SlideShare a Scribd company logo
1 of 21
Awad Albalwi
Hindered amine stabilizes
By
Awad Nasser Albalwi
School of Chemistry
University of Wollongong
(June,2010)
1
Awad Albalwi
Abstract
A B3LYP, HF, AM1 and PM2 computational studies of the reaction of hindered amine (HALS)
has been perfumed. Four different theories were used to calculate the bond dissociation energy
(BDE). In two molecules studied the nitrogen were protonated and not protonated. BDE were
calculated when aromatic rings were substituted with NO2 and OCH3. B3LYP was the best
theoretical calculation level, The BDE was grater when nitrogen in HALS was protonated. There
was no big significant difference in BDE when aromatic ring of hindered amine was substituted
with NO2 and OCH3.
2
Awad Albalwi
Introduction:
Hindered amine light stabilizers (HALS) are among the most efficient polymer stabilizers known.
Bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, is a typical (HALS). Since the early 1970s,
HALS have become a highly important class of light stabilisers for polymers. They stabilise wide
range of commercial polymers and are particularly effective for stabilization of polyolefins when
use where resistance to deterioration by light and weathering are important. Hinder amines
have also been used as stabiliser against light induced degradation of polymers such as
polyolefin and polyurethane1&4
. Polypropylene is an example of a major commercial polymer
which would never have achieved any practical use without the development of a good
stabiliser system. Polyolefin needs protection in all the stages of its life cycle. In order for an
antioxidant to improve the long-term weathering performance of an automotive
clearcoat/basecoat paint which is a polymer system, it must inhibit clearcoat photo-oxidation at
the onset of exposure and sustain the inhibition for many years. While there is ample evidence
that hindered amine light stabilizer (HALS) additives can inhibit the photo-oxidation of
automotive clearcoats polymer,
It is generally known that the photo oxidation of hydrocarbon polymer under natural weathering
is initiated by ketones or hydroperoxide impurities. HALS acts as a scavenger for free radicals
that would otherwise degrade or discolour HALS are efficient inhibitors of the photooxidation of
polyolifins HALS act as scavengers for free radicals that would otherwise degrade or discolour
the polymer coating. Hindered amine has been employed in the automotive and wood coating
sectors of the surface coatings industry for many years. In both applications, HALS are
incorporated into a non-pigmented (or ‘clear’) topcoat by addition to the unstabilised wet paint or
lacquer during formulation. The presence of HALS unequivocally improves gloss retention and
long-term durability of these formulations 2
.
Mechanisms of action of hindered amine stabilizers.
3
Awad Albalwi
Hindered amines have multiple mechanisms of functioning as photostabilsers of polymers. The
chemical mechanism of HALS action remains an active area of research interest, but there is
general agreement that the critical active species in the stabilisation process is the oxidised
form of the HALS in question, namely the corresponding nitroxyl free radical.
Although the sequence of reactions involved is often generically described by the so-called
‘Denisov cycle’ .The mechanism of HALS protective mechanisms is actively been pursued by
many researchers and agreed that the active radical nitroxyl radical is the stabilising spices.
Savaging of radicals is generally considered to be the mechanism by which HALS inhibits
polymer auto oxidation. The stabilising spice in HALS is the oxidised form nitroxyl free radical.
The mechanism of nitroxyl radical trapping studies with various hindered amines is an active
area of research.
HALS is able to break several radical chains. HALS amino ether’s ability to convert back to
nitroxyls by reacting with alkyperoxy radicals in known as Denisov cycle(scheme.1). This
process is over simplified caused there are other reactions and diffusion taking place.
N N ox N O^ N O
R.
ROO.
regenerative step
R
Scheme.1: Denisov cycle.
Some researches. focused on the possible deactivation mechanisim for HALS molecules i.e
finding the ideal initial nitrogen substitute and the size of R on piperidine ring.
Their primary mode of functioning appears to be the trapping of carbon –centred radicals by
nitroxyls and the regeneration of nitroxyls from N-alkyloxy product The nitrogen oxidation
mechanism where the alkylperoxy radical attack the nitrogen of the aminoether, forming an
oxidised tetra coordinated nitrogen intermediate. The intermidate undergo α-hydrogen
abstraction and a N-O bond cleavage to produce the nitroxyl radical a carbonyl compound
4
Awad Albalwi
Hindered amine stabilizers are able to participate in inhibiting both photo-oxidation reactions--
they trap acylperoxy radicals, converting them to carboxylic acids and are converted to nitrosyl
radicals in the process; the nitrosyl radicals trap alkyl radicals and the hindered amines trap
alkylperoxy radicals to inhibit the other oxidation pathway.
1- Denisov Mechanism. Nitrosyl are regenerated from N-alkyloxy hindered amines in a fast,
efficient reaction with acylperoxy radicals and in a slow, inefficient reaction 1 The Denisov
mechanism shown in eqn (1) and Scheme 1 was postulated on the basis of findings that nitroxyl
radicals retarded the photo-oxidation of polypropylene powder containing dicumyl peroxide as
initiator 3
.
NO. + R'. NOR'
ROO.
NO. + ROOR'
1
,
When the photolysis of the polymer containing hindered amine nitrosyl was carried out in an
argon atmosphere, the nitrosyl radical concentration was found to decrease to zero and
subsequently, when air was introduced into the reaction vessel, nitroxyl radicals were again
found to be formed during continued photolysis. These observations led to the proposal that the
nitroxyls were being regenerated from the N-alkyloxy compounds by reaction with peroxy
radicals, and dialkyl peroxides were also formed.
2- Sedlar and his co-workers have proposed that complexation between hindered amine and
hydroperoxides locates the hindered amine in the region where the radical products from
photolysis of the polymer hydroperoxide can interact easily with the hindered amine and form
products which do not have any oxidation propagating qualities:
3 -Carlsson and his co-workers have also proposed complexation between hindered amines
and polymer hydroperoxides. In addition, they found that when a prephotooxidized film of
polypropylene was contacted with a solution of hindered amine, or when they had imbibed
hindered amine into the polymer film from Stabilization mechanisms of hindered amines
5
Awad Albalwi
