Measure of Kurtosis
Presented by:
Group 2
O b j e c t i v e s :
1. Discuss what Kurtosis is.
2. Compute the Kurtosis for both the
grouped and ungrouped data.
3. Be able to describe the Kurtosis
measurement.
1st type Leptokurti
c
Kurtosis - refers to the degree to which a
distribution is peaked or flat.
3 types of
Kurtosis
2nd
type
3rd type
Mesokurtic
Platykurtic
It has less
kurtosis than the
normal
distribution.
The kurtosis of
this distribution is
comparable to
that of the normal
distribution.
It has more
kurtosis than the
normal
distribution.
K < 3 K = 3 K > 3
3 types of Kurtosis
Formulas
used in
Ungrouped
data of
Kurtosis
𝑿 =
𝑿
𝒏
Where:
Xi = Individual Values
𝑋= Mean
n = Number of
Observations
s = Standard Deviation
Mean:
For Ungrouped Data:
𝒔 =
(𝑿𝒊 − 𝑿)𝟐
𝒏 − 𝟏
𝑲 =
(𝑿𝒊 − 𝑿)𝟒
𝒏𝒔𝟒
Standard
Deviation:
Solve this!
Ungrouped Kurtosis
Xi
6
7
9
11
13
15
16
Σ = 77
𝑋 =
𝑋
𝑛
𝑋 =
6 + 7 + 9 + 11 + 13 + 15 + 16
7
𝑋 =
77
7
𝑋 = 11
Ungrouped Kurtosis
𝑿𝒊 𝑿𝒊 - 𝑿 (𝑿𝒊 − 𝑿 )
𝟐
(𝑿𝒊 - 𝑿)𝟒
6 6 - 11 -5 25 625
7 7 - 11 -4 16 256
9 9 - 11 -2 4 16
11 11 - 11 0 0 0
13 13 - 11 2 4 16
15 15 - 11 4 16 256
16 16 - 11 5 25 625
= 77 = 90 = 1,794
S =
(𝑿𝒊− 𝑿)𝟐
𝒏−𝟏
S =
90
7−1
S =
90
6
S = 15
S = 𝟑. 𝟖𝟕
v
v
Ungrouped Kurtosis
𝑿𝒊 𝑿𝒊 - 𝑿 (𝑿𝒊 − 𝑿 )
𝟐
(𝑿𝒊 - 𝑿)𝟒
6 6 - 11 -5 25 625
7 7 - 11 -4 16 256
9 9 - 11 -2 4 16
11 11 - 11 0 0 0
13 13 - 11 2 4 16
15 15 - 11 4 16 256
16 16 - 11 5 25 625
= 77 = 90 = 1,794
S =
(𝑿𝒊− 𝑿)𝟐
𝒏−𝟏
S =
90
7−1
S =
90
6
S = 15
S = 𝟑. 𝟖𝟕
Ungrouped Kurtosis
𝑿𝒊 𝑿𝒊 - 𝑿 (𝑿𝒊 − 𝑿 )
𝟐
(𝑿𝒊 - 𝑿)𝟒
6 6 - 11 -5 25 625
7 7 - 11 -4 16 256
9 9 - 11 -2 4 16
11 11 - 11 0 0 0
13 13 - 11 2 4 16
15 15 - 11 4 16 256
16 16 - 11 5 25 625
= 77 = 90 = 1,794
𝑲 =
(𝑿𝒊 − 𝑿)𝟒
𝒏𝒔𝟒
𝑲 =
1,794
(7)(3.87)4
𝑲 =
1,794
(7)(224.31)
𝑲 =
1,794
1570.17
𝑲 = 1.14
Since K-
computed 1.14
is < 3,
therefore the
distribution is
Platykurtic.
