flow: in direction x’ Cause of flow: moving wall in direction x’ Cause of flow: pressure gradient in direction x’ Linearization x x H y y H 0 x xc u 0 y yc u 0 z zc u 0 0 P v 0 0 0 P H u 02ou RT Non dimensional variables ( , ), ( , ),0x yu u x y u x yTransversal Couette: Transversal Poiseuille: 0 0 1 o U f f h u 0 1 o U u 0 1f f hXp x Xp 1Xp 0 0 u U 0 ou U Xp Xp where: ' 0 x x u u U ' 0 y y u u U ' 0 x x u u u Xp ' 0 y y u u u Xp 2 1 2 cos sinx yu u x y 2 1 2 cos sin cosx yu u x y 2 x yc c x y 21 , , , , , , , zc x y x y z zx y c c h x y c c c e dc 2 21 1 , , , , , , , 2 zc x y x y z z zx y c c h x y c c c c e dcand reduced BGK equations after projection Macroscopic velocity:
  • 17. Macroscopic quantities: 17 Longitudinal flows: 22 0 0 1 ,zu x y e d d 22 0 0 1 , sinyzP x y e d d 1 0 2 , 2 z L G u y dy H /2 /2 2 ( ,1) L H yz L H H Cd P x dx L  Transversal flows: 2 2 0 0 1 ,x y e d d 2 2 2 0 0 1 2 , 1 3 x y e d d 2 2 2 0 0 1 , cosxu x y e d d 2 2 2 0 0 1 , sinyu x y e d d 2 2 3 0 0 1 , sin cosxyP x y e d d /2 /2 2 ,1 L xyL H Cd P x dx L  1 0 2 , 2 x L G u y dy H Density deviation: Temperature deviation: Macroscopic velocity: Stress tensor: Flow rate: Drag coefficient:
  • 18. 18 Boundary conditions: Couette Poiseuille eq wf f 2 02 3 2 02 wu RTeq w w n f e RT , , , , , , 2 2 L L y y H H Inlet – Outlet: Periodic Interface gas-wall: Maxwell - diffusion 0 0ncStationary walls: Moving wall: 2 zc 0yc Stationary walls: 2 coswn 0yc Longitudinal Transversal Stationary walls: Moving wall: 0 0nc 0 0nc wnStationary walls: 0nc where 0 0 Longitudinal Transversal where nw is defined by the no-penetration condition: 0u n
  • 19. • Discretization: - Physical space [ (x,y) or (x,z)] : (i,j) where i=1,2,…,I and j=1,2,…,J - Molecular velocity space (μm,θn) : (ζm , θn) where 0 < ζm < ∞ and 0 < θn < 2π m=1,2,…,M and n=1,2,…N 19 Discrete Velocity Method DVM Set consists of: Μ × Ν discrete velocities (16 × 50 × 4) 3200 • Discretized kinetic equations: (e.g. transversal Couette flow) , , , , , 2 , , , , , 1 2 cos sini j i j i j m n m i j m n i j i j m m x n y n d u u ds , , , , , , , 2 i j m n i j m i j m n d ds Set of algebraic equations: 2 × Μ × Ν equations/node
  • 20. Algorithm: 20 Parameters: δ μm θn Ny_cha D (D/H) W (W/H) L (L/H) Couette: U0 / Poiseuille: Χp • Grid format : Channel and Cavity • Grid reverse: Scan of grid: 1st 2nd 3rd 4th end of scanning
  • 21. • Geometries: 21 L = 2: L = 2.5: L = 3: • Rarefaction parameter: δ 0 10-3 10- ² 10- ¹ 1 10 100 Total runs: 18 geometries 7 δ = 126 • Results: Mass flow rate Drag coefficient Macroscopic velocities
  • 22. 22 Transversal Poiseuille flow: Knudsen minimum: δ=1 Normalization of results: F. Sharipov L=3 , W=1.5 , D=0.5 δ L W D 0 10-3 10-² 10-1 1 10 100 2 0.5 0.5 3,211 3,157 2,815 1,976 1,511 2,766 15,544 2 0.5 1 3,212 3,158 2,814 1,975 1,509 2,752 15,433 2 1 0.5 3,149 3,096 2,760 1,945 1,534 2,996 17,228 2 1 1 3,159 3,106 2,769 1,953 1,539 2,984 16,625 2 1.5 0.5 3,159 3,107 2,777 1,983 1,651 3,523 20,918 2 1.5 1 3,159 3,107 2,775 1,978 1,641 3,514 20,856 2.5 0.5 0.5 3,227 3,173 2,829 1,988 1,516 2,754 15,450 2.5 0.5 1 3,227 3,173 2,828 1,986 1,513 