solution, dark reactions took place in which nitroxyls were generated probably through
intermediate hydroxylamines., Carlson et al postulated that the prephoto-oxidized polypropylene
film contained activated hydroperoxide functionalities on alternating carbon atoms based on the
accepted back-biting mechanism of peroxy radicals in polyolefins 3
.
They pointed out that activated hydroperoxides have been reported in the literature, most
particularly in a paper by Ball and Bruice. In their work, Ball and Bruice found that-
hydroperoxyflavin reacted readily with amines. With secondary amines the activated
hydroperoxide formed hydroxylamines; with tertiary amines, amine oxides; and hydroxylamines
were found to be further oxidized to nitrones by this reagent. In that paper, Ball and Bruice
reported the rate constant for the reaction of -hydroperoxyflavin with N,N-dimethylaniline to be
about 400000 times greater than the rate constant for the reaction of di-t-butyl hydroperoxide
with that same tertiary amine 3
.
4- Carlsson et al., investigators reported that the reaction between triacetoneamine and
cyclohexylperoxy radicals had a rate constant of 3 mol- 1
s- 1
and yielded cyclohexylperoxide and
aminyl radicals.The aminyl radicals were subsequently oxidized to nitroxyls.
5- Toda and his co-workers of the Sankyo Corporation of Japan reported that hindered amines
react rapidly with peracids as indicated in equation(2). The reaction is stoichiometric and results
in the formation of nitroxyl radicals:
3RCOOOH + NH 3 RCOOH + 2 NO. + H2O
2
6 Felder and his co-workers of the Ciba-Geigy Corporation in Switzerland reported that
hindered amines are effective scavengers of acylperoxy radicals 3
.
RCOOO. + NH RCOOH + NO.
3
The Felder group also reported that the photo-oxidation of isooctane, a model for
polypropylene, initiated by t-butoxy radicals from the photolysis of di-t-butyl peroxide, resulted in
the formation of peracids, hydroperoxides, and peroxides. About 40% of the active oxygen in
6
Awad Albalwi
the products was in the form of peracids. Furthermore, on analysis of the products formed, the
Felder group established that the attack of isooctane by alkylperoxy radicals was nearly
statistical and that primary hydrogens were as readily abstracted as secondary or tertiary
hydrogens. This result is in contrast to the generally accepted concept of hydrogen atom
abstraction in polymer molecules, with the tertiary carbon atoms in polypropylene, for instance,
generally being accepted as the preferred site of attack 4
.
Felder's results of random attack by t-butoxy radicals in the photooxidation work contrast with
results obtained by Niki and Kamiya in the thermal oxidation of hydrocarbons also with t-butoxy
radicals, generated from the thermolysis of di-t-butyl peroxyoxalate. In the latter work with a
number of hydrocarbons the attack at the primary, secondary and tertiary positions was in the
ratio 1:7:20, respectively 4
.
• Felder and his co-workers postulated further that since primary attack occurred frequently in
the photolysis of isooctane it was likely that significant amounts of aldehydes were being formed
as a result of termination of primary peroxy radicals and that subsequently the oxidation of
these aldehydes resulted in peracids. That was one of the first publications in which the
suggestion was made that aldehyde oxidation may be a key, but neglected, pathway in the
photo-oxidation of hydrocarbon polymers. In fact, a number of articles in the literature indicate
that among the photooxidation products of polyolefins are acids, esters and even peracids.
A computational study of the possible regeneration mechanism should provide useful insight in
to most of the molecular structures of various HALS1
.
The purpose of this paper to examine the following hypothesis:
1- There is correlation / relationship between an increase the size of group (R) and an
increase the Bond dissociation energy of Hindered amine (HALS).
2- There is no effect of substitution on the aromatic ring of HALS with OCH3&NO2 in various
positions.
7
Awad Albalwi
3- There are differences in BDE between none & protanated nitrogen of Hindered amine
(MO1).
4- There is no relationship between change of such group (OCH3, NO2) on the same
position on the aromatic ring (HALS) & BDE changes.
In this project the molecular MO1 is refer to this structure:
The Molecular MO2 is refer to these structure:
8
R R
R R
MO2(+)
Protonated
MO2
Non-protonated
MO1
Non-protonated
MO1(+)
protonated
Awad Albalwi
Procedure
Firstly, the calculations were performed with the GAUSSIAN09 (G09) programme in order to
select the best level of theory to calculate the Bond Dissociation energy (BDE). Four level of
theories (B3LYP, AM1, HF & MP2) at the basis set 3-21(G) were used to calculate the BDE of
these reactions (Scheme3&4):
N
OH
N
OCH3
N
OC(CH3)3
N
O.
N
O.
N
O.
H.
.CH3
.C(CH3)3
Scheme3: breaking reaction of the bond O-R of Hindered amine MO1 .
N
OH
N
OCH3
N
OC(CH3)3
N
O.
N
O.
N
O.
H.
.CH3
.C(CH3)3
H
H
H
H
H
H
Scheme4: breaking reaction of the bond O-R of Hindered amine MO1(+) .
9
Awad Albalwi
In order to calculate the BDE, the reactants and products structures were built by drawing each
of them on the built molecule page in the job manager (GAUSSIAN09 (G09)). After constructing
the molecule, comprehensive cleanup using idealized Geometry & Mechanics was used to get
the best molecular structures. .In addition the theory level was basis set, optimize + Vibe freq
calculation, charge and multiplicity were selected from Configure Gaussian Job Options page.
After the calculation was done successfully, the electronic energy for every molecule was
determined from the final block of output of (G09). The BDE was calculated by using the
formula:
BDE = ∑ reactants energy -∑ products energy
Comparison between the 4 levels of theories was done.
Comparison of the four level of theories depends on how long every theory takes and how
accurate they are.by using results from research papers and experimental data
After selecting the suitable theory, the comparison between different basis sets of the selected
theory, in calculation time and BDE results were done.
By using the B3LYP 3-21G data sets (Optimize + Vib Freq - Gaussian )., BDE of breaking
reaction of the bond O-R, when the substituting the aromatic ring with different groups such as
OCH3 & NO2 in various position (meta, Ortho & Para) were calculated. The calculation was
applied when the nitrogen is protonated & non protonated (scheme 5&6).
10
Awad Albalwi
N
OH
O2N
N
O
N
O.
O2N
N
OH
O2N
N
O.
O2N
H.
H.
N
OH
O2N O2N H.
Scheme 5: Substituting the aromatic ring with group NO2 in various position (meta, Ortho &
Para).
N
OH
N
OH
OH3C
OH3C
N
O
OH3C H
N
O.
OH3C
N
OH
OH3C
N
O.
OH3C
H.
H.