Formulas
used in
Grouped data
of Kurtosis
For Grouped Data:
Mean:
Standard
Deviation:
𝑿 =
𝑭𝒊𝑿𝒊
𝒏
𝒔 =
𝑭𝒊(𝑿𝒊 − 𝑿)𝟐
𝒏 − 𝟏
𝑲 =
𝑭𝒊(𝑿𝒊 − 𝑿)𝟒
𝒏𝒔𝟒
Where:
Xi = Class Mark
𝑋= Mean
n = Number of
Observations
s = Standard Deviation
Grouped
Kurtosis
C.I Frequenc
y
Xi FiXi
76 - 79 2 77.5 155
80 – 83 5 81.5 407.5
84 - 87 5 85.5 427.5
88 - 91 11 89.5 984.5
92 - 95 4 93.5 374
96 - 99 3 97.5 292.5
n = 30 Σ = 2,641
|Xi – X|
10.53
6.53
2.53
1.47
5.47
9.47
𝑿 =
𝑭𝒊𝑿𝒊
𝒏
𝑿 =
2,641
30
𝑿 = 88.03
vv
Grouped
Kurtosis
C.I Frequenc
y
Xi FiXi
76 - 79 2 77.5 155
80 – 83 5 81.5 407.5
84 - 87 5 85.5 427.5
88 - 91 11 89.5 984.5
92 - 95 4 93.5 374
96 - 99 3 97.5 292.5
n = 30 Σ = 2,641
|Xi – X|
10.53
6.53
2.53
1.47
5.47
9.47
𝑿 =
𝑭𝒊𝑿𝒊
𝒏
𝑿 =
2,641
30
𝑿 = 88.03
C.I Frequenc
y
Xi FiXi |Xi – X| Fi |Xi – X| Fi |Xi - X|² Fi|Xi - X|⁴
76 - 79 2 77.5 155 10.53 21.06 221.7618 24,589.1480
80 – 83 5 81.5 407.5 6.53 32.65 213.2045 9,091.2318
84 - 87 5 85.5 427.5 2.53 12.65 32.0045 204.8576
88 - 91 11 89.5 984.5 1.47 16.17 23.7699 51.3644
92 - 95 4 93.5 374 5.47 21.88 119.6836 3,581.041
96 - 99 3 97.5 292.5 9.47 28.41 269.0427 24,127.9915
n = 30 Σ =
2,641
Σ = 132.82 Σ =
879.467
Σ = 61,645.6343
Grouped
Kurtosis
v
v
vv
Grouped
Kurtosis
C.I Frequenc
y
Xi FiXi |Xi – X| Fi |Xi – X| Fi |Xi - X|² Fi|Xi - X|⁴
76 - 79 2 77.5 155 10.53 21.06 221.7618 24,589.1480
80 – 83 5 81.5 407.5 6.53 32.65 213.2045 9,091.2318
84 - 87 5 85.5 427.5 2.53 12.65 32.0045 204.8576
88 - 91 11 89.5 984.5 1.47 16.17 23.7699 51.3644
92 - 95 4 93.5 374 5.47 21.88 119.6836 3,581.041
96 - 99 3 97.5 292.5 9.47 28.41 269.0427 24,127.9915
n = 30 Σ = 2,641 Σ = 132.82 Σ = 879.467 Σ = 61,645.6343
Grouped
Kurtosis
𝒔 =
𝑭𝒊(𝑿𝒊 − 𝑿)𝟐
𝒏 − 𝟏
𝒔 =
879.467
30 − 1
𝒔 =
879.467
29
𝒔 = 30.33
𝒔 = 5.51
Grouped
Kurtosis
𝑲 =
𝑭𝒊(𝑿𝒊 − 𝑿)𝟒
𝒏𝒔𝟒
𝑲 =
61,645.6343
(30)(5.51)4
𝑲 =
61,645.6343
(30)(921.74)
𝑲 =
61,645.6343
27652.2
𝑲 = 2.23
Since K-
computed 2.23 is <
3, therefore the
distribution is
Platykurtic.
Thank you!
Presented by:
Group 2

Group-2-Measure-of-Kurtosis-1.pptx

  • 1.
  • 2.
    O b je c t i v e s : 1. Discuss what Kurtosis is. 2. Compute the Kurtosis for both the grouped and ungrouped data. 3. Be able to describe the Kurtosis measurement.
  • 3.
    1st type Leptokurti c Kurtosis- refers to the degree to which a distribution is peaked or flat. 3 types of Kurtosis 2nd type 3rd type Mesokurtic Platykurtic It has less kurtosis than the normal distribution. The kurtosis of this distribution is comparable to that of the normal distribution. It has more kurtosis than the normal distribution. K < 3 K = 3 K > 3
  • 4.
    3 types ofKurtosis
  • 5.
  • 6.
    𝑿 = 𝑿 𝒏 Where: Xi =Individual Values 𝑋= Mean n = Number of Observations s = Standard Deviation Mean: For Ungrouped Data: 𝒔 = (𝑿𝒊 − 𝑿)𝟐 𝒏 − 𝟏 𝑲 = (𝑿𝒊 − 𝑿)𝟒 𝒏𝒔𝟒 Standard Deviation:
  • 7.
  • 8.
    Ungrouped Kurtosis Xi 6 7 9 11 13 15 16 Σ =77 𝑋 = 𝑋 𝑛 𝑋 = 6 + 7 + 9 + 11 + 13 + 15 + 16 7 𝑋 = 77 7 𝑋 = 11
  • 9.
    Ungrouped Kurtosis 𝑿𝒊 𝑿𝒊- 𝑿 (𝑿𝒊 − 𝑿 ) 𝟐 (𝑿𝒊 - 𝑿)𝟒 6 6 - 11 -5 25 625 7 7 - 11 -4 16 256 9 9 - 11 -2 4 16 11 11 - 11 0 0 0 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 = 77 = 90 = 1,794 S = (𝑿𝒊− 𝑿)𝟐 𝒏−𝟏 S = 90 7−1 S = 90 6 S = 15 S = 𝟑. 𝟖𝟕 v v
  • 10.
    Ungrouped Kurtosis 𝑿𝒊 𝑿𝒊- 𝑿 (𝑿𝒊 − 𝑿 ) 𝟐 (𝑿𝒊 - 𝑿)𝟒 6 6 - 11 -5 25 625 7 7 - 11 -4 16 256 9 9 - 11 -2 4 16 11 11 - 11 0 0 0 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 = 77 = 90 = 1,794 S = (𝑿𝒊− 𝑿)𝟐 𝒏−𝟏 S = 90 7−1 S = 90 6 S = 15 S = 𝟑. 𝟖𝟕
  • 11.