2,740 15,340 2.5 1 0.5 3,183 3,129 2,789 1,961 1,532 2,927 16,742 2.5 1 1 3,191 3,137 2,796 1,968 1,535 2,914 16,625 2.5 1.5 0.5 3,171 3,119 1,219 1,241 1,617 3,312 19,412 2.5 1.5 1 3,173 3,120 2,785 1,980 1,610 3,301 19,333 3 0.5 0.5 3,239 3,184 2,839 1,996 1,520 2,746 15,387 3 0.5 1 3,239 3,184 2,838 1,993 1,517 2,732 15,277 3 1 0.5 3,202 3,148 2,806 1,974 1,530 2,880 16,428 3 1 1 3,208 3,154 2,811 1,978 1,533 2,867 16,313 3 1.5 0.5 3,193 3,139 2,801 1,985 1,594 3,171 18,496 3 1.5 1 3,196 3,142 2,802 1,984 1,588 3,160 18,408 0.01 0.10 1.00 10.00 0.5 1.0 1.5 2.0 2.5 Mass flow rate:
  • 23. 23 Transversal Poiseuille flow: Normalization of results: F. Sharipov L=3 , W=1.5 , D=0.5 δ L W D 0 10-3 10-² 10-1 1 10 100 2 0.5 0.5 0,470 0,470 0,471 0,476 0,488 0,488 0,393 2 0.5 1 0,471 0,471 0,472 0,477 0,489 0,488 0,393 2 1 0.5 0,436 0,436 0,438 0,449 0,483 0,499 0,403 2 1 1 0,443 0,443 0,445 0,456 0,488 0,500 0,400 2 1.5 0.5 0,414 0,414 0,417 0,436 0,493 0,522 0,420 2 1.5 1 0,415 0,415 0,418 0,436 0,493 0,522 0,420 2.5 0.5 0.5 0,476 0,476 0,477 0,480 0,490 0,487 0,392 2.5 0.5 1 0,477 0,477 0,478 0,481 0,491 0,487 0,392 2.5 1 0.5 0,449 0,449 0,450 0,459 0,486 0,496 0,399 2.5 1 1 0,455 0,455 0,456 0,464 0,489 0,497 0,400 2.5 1.5 0.5 0,431 0,431 0,434 0,449 0,494 0,513 0,413 2.5 1.5 1 0,432 0,320 0,434 0,449 0,494 0,513 0,412 3 0.5 0.5 0,480 0,480 0,481 0,484 0,491 0,487 0,392 3 0.5 1 0,481 0,481 0,481 0,484 0,492 0,487 0,392 3 1 0.5 0,457 0,457 0,459 0,466 0,488 0,494 0,398 3 1 1 0,462 0,462 0,464 0,470 0,491 0,495 0,398 3 1.5 0.5 0,442 0,443 0,445 0,457 0,495 0,508 0,408 3 1.5 1 0,443 0,443 0,445 0,457 0,494 0,508 0,408 0.010 0.100 1.000 10.000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Drag coefficient:
  • 24. 24 channel inlet: Longitudinal Couette: Transversal Couette: L=3, W=1, D=1 L=3, W=1, D=1 Macroscopic velocities channel middle: L=3, W=1, D=1 L=3, W=1, D=1 cavity start: L=3, W=1, D=1 L=3, W=1, D=1
  • 25. 25 channel inlet: Macroscopic velocities channel middle:cavity start: Longitudinal Poiseuille: Transversal Poiseuille: L=3, W=1, D=1L=3, W=1, D=1 L=3, W=1, D=1 L=3, W=1, D=1 L=3, W=1, D=1 L=3, W=1, D=1
  • 26. 26 Longitudinal Couette: Longitudinal Poiseuille: Macroscopic velocities velocity contours: L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10 L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10
  • 27. 27 Transversal Couette: Transversal Poiseuille: Macroscopic velocities velocity streamlines: L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10 L=2 , W=1 , D=1 δ=0.1 L=2 , W=1 , D=1 δ=1 L=2 , W=1 , D=1 δ=10
  • 28. • Four different flow configurations have been examined: 1. Longitudinal Couette flow 2. Longitudinal Poiseuille flow 3. Transversal Couette flow 4. Transversal Poiseuille flow • Results have been obtained in the whole range of Knudsen number and for various values of the geometrical parameters: L/H , W/H , D/H. • Synthesizing these results in a proper manner designed parameters such as pumping speed and throughput can be obtained. • Optimization of the Holweck pump will follow soon!!! 28
  • 29. 29 Thank you for your attention !!!