Scheme 6: Substituting the aromatic ring with group OCH3 in various position (meta, Ortho
& Para).
The results of this project were compared with experimental data and different level theories
from other research papers.
11
Awad Albalwi
Results:
Table.1 Comparison between experimental and calculated BDE (O_R) for HALS
Molecular 1 (MO1)
[kJmol_
1] BDE
3LYP
BDE AM1 BDE HF BDE MP2 BDE exp
(from
research
BDEPM3
paper)
BDEDFT
M1-OH= M1-O.+H. 271.65 162.34 199.10 185.15 291 296 279
M1-OCH3= M1-O. + CH3 140.46 120.76 111.62 96.04 197 178 185
MO1-OC(CH3)3 = MO1-O.
+.C(CH3)3
186.53 172.98 100.71 74.72 n/a 94 n/a
Graph.1.: Comparison between experimental and calculated BDE (O-R) for HALS Moleculer1.
12
Awad Albalwi
Graph.2: Comparison of BDE when an increase of R from H to CH3 between experimental,
PM3, DFT from research paper & calculated with HF, B3LYP, MP2 and AM1.
. Graph.3: The comparison of calculation time of energy with different levels of theories
13
Awad Albalwi
Graph.4: The Comparison of calculation time of energy with different basis sets of B3LYP for
molecular 1.(MO1).
Graph. 5: Comparison of BDE changes with an increase the basis sets of B3LYP for HALS
Molecular No.1 with different R group ( R=H, CH3 & C(CH3)3).
14
Awad Albalwi
Graph.6: Comparison of BDE between none & protanated nitrogen of Hindered amine (MO1)
with different group of R ( H, CH3 & C(CH3)3.
Graph.7: Comparison between BDE change with HALS molecular No1 with different group of R
( H, CH3, CH2CH3, CH(CH3)2 , C(CH3)3 ).
15
Awad Albalwi
Graph.8: comparison between change the group (OCH3) on the aromatic ring of HALS
molecular No2 (MO2) – none protonated Nitrogen -and BDE changes at B3LYP/3-21(G).
Graph.9: comparison between change the group (OCH3) on the aromatic ring of HALS
molecular No.2 (MO2(+)) - protonated Nitrogen -and BDE changes at B3LYP/3-21(G).
16
KJ/mol
Awad Albalwi
Graph.10: comparison between change the group (NO2) on the aromatic ring of HALS
molecular No2 (MO2) – none protonated Nitrogen -and BDE changes at B3LYP/3-21(G).
Graph.11: comparison between change the group (NO2) on the aromatic ring of HALS
molecular No2 (MO2) – proton ted Nitrogen -and BDE changes at B3LYP/3-21(G).
17
Awad Albalwi
Graph.12: comparison of BDE between different groups (NO2 & OCH3) on the aromatic ring of
HALS molecular No2 (MO2) – none- protonated Nitrogen -at B3LYP/3-21(G).
Discussion:
It is observed that very few experimental BDEs of HALS have been reported in literature.
BDE of O-R in HALS compound have been investigated for various group ( R= H, CH3 &
C (CH3)3 using different level of theories and different data sets, Calculated BDE from research
papers were compared with calculated BDE in this paper (Table .1 and figure. 1) . It was found
that the BDEs of O-R (HALS) were decreasing from H> CH3> C (CH3)3 using HF & MP2
theories. However , the BDE was random from H> C(CH3)3 > CH3 using B3LYP & AM. It was
found that in most cases B3LYP/3-21(G) calculations were slightly closer to BDE experimental
value when R= H& CH3 .It is also observed that the results coming from HF & MP2 were more
reasonable, thus the stability of these groups were increasing from C (CH3)3 > CH3>H. The
stability of those group lead to decrease the BDE of O-R in HALS. It is interesting to note that
the calculated BDE using B3LYP /3-21(G) of this paper was in agreement with the
18
Awad Albalwi
experimental values . Graph.2 has shown that The B3LYP /3-21(G) was closer R2
=0.86 to the
experimental value & DFT (R2
= 0.99) level theory from journal article than other theoretical
calculation (HF, AM1 & MP2) 6
. Thus , It has chosen the B3lYP/3-21(G) to calculate the BDE for
various structures in this project . In addition, The B3LYP/3-21(G) takes short calculation time
Graph 3&4.
Figures 8 and 9 show the effect of substituting the aromatic ring with OCH3 in Meta, .or tho and
Para positions, there was no significant change in BDE when OCH3 was substituted on all three
positions of the aromatic ring. Figures 8 and 9 have shown that there was difference in BDE
when the nitrogen is proton ted and not proton ted. In protonated Nitrogen the BDE is greater
than that of non protonated by about 7% .
figures 10and 11 show the substitution of NO2 on the aromatic ring, In figure .10 there was no
change in the BDE when NO2 was substituted in ortho and para positions. However BDE
decreased significantly in meta position and this is not normal compare to other positions.
Figure 12 shows comparison between 2 different substitutions ie NO2 and OCH3.on aromatic
rings. There were no different in BDE in ortho and para positions when NO2 and OCH3 were
substituted on the aromatic rings. However the BDE of OCH3 was three times greater than that
of NO2 in meta position figure.12. When aromatic ring was substituted by various groups,
there was no effect on BDE , if we assume that the BDE on meta position of NO2 is wrong.
Figure. 6 has indicated that protonated Nitrogen of HALS gives an increase in BDE than non
protonated . Thus the HALS (MO1) with protonated Nitrogen might be more stable than non
protonated Nitrogen. In addition , protonated Nitrogen of HALS might lead to increase the
lifetime of the paint that contains the HALS Molecule. From the result , it can be said , the
increase the size back rings of HALS is not significant in an increase the stability of HALS in
comparison between non protonated nitrogen of MO1 & MO2. How ever, in protonated Nitrogen
19
Awad Albalwi
of MO1(+) &MO2(+) cases , the MO1(+) was greater in BDE than MO2(+) (graph 6,9&11). Thus
, the MO1(+) is more stable than MO2(+).
Conclusion
Computational analysis now show that there is a relationship between the size of R and BDE of
HALS. cause When R increases, BDE decreases. It is also observed that there was no
significant change in BDE when OCH3 was substituted on all the three positions of the aromatic
rings of HALS. Computational calculations also show that there was difference in BDE between
protonated and non protonatednitrogen of HALS.
Acknowledgments:
I would like thank School of Chemistry - University of Wollongong for computational facilities on
GAUSSIAN09 and Drawing program and huge sources. Many thanks to Dr: Yoke Berry for help
in writing this paper.
References:
1-Possi, Aventurini and A Zedda J. AM Chem .SCI (1999)121,,7914-7917
2-F,.Gugumus Polymer Degradation and Stability (1995) 50, 101-116
3- P.P. Klemchuk , M.E Gande Polymer Degradation and Stability (1988),22,241-274
4- T.A. Lowe, M.R.L Paine,D.L.Marshall.L.A.Hick,J.A.Boge,P.J.Barker , S.J.Blanksby
J Mass Spec (2010) 45(5) 486-496
5- G.Geuskens ,M.N.Kanda Polymer Degradation and Stability (1996),51, 227-232.
6- A Gaudel,S., D. Siri, P.Tordo ,ChemPhysChem,(2006),7,430-438
20
Awad Albalwi
21