    Ungrouped Kurtosis 𝑿𝒊 𝑿𝒊- 𝑿 (𝑿𝒊 − 𝑿 ) 𝟐 (𝑿𝒊 - 𝑿)𝟒 6 6 - 11 -5 25 625 7 7 - 11 -4 16 256 9 9 - 11 -2 4 16 11 11 - 11 0 0 0 13 13 - 11 2 4 16 15 15 - 11 4 16 256 16 16 - 11 5 25 625 = 77 = 90 = 1,794 𝑲 = (𝑿𝒊 − 𝑿)𝟒 𝒏𝒔𝟒 𝑲 = 1,794 (7)(3.87)4 𝑲 = 1,794 (7)(224.31) 𝑲 = 1,794 1570.17 𝑲 = 1.14 Since K- computed 1.14 is < 3, therefore the distribution is Platykurtic.
  • 12.
  • 13.
    For Grouped Data: Mean: Standard Deviation: 𝑿= 𝑭𝒊𝑿𝒊 𝒏 𝒔 = 𝑭𝒊(𝑿𝒊 − 𝑿)𝟐 𝒏 − 𝟏 𝑲 = 𝑭𝒊(𝑿𝒊 − 𝑿)𝟒 𝒏𝒔𝟒 Where: Xi = Class Mark 𝑋= Mean n = Number of Observations s = Standard Deviation
  • 14.
    Grouped Kurtosis C.I Frequenc y Xi FiXi 76- 79 2 77.5 155 80 – 83 5 81.5 407.5 84 - 87 5 85.5 427.5 88 - 91 11 89.5 984.5 92 - 95 4 93.5 374 96 - 99 3 97.5 292.5 n = 30 Σ = 2,641 |Xi – X| 10.53 6.53 2.53 1.47 5.47 9.47 𝑿 = 𝑭𝒊𝑿𝒊 𝒏 𝑿 = 2,641 30 𝑿 = 88.03 vv
  • 15.
    Grouped Kurtosis C.I Frequenc y Xi FiXi 76- 79 2 77.5 155 80 – 83 5 81.5 407.5 84 - 87 5 85.5 427.5 88 - 91 11 89.5 984.5 92 - 95 4 93.5 374 96 - 99 3 97.5 292.5 n = 30 Σ = 2,641 |Xi – X| 10.53 6.53 2.53 1.47 5.47 9.47 𝑿 = 𝑭𝒊𝑿𝒊 𝒏 𝑿 = 2,641 30 𝑿 = 88.03
  • 16.
    C.I Frequenc y Xi FiXi|Xi – X| Fi |Xi – X| Fi |Xi - X|² Fi|Xi - X|⁴ 76 - 79 2 77.5 155 10.53 21.06 221.7618 24,589.1480 80 – 83 5 81.5 407.5 6.53 32.65 213.2045 9,091.2318 84 - 87 5 85.5 427.5 2.53 12.65 32.0045 204.8576 88 - 91 11 89.5 984.5 1.47 16.17 23.7699 51.3644 92 - 95 4 93.5 374 5.47 21.88 119.6836 3,581.041 96 - 99 3 97.5 292.5 9.47 28.41 269.0427 24,127.9915 n = 30 Σ = 2,641 Σ = 132.82 Σ = 879.467 Σ = 61,645.6343 Grouped Kurtosis v v vv
  • 17.
    Grouped Kurtosis C.I Frequenc y Xi FiXi|Xi – X| Fi |Xi – X| Fi |Xi - X|² Fi|Xi - X|⁴ 76 - 79 2 77.5 155 10.53 21.06 221.7618 24,589.1480 80 – 83 5 81.5 407.5 6.53 32.65 213.2045 9,091.2318 84 - 87 5 85.5 427.5 2.53 12.65 32.0045 204.8576 88 - 91 11 89.5 984.5 1.47 16.17 23.7699 51.3644 92 - 95 4 93.5 374 5.47 21.88 119.6836 3,581.041 96 - 99 3 97.5 292.5 9.47 28.41 269.0427 24,127.9915 n = 30 Σ = 2,641 Σ = 132.82 Σ = 879.467 Σ = 61,645.6343
  • 18.
    Grouped Kurtosis 𝒔 = 𝑭𝒊(𝑿𝒊 −𝑿)𝟐 𝒏 − 𝟏 𝒔 = 879.467 30 − 1 𝒔 = 879.467 29 𝒔 = 30.33 𝒔 = 5.51
  • 19.
    Grouped Kurtosis 𝑲 = 𝑭𝒊(𝑿𝒊 −𝑿)𝟒 𝒏𝒔𝟒 𝑲 = 61,645.6343 (30)(5.51)4 𝑲 = 61,645.6343 (30)(921.74) 𝑲 = 61,645.6343 27652.2 𝑲 = 2.23 Since K- computed 2.23 is < 3, therefore the distribution is Platykurtic.
  • 20.