More Related Content

What's hot

Chapter25杂环化合物
Chapter25杂环化合物Chapter25杂环化合物
Chapter25杂环化合物superxuds
 
Organic Synthesis:
Organic Synthesis: Organic Synthesis:
Organic Synthesis: Rabia Aziz
 
Functional groups and haloalkanes power point presentation
Functional groups and haloalkanes power point presentationFunctional groups and haloalkanes power point presentation
Functional groups and haloalkanes power point presentationsuresh gdvm
 
Reagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersionsReagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersionsGrc Vikram Reddy
 
Introduction to organic chemistry Foundation In science
Introduction to organic chemistry Foundation In scienceIntroduction to organic chemistry Foundation In science
Introduction to organic chemistry Foundation In scienceMSU MALAYSIA
 
Org chem lecture
Org chem lectureOrg chem lecture
Org chem lectureIBslides
 
POLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRY
POLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRYPOLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRY
POLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRYPriyansha Singh
 
Named reactions in organic synthesis
Named reactions in organic synthesisNamed reactions in organic synthesis
Named reactions in organic synthesisPRUTHVIRAJ K
 
Von richter rearrangement
Von richter rearrangementVon richter rearrangement
Von richter rearrangementDalpat Singh
 
Haloalkanes & arenes part 1
Haloalkanes & arenes part 1Haloalkanes & arenes part 1
Haloalkanes & arenes part 1Manpreet Sharma
 
Synthesis, aromatic character and reaction of Triazines
Synthesis, aromatic character and reaction of TriazinesSynthesis, aromatic character and reaction of Triazines
Synthesis, aromatic character and reaction of TriazinesDr. Krishna Swamy. G
 
REDUCTION AND REDUCING AGENTS
REDUCTION AND REDUCING AGENTSREDUCTION AND REDUCING AGENTS
REDUCTION AND REDUCING AGENTSramla khan
 
Aromatic nitro compounds by dr. pramod r. padole
Aromatic nitro compounds by dr. pramod r. padoleAromatic nitro compounds by dr. pramod r. padole
Aromatic nitro compounds by dr. pramod r. padolepramod padole
 
Conjugate base mechanism
Conjugate base mechanismConjugate base mechanism
Conjugate base mechanismSonikaPanghal
 

What's hot (20)

Chapter25杂环化合物
Chapter25杂环化合物Chapter25杂环化合物
Chapter25杂环化合物
 
Organic Synthesis:
Organic Synthesis: Organic Synthesis:
Organic Synthesis:
 
Functional groups and haloalkanes power point presentation
Functional groups and haloalkanes power point presentationFunctional groups and haloalkanes power point presentation
Functional groups and haloalkanes power point presentation
 
Hydrocarbon and its derivatives
Hydrocarbon and its derivativesHydrocarbon and its derivatives
Hydrocarbon and its derivatives
 
Retrosynthesis
Retrosynthesis Retrosynthesis
Retrosynthesis
 
Reagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersionsReagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersions
 
Baeyer-Villiger Oxidation
Baeyer-Villiger OxidationBaeyer-Villiger Oxidation
Baeyer-Villiger Oxidation
 
Introduction to organic chemistry Foundation In science
Introduction to organic chemistry Foundation In scienceIntroduction to organic chemistry Foundation In science
Introduction to organic chemistry Foundation In science
 
Org chem lecture
Org chem lectureOrg chem lecture
Org chem lecture
 
POLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRY
POLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRYPOLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRY
POLYNUCLEAR AROMATIC HYDROCARBON- PHARMACEUTICAL ORGANIC CHEMISTRY
 
Named reactions in organic synthesis
Named reactions in organic synthesisNamed reactions in organic synthesis
Named reactions in organic synthesis
 
Von richter rearrangement
Von richter rearrangementVon richter rearrangement
Von richter rearrangement
 
Organosulphur compounds
Organosulphur compoundsOrganosulphur compounds
Organosulphur compounds
 
Haloalkanes & arenes part 1
Haloalkanes & arenes part 1Haloalkanes & arenes part 1
Haloalkanes & arenes part 1
 
Pyrimidine
PyrimidinePyrimidine
Pyrimidine
 
Synthesis, aromatic character and reaction of Triazines
Synthesis, aromatic character and reaction of TriazinesSynthesis, aromatic character and reaction of Triazines
Synthesis, aromatic character and reaction of Triazines
 
Nucleic acids
Nucleic acidsNucleic acids
Nucleic acids
 
REDUCTION AND REDUCING AGENTS
REDUCTION AND REDUCING AGENTSREDUCTION AND REDUCING AGENTS
REDUCTION AND REDUCING AGENTS
 
Aromatic nitro compounds by dr. pramod r. padole
Aromatic nitro compounds by dr. pramod r. padoleAromatic nitro compounds by dr. pramod r. padole
Aromatic nitro compounds by dr. pramod r. padole
 
Conjugate base mechanism
Conjugate base mechanismConjugate base mechanism
Conjugate base mechanism
 

Similar to Hindered amine stabilizers computational studies

Edwin ACS 03-11-2015
Edwin ACS 03-11-2015Edwin ACS 03-11-2015
Edwin ACS 03-11-2015Edwin Lozano
 
Unit V: Reaction of synthetic importance as per PCI Syllabus of POC-III
Unit V: Reaction of synthetic importance as per PCI Syllabus of POC-IIIUnit V: Reaction of synthetic importance as per PCI Syllabus of POC-III
Unit V: Reaction of synthetic importance as per PCI Syllabus of POC-IIIGanesh Mote
 
5 memberd heterocyclic compound pyrrol
5 memberd heterocyclic compound pyrrol5 memberd heterocyclic compound pyrrol
5 memberd heterocyclic compound pyrrolPOURNIMA BHALEKAR
 
Phenols -Acidity, Synthesis & Reactions
Phenols -Acidity, Synthesis & ReactionsPhenols -Acidity, Synthesis & Reactions
Phenols -Acidity, Synthesis & ReactionsShilpa Harak
 
Oxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond CleavageOxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond CleavagePallavi Kumbhar
 
Chapter17醛和酮
Chapter17醛和酮Chapter17醛和酮
Chapter17醛和酮superxuds
 
Chapter17 140331233521-phpapp01
Chapter17 140331233521-phpapp01Chapter17 140331233521-phpapp01
Chapter17 140331233521-phpapp01Cleophas Rwemera
 
Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...
Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...
Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...Ratnakaram Venkata Nadh
 
CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...
CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...
CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...Homi Institute
 
Carboxylic Acids.pptx
Carboxylic Acids.pptxCarboxylic Acids.pptx
Carboxylic Acids.pptxMarMary6
 
Organic chemistry ii
Organic chemistry iiOrganic chemistry ii
Organic chemistry iiPutri Auliya
 
Schiff base and complexe
Schiff base and complexeSchiff base and complexe
Schiff base and complexewael alharbi
 
Alcohols group 4
Alcohols group 4Alcohols group 4
Alcohols group 4Mikee Perez
 

Similar to Hindered amine stabilizers computational studies (20)

Edwin ACS 03-11-2015
Edwin ACS 03-11-2015Edwin ACS 03-11-2015
Edwin ACS 03-11-2015
 
Unit V: Reaction of synthetic importance as per PCI Syllabus of POC-III
Unit V: Reaction of synthetic importance as per PCI Syllabus of POC-IIIUnit V: Reaction of synthetic importance as per PCI Syllabus of POC-III
Unit V: Reaction of synthetic importance as per PCI Syllabus of POC-III
 
5 memberd heterocyclic compound pyrrol
5 memberd heterocyclic compound pyrrol5 memberd heterocyclic compound pyrrol
5 memberd heterocyclic compound pyrrol
 
Reaction of synthetic importance.ppt
Reaction of synthetic importance.pptReaction of synthetic importance.ppt
Reaction of synthetic importance.ppt
 
Unit III (Part C).pptx
Unit III (Part C).pptxUnit III (Part C).pptx
Unit III (Part C).pptx
 
Phenols -Acidity, Synthesis & Reactions
Phenols -Acidity, Synthesis & ReactionsPhenols -Acidity, Synthesis & Reactions
Phenols -Acidity, Synthesis & Reactions
 
Oxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond CleavageOxidation Reagents Involving C-C Bond Cleavage
Oxidation Reagents Involving C-C Bond Cleavage
 
Chapter17醛和酮
Chapter17醛和酮Chapter17醛和酮
Chapter17醛和酮
 
Chapter17 140331233521-phpapp01
Chapter17 140331233521-phpapp01Chapter17 140331233521-phpapp01
Chapter17 140331233521-phpapp01
 
Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...
Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...
Substrate Inhibition in Ruthenium(III) Catalyzed Oxidation of Propane-1,3-dio...
 
CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...
CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...
CBSE Class 12 Chemistry Chapter 11 (Alcohols, Phenols and Ethers) | Homi Inst...
 
Carboxylic Acids.pptx
Carboxylic Acids.pptxCarboxylic Acids.pptx
Carboxylic Acids.pptx
 
named reaction.pptx
named reaction.pptxnamed reaction.pptx
named reaction.pptx
 
Organic chemistry ii
Organic chemistry iiOrganic chemistry ii
Organic chemistry ii
 
ALCOHOL.pptx
ALCOHOL.pptxALCOHOL.pptx
ALCOHOL.pptx
 
HYDROCARBON.pptx
HYDROCARBON.pptxHYDROCARBON.pptx
HYDROCARBON.pptx
 
Alcohols
AlcoholsAlcohols
Alcohols
 
Thesis-PerLindecrantz-2009
Thesis-PerLindecrantz-2009Thesis-PerLindecrantz-2009
Thesis-PerLindecrantz-2009
 
Schiff base and complexe
Schiff base and complexeSchiff base and complexe
Schiff base and complexe
 
Alcohols group 4
Alcohols group 4Alcohols group 4
Alcohols group 4
 

More from Awad Albalwi

double co-sensitization strategy using.pdf
double co-sensitization strategy using.pdfdouble co-sensitization strategy using.pdf
double co-sensitization strategy using.pdfAwad Albalwi
 
Electrochemistry part9
Electrochemistry part9Electrochemistry part9
Electrochemistry part9Awad Albalwi
 
Electrochemistry part8
Electrochemistry part8Electrochemistry part8
Electrochemistry part8Awad Albalwi
 
Electrochemistry part7
Electrochemistry part7Electrochemistry part7
Electrochemistry part7Awad Albalwi
 
Electrochemistry part6
Electrochemistry part6Electrochemistry part6
Electrochemistry part6Awad Albalwi
 
Electrochemistry part5
Electrochemistry part5Electrochemistry part5
Electrochemistry part5Awad Albalwi
 
Electrochemistry part4
Electrochemistry part4Electrochemistry part4
Electrochemistry part4Awad Albalwi
 
Electrochemistry part3
Electrochemistry part3Electrochemistry part3
Electrochemistry part3Awad Albalwi
 
Electrochemistry part2
Electrochemistry part2Electrochemistry part2
Electrochemistry part2Awad Albalwi
 
Electrochemistry part1
Electrochemistry part1Electrochemistry part1
Electrochemistry part1Awad Albalwi
 
Report writing arabic lang 4
Report writing  arabic lang 4Report writing  arabic lang 4
Report writing arabic lang 4Awad Albalwi
 
Data analysis Arabic language part 3
Data analysis  Arabic language part 3Data analysis  Arabic language part 3
Data analysis Arabic language part 3Awad Albalwi
 
Research methodology Arabic language part 2
Research methodology Arabic language part 2Research methodology Arabic language part 2
Research methodology Arabic language part 2Awad Albalwi
 
Research methodology Arabic language part 2
Research methodology Arabic language part 2Research methodology Arabic language part 2
Research methodology Arabic language part 2Awad Albalwi
 
Research methodology Arabic language part 1
Research methodology Arabic language part 1Research methodology Arabic language part 1
Research methodology Arabic language part 1Awad Albalwi
 
Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...
Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...
Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...Awad Albalwi
 
Poster conference - Template
Poster conference - TemplatePoster conference - Template
Poster conference - TemplateAwad Albalwi
 
What evidence is there for water on mars 2009
What evidence is there for water on mars 2009What evidence is there for water on mars 2009
What evidence is there for water on mars 2009Awad Albalwi
 
Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6Awad Albalwi
 
Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6Awad Albalwi
 

More from Awad Albalwi (20)

double co-sensitization strategy using.pdf
double co-sensitization strategy using.pdfdouble co-sensitization strategy using.pdf
double co-sensitization strategy using.pdf
 
Electrochemistry part9
Electrochemistry part9Electrochemistry part9
Electrochemistry part9
 
Electrochemistry part8
Electrochemistry part8Electrochemistry part8
Electrochemistry part8
 
Electrochemistry part7
Electrochemistry part7Electrochemistry part7
Electrochemistry part7
 
Electrochemistry part6
Electrochemistry part6Electrochemistry part6
Electrochemistry part6
 
Electrochemistry part5
Electrochemistry part5Electrochemistry part5
Electrochemistry part5
 
Electrochemistry part4
Electrochemistry part4Electrochemistry part4
Electrochemistry part4
 
Electrochemistry part3
Electrochemistry part3Electrochemistry part3
Electrochemistry part3
 
Electrochemistry part2
Electrochemistry part2Electrochemistry part2
Electrochemistry part2
 
Electrochemistry part1
Electrochemistry part1Electrochemistry part1
Electrochemistry part1
 
Report writing arabic lang 4
Report writing  arabic lang 4Report writing  arabic lang 4
Report writing arabic lang 4
 
Data analysis Arabic language part 3
Data analysis  Arabic language part 3Data analysis  Arabic language part 3
Data analysis Arabic language part 3
 
Research methodology Arabic language part 2
Research methodology Arabic language part 2Research methodology Arabic language part 2
Research methodology Arabic language part 2
 
Research methodology Arabic language part 2
Research methodology Arabic language part 2Research methodology Arabic language part 2
Research methodology Arabic language part 2
 
Research methodology Arabic language part 1
Research methodology Arabic language part 1Research methodology Arabic language part 1
Research methodology Arabic language part 1
 
Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...
Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...
Crystal Structure, Topological and Hirshfeld Surface Analysis of a Zn(II) Zwi...
 
Poster conference - Template
Poster conference - TemplatePoster conference - Template
Poster conference - Template
 
What evidence is there for water on mars 2009
What evidence is there for water on mars 2009What evidence is there for water on mars 2009
What evidence is there for water on mars 2009
 
Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6
 
Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6Application of Statistical and mathematical equations in Chemistry -Part 6
Application of Statistical and mathematical equations in Chemistry -Part 6
 

Recently uploaded

Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionPriyansha Singh
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 

Recently uploaded (20)

Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Caco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorptionCaco-2 cell permeability assay for drug absorption
Caco-2 cell permeability assay for drug absorption
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 

Hindered amine stabilizers computational studies

  • 1. Awad Albalwi Hindered amine stabilizes By Awad Nasser Albalwi School of Chemistry University of Wollongong (June,2010) 1
  • 2. Awad Albalwi Abstract A B3LYP, HF, AM1 and PM2 computational studies of the reaction of hindered amine (HALS) has been perfumed. Four different theories were used to calculate the bond dissociation energy (BDE). In two molecules studied the nitrogen were protonated and not protonated. BDE were calculated when aromatic rings were substituted with NO2 and OCH3. B3LYP was the best theoretical calculation level, The BDE was grater when nitrogen in HALS was protonated. There was no big significant difference in BDE when aromatic ring of hindered amine was substituted with NO2 and OCH3. 2
  • 3. Awad Albalwi Introduction: Hindered amine light stabilizers (HALS) are among the most efficient polymer stabilizers known. Bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, is a typical (HALS). Since the early 1970s, HALS have become a highly important class of light stabilisers for polymers. They stabilise wide range of commercial polymers and are particularly effective for stabilization of polyolefins when use where resistance to deterioration by light and weathering are important. Hinder amines have also been used as stabiliser against light induced degradation of polymers such as polyolefin and polyurethane1&4 . Polypropylene is an example of a major commercial polymer which would never have achieved any practical use without the development of a good stabiliser system. Polyolefin needs protection in all the stages of its life cycle. In order for an antioxidant to improve the long-term weathering performance of an automotive clearcoat/basecoat paint which is a polymer system, it must inhibit clearcoat photo-oxidation at the onset of exposure and sustain the inhibition for many years. While there is ample evidence that hindered amine light stabilizer (HALS) additives can inhibit the photo-oxidation of automotive clearcoats polymer, It is generally known that the photo oxidation of hydrocarbon polymer under natural weathering is initiated by ketones or hydroperoxide impurities. HALS acts as a scavenger for free radicals that would otherwise degrade or discolour HALS are efficient inhibitors of the photooxidation of polyolifins HALS act as scavengers for free radicals that would otherwise degrade or discolour the polymer coating. Hindered amine has been employed in the automotive and wood coating sectors of the surface coatings industry for many years. In both applications, HALS are incorporated into a non-pigmented (or ‘clear’) topcoat by addition to the unstabilised wet paint or lacquer during formulation. The presence of HALS unequivocally improves gloss retention and long-term durability of these formulations 2 . Mechanisms of action of hindered amine stabilizers. 3
  • 4. Awad Albalwi Hindered amines have multiple mechanisms of functioning as photostabilsers of polymers. The chemical mechanism of HALS action remains an active area of research interest, but there is general agreement that the critical active species in the stabilisation process is the oxidised form of the HALS in question, namely the corresponding nitroxyl free radical. Although the sequence of reactions involved is often generically described by the so-called ‘Denisov cycle’ .The mechanism of HALS protective mechanisms is actively been pursued by many researchers and agreed that the active radical nitroxyl radical is the stabilising spices. Savaging of radicals is generally considered to be the mechanism by which HALS inhibits polymer auto oxidation. The stabilising spice in HALS is the oxidised form nitroxyl free radical. The mechanism of nitroxyl radical trapping studies with various hindered amines is an active area of research. HALS is able to break several radical chains. HALS amino ether’s ability to convert back to nitroxyls by reacting with alkyperoxy radicals in known as Denisov cycle(scheme.1). This process is over simplified caused there are other reactions and diffusion taking place. N N ox N O^ N O R. ROO. regenerative step R Scheme.1: Denisov cycle. Some researches. focused on the possible deactivation mechanisim for HALS molecules i.e finding the ideal initial nitrogen substitute and the size of R on piperidine ring. Their primary mode of functioning appears to be the trapping of carbon –centred radicals by nitroxyls and the regeneration of nitroxyls from N-alkyloxy product The nitrogen oxidation mechanism where the alkylperoxy radical attack the nitrogen of the aminoether, forming an oxidised tetra coordinated nitrogen intermediate. The intermidate undergo α-hydrogen abstraction and a N-O bond cleavage to produce the nitroxyl radical a carbonyl compound 4
  • 5. Awad Albalwi Hindered amine stabilizers are able to participate in inhibiting both photo-oxidation reactions-- they trap acylperoxy radicals, converting them to carboxylic acids and are converted to nitrosyl radicals in the process; the nitrosyl radicals trap alkyl radicals and the hindered amines trap alkylperoxy radicals to inhibit the other oxidation pathway. 1- Denisov Mechanism. Nitrosyl are regenerated from N-alkyloxy hindered amines in a fast, efficient reaction with acylperoxy radicals and in a slow, inefficient reaction 1 The Denisov mechanism shown in eqn (1) and Scheme 1 was postulated on the basis of findings that nitroxyl radicals retarded the photo-oxidation of polypropylene powder containing dicumyl peroxide as initiator 3 . NO. + R'. NOR' ROO. NO. + ROOR' 1 , When the photolysis of the polymer containing hindered amine nitrosyl was carried out in an argon atmosphere, the nitrosyl radical concentration was found to decrease to zero and subsequently, when air was introduced into the reaction vessel, nitroxyl radicals were again found to be formed during continued photolysis. These observations led to the proposal that the nitroxyls were being regenerated from the N-alkyloxy compounds by reaction with peroxy radicals, and dialkyl peroxides were also formed. 2- Sedlar and his co-workers have proposed that complexation between hindered amine and hydroperoxides locates the hindered amine in the region where the radical products from photolysis of the polymer hydroperoxide can interact easily with the hindered amine and form products which do not have any oxidation propagating qualities: 3 -Carlsson and his co-workers have also proposed complexation between hindered amines and polymer hydroperoxides. In addition, they found that when a prephotooxidized film of polypropylene was contacted with a solution of hindered amine, or when they had imbibed hindered amine into the polymer film from Stabilization mechanisms of hindered amines 5
  • 6. Awad Albalwi solution, dark reactions took place in which nitroxyls were generated probably through intermediate hydroxylamines., Carlson et al postulated that the prephoto-oxidized polypropylene film contained activated hydroperoxide functionalities on alternating carbon atoms based on the accepted back-biting mechanism of peroxy radicals in polyolefins 3 . They pointed out that activated hydroperoxides have been reported in the literature, most particularly in a paper by Ball and Bruice. In their work, Ball and Bruice found that- hydroperoxyflavin reacted readily with amines. With secondary amines the activated hydroperoxide formed hydroxylamines; with tertiary amines, amine oxides; and hydroxylamines were found to be further oxidized to nitrones by this reagent. In that paper, Ball and Bruice reported the rate constant for the reaction of -hydroperoxyflavin with N,N-dimethylaniline to be about 400000 times greater than the rate constant for the reaction of di-t-butyl hydroperoxide with that same tertiary amine 3 . 4- Carlsson et al., investigators reported that the reaction between triacetoneamine and cyclohexylperoxy radicals had a rate constant of 3 mol- 1 s- 1 and yielded cyclohexylperoxide and aminyl radicals.The aminyl radicals were subsequently oxidized to nitroxyls. 5- Toda and his co-workers of the Sankyo Corporation of Japan reported that hindered amines react rapidly with peracids as indicated in equation(2). The reaction is stoichiometric and results in the formation of nitroxyl radicals: 3RCOOOH + NH 3 RCOOH + 2 NO. + H2O 2 6 Felder and his co-workers of the Ciba-Geigy Corporation in Switzerland reported that hindered amines are effective scavengers of acylperoxy radicals 3 . RCOOO. + NH RCOOH + NO. 3 The Felder group also reported that the photo-oxidation of isooctane, a model for polypropylene, initiated by t-butoxy radicals from the photolysis of di-t-butyl peroxide, resulted in the formation of peracids, hydroperoxides, and peroxides. About 40% of the active oxygen in 6
  • 7. Awad Albalwi the products was in the form of peracids. Furthermore, on analysis of the products formed, the Felder group established that the attack of isooctane by alkylperoxy radicals was nearly statistical and that primary hydrogens were as readily abstracted as secondary or tertiary hydrogens. This result is in contrast to the generally accepted concept of hydrogen atom abstraction in polymer molecules, with the tertiary carbon atoms in polypropylene, for instance, generally being accepted as the preferred site of attack 4 . Felder's results of random attack by t-butoxy radicals in the photooxidation work contrast with results obtained by Niki and Kamiya in the thermal oxidation of hydrocarbons also with t-butoxy radicals, generated from the thermolysis of di-t-butyl peroxyoxalate. In the latter work with a number of hydrocarbons the attack at the primary, secondary and tertiary positions was in the ratio 1:7:20, respectively 4 . • Felder and his co-workers postulated further that since primary attack occurred frequently in the photolysis of isooctane it was likely that significant amounts of aldehydes were being formed as a result of termination of primary peroxy radicals and that subsequently the oxidation of these aldehydes resulted in peracids. That was one of the first publications in which the suggestion was made that aldehyde oxidation may be a key, but neglected, pathway in the photo-oxidation of hydrocarbon polymers. In fact, a number of articles in the literature indicate that among the photooxidation products of polyolefins are acids, esters and even peracids. A computational study of the possible regeneration mechanism should provide useful insight in to most of the molecular structures of various HALS1 . The purpose of this paper to examine the following hypothesis: 1- There is correlation / relationship between an increase the size of group (R) and an increase the Bond dissociation energy of Hindered amine (HALS). 2- There is no effect of substitution on the aromatic ring of HALS with OCH3&NO2 in various positions. 7
  • 8. Awad Albalwi 3- There are differences in BDE between none & protanated nitrogen of Hindered amine (MO1). 4- There is no relationship between change of such group (OCH3, NO2) on the same position on the aromatic ring (HALS) & BDE changes. In this project the molecular MO1 is refer to this structure: The Molecular MO2 is refer to these structure: 8 R R R R MO2(+) Protonated MO2 Non-protonated MO1 Non-protonated MO1(+) protonated
  • 9. Awad Albalwi Procedure Firstly, the calculations were performed with the GAUSSIAN09 (G09) programme in order to select the best level of theory to calculate the Bond Dissociation energy (BDE). Four level of theories (B3LYP, AM1, HF & MP2) at the basis set 3-21(G) were used to calculate the BDE of these reactions (Scheme3&4): N OH N OCH3 N OC(CH3)3 N O. N O. N O. H. .CH3 .C(CH3)3 Scheme3: breaking reaction of the bond O-R of Hindered amine MO1 . N OH N OCH3 N OC(CH3)3 N O. N O. N O. H. .CH3 .C(CH3)3 H H H H H H Scheme4: breaking reaction of the bond O-R of Hindered amine MO1(+) . 9
  • 10. Awad Albalwi In order to calculate the BDE, the reactants and products structures were built by drawing each of them on the built molecule page in the job manager (GAUSSIAN09 (G09)). After constructing the molecule, comprehensive cleanup using idealized Geometry & Mechanics was used to get the best molecular structures. .In addition the theory level was basis set, optimize + Vibe freq calculation, charge and multiplicity were selected from Configure Gaussian Job Options page. After the calculation was done successfully, the electronic energy for every molecule was determined from the final block of output of (G09). The BDE was calculated by using the formula: BDE = ∑ reactants energy -∑ products energy Comparison between the 4 levels of theories was done. Comparison of the four level of theories depends on how long every theory takes and how accurate they are.by using results from research papers and experimental data After selecting the suitable theory, the comparison between different basis sets of the selected theory, in calculation time and BDE results were done. By using the B3LYP 3-21G data sets (Optimize + Vib Freq - Gaussian )., BDE of breaking reaction of the bond O-R, when the substituting the aromatic ring with different groups such as OCH3 & NO2 in various position (meta, Ortho & Para) were calculated. The calculation was applied when the nitrogen is protonated & non protonated (scheme 5&6). 10
  • 11. Awad Albalwi N OH O2N N O N O. O2N N OH O2N N O. O2N H. H. N OH O2N O2N H. Scheme 5: Substituting the aromatic ring with group NO2 in various position (meta, Ortho & Para). N OH N OH OH3C OH3C N O OH3C H N O. OH3C N OH OH3C N O. OH3C H. H. Scheme 6: Substituting the aromatic ring with group OCH3 in various position (meta, Ortho & Para). The results of this project were compared with experimental data and different level theories from other research papers. 11
  • 12. Awad Albalwi Results: Table.1 Comparison between experimental and calculated BDE (O_R) for HALS Molecular 1 (MO1) [kJmol_ 1] BDE 3LYP BDE AM1 BDE HF BDE MP2 BDE exp (from research BDEPM3 paper) BDEDFT M1-OH= M1-O.+H. 271.65 162.34 199.10 185.15 291 296 279 M1-OCH3= M1-O. + CH3 140.46 120.76 111.62 96.04 197 178 185 MO1-OC(CH3)3 = MO1-O. +.C(CH3)3 186.53 172.98 100.71 74.72 n/a 94 n/a Graph.1.: Comparison between experimental and calculated BDE (O-R) for HALS Moleculer1. 12
  • 13. Awad Albalwi Graph.2: Comparison of BDE when an increase of R from H to CH3 between experimental, PM3, DFT from research paper & calculated with HF, B3LYP, MP2 and AM1. . Graph.3: The comparison of calculation time of energy with different levels of theories 13
  • 14. Awad Albalwi Graph.4: The Comparison of calculation time of energy with different basis sets of B3LYP for molecular 1.(MO1). Graph. 5: Comparison of BDE changes with an increase the basis sets of B3LYP for HALS Molecular No.1 with different R group ( R=H, CH3 & C(CH3)3). 14
  • 15. Awad Albalwi Graph.6: Comparison of BDE between none & protanated nitrogen of Hindered amine (MO1) with different group of R ( H, CH3 & C(CH3)3. Graph.7: Comparison between BDE change with HALS molecular No1 with different group of R ( H, CH3, CH2CH3, CH(CH3)2 , C(CH3)3 ). 15
  • 16. Awad Albalwi Graph.8: comparison between change the group (OCH3) on the aromatic ring of HALS molecular No2 (MO2) – none protonated Nitrogen -and BDE changes at B3LYP/3-21(G). Graph.9: comparison between change the group (OCH3) on the aromatic ring of HALS molecular No.2 (MO2(+)) - protonated Nitrogen -and BDE changes at B3LYP/3-21(G). 16 KJ/mol
  • 17. Awad Albalwi Graph.10: comparison between change the group (NO2) on the aromatic ring of HALS molecular No2 (MO2) – none protonated Nitrogen -and BDE changes at B3LYP/3-21(G). Graph.11: comparison between change the group (NO2) on the aromatic ring of HALS molecular No2 (MO2) – proton ted Nitrogen -and BDE changes at B3LYP/3-21(G). 17
  • 18. Awad Albalwi Graph.12: comparison of BDE between different groups (NO2 & OCH3) on the aromatic ring of HALS molecular No2 (MO2) – none- protonated Nitrogen -at B3LYP/3-21(G). Discussion: It is observed that very few experimental BDEs of HALS have been reported in literature. BDE of O-R in HALS compound have been investigated for various group ( R= H, CH3 & C (CH3)3 using different level of theories and different data sets, Calculated BDE from research papers were compared with calculated BDE in this paper (Table .1 and figure. 1) . It was found that the BDEs of O-R (HALS) were decreasing from H> CH3> C (CH3)3 using HF & MP2 theories. However , the BDE was random from H> C(CH3)3 > CH3 using B3LYP & AM. It was found that in most cases B3LYP/3-21(G) calculations were slightly closer to BDE experimental value when R= H& CH3 .It is also observed that the results coming from HF & MP2 were more reasonable, thus the stability of these groups were increasing from C (CH3)3 > CH3>H. The stability of those group lead to decrease the BDE of O-R in HALS. It is interesting to note that the calculated BDE using B3LYP /3-21(G) of this paper was in agreement with the 18
  • 19. Awad Albalwi experimental values . Graph.2 has shown that The B3LYP /3-21(G) was closer R2 =0.86 to the experimental value & DFT (R2 = 0.99) level theory from journal article than other theoretical calculation (HF, AM1 & MP2) 6 . Thus , It has chosen the B3lYP/3-21(G) to calculate the BDE for various structures in this project . In addition, The B3LYP/3-21(G) takes short calculation time Graph 3&4. Figures 8 and 9 show the effect of substituting the aromatic ring with OCH3 in Meta, .or tho and Para positions, there was no significant change in BDE when OCH3 was substituted on all three positions of the aromatic ring. Figures 8 and 9 have shown that there was difference in BDE when the nitrogen is proton ted and not proton ted. In protonated Nitrogen the BDE is greater than that of non protonated by about 7% . figures 10and 11 show the substitution of NO2 on the aromatic ring, In figure .10 there was no change in the BDE when NO2 was substituted in ortho and para positions. However BDE decreased significantly in meta position and this is not normal compare to other positions. Figure 12 shows comparison between 2 different substitutions ie NO2 and OCH3.on aromatic rings. There were no different in BDE in ortho and para positions when NO2 and OCH3 were substituted on the aromatic rings. However the BDE of OCH3 was three times greater than that of NO2 in meta position figure.12. When aromatic ring was substituted by various groups, there was no effect on BDE , if we assume that the BDE on meta position of NO2 is wrong. Figure. 6 has indicated that protonated Nitrogen of HALS gives an increase in BDE than non protonated . Thus the HALS (MO1) with protonated Nitrogen might be more stable than non protonated Nitrogen. In addition , protonated Nitrogen of HALS might lead to increase the lifetime of the paint that contains the HALS Molecule. From the result , it can be said , the increase the size back rings of HALS is not significant in an increase the stability of HALS in comparison between non protonated nitrogen of MO1 & MO2. How ever, in protonated Nitrogen 19
  • 20. Awad Albalwi of MO1(+) &MO2(+) cases , the MO1(+) was greater in BDE than MO2(+) (graph 6,9&11). Thus , the MO1(+) is more stable than MO2(+). Conclusion Computational analysis now show that there is a relationship between the size of R and BDE of HALS. cause When R increases, BDE decreases. It is also observed that there was no significant change in BDE when OCH3 was substituted on all the three positions of the aromatic rings of HALS. Computational calculations also show that there was difference in BDE between protonated and non protonatednitrogen of HALS. Acknowledgments: I would like thank School of Chemistry - University of Wollongong for computational facilities on GAUSSIAN09 and Drawing program and huge sources. Many thanks to Dr: Yoke Berry for help in writing this paper. References: 1-Possi, Aventurini and A Zedda J. AM Chem .SCI (1999)121,,7914-7917 2-F,.Gugumus Polymer Degradation and Stability (1995) 50, 101-116 3- P.P. Klemchuk , M.E Gande Polymer Degradation and Stability (1988),22,241-274 4- T.A. Lowe, M.R.L Paine,D.L.Marshall.L.A.Hick,J.A.Boge,P.J.Barker , S.J.Blanksby J Mass Spec (2010) 45(5) 486-496 5- G.Geuskens ,M.N.Kanda Polymer Degradation and Stability (1996),51, 227-232. 6- A Gaudel,S., D. Siri, P.Tordo ,ChemPhysChem,(2006),7,430-438 20