SlideShare a Scribd company logo
www.ChemicalEngineeringGuy.com
1. Multicomponent VLE
 Calculation of Bubble & Dew Points
 K-Values for Hydrocarbon Systems (dePriester)
2. Multicomponent Flash Distillation
 Methodology: Rachford-Rice
 Multicomponent Flashing Exercises
 Multicomponent Flashing Simulations
www.ChemicalEngineeringGuy.com
 Multicomponent VLE Theory
 Calculation of Bubble & Dew Points
 K-Values for Hydrocarbon Systems (dePriester)
www.ChemicalEngineeringGuy.com
 We have been studying binary systems, that is two species
 For this case, the Phase Rule stated:
 If given:
 F as the number of degrees of freedom
 C as the number of components
 P as the number of phases
 Then this is true:
 F = C-P+2
 For a Ternary (3 species in equilibrium) System, then we get:
 F = C-P+2 = 3-2+2 = 3
 For a Quaternary system… and so on..
 F = C-P+2 = 4-2+2 = 4…
www.ChemicalEngineeringGuy.com
 In this section, we will cover only multiple-alkane systems
www.ChemicalEngineeringGuy.com
 Recall that K-Value is a relationship between liquid and vapor phases:
 Ki = yi/xi
 According to chemistry, the hydrocarbons’ boiling point depends on their size, as
they will have mostly van der waal forces, i.e. the greater the size of the HC the
greater its boling point.
 It is safe to assume that:
 The larger (heavier) the HC, the greater its BP, i.e. the least volatile
 If this is true:
 Low boiling point HC have HIGH K-values
 High boiling point HC have LOW K-values
 It will now be convenient for us to work with K-Values in multicomponent systems
www.ChemicalEngineeringGuy.com
 Verify K-Values of several Hydrocarbons
 Pressure – Temperature Relationship
http://demonstrations.wolfram.com/KValueOfSeveralHydrocarbonsVersusTemperatureAndPressure/
www.ChemicalEngineeringGuy.com
 For light hydrocarbons, the value of Ki of each species can be obtained from the
graph (called the “K chart”) prepared by DePriester
 The temperature and pressure of the system must specified
 Note that each plot/graph of each hydrocarbons can be written in the form of
equation:
 X values vary from substance to substance and the units being used
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Input variables:
 Set a Temperature
 Set a Pressure
 Set a component
 Output variable
 K-Value
 As you will see, if T/P are fixed, then, for pure substances:
 There is only a SINGLE line that describes these characteristic
www.ChemicalEngineeringGuy.com
www.ChemicalEngineeringGuy.com
 If we set T/P:
 There is a unique
condition for a PURE
substance
 See Lines:
 Orange (high P– Low T)
 Yellow (high P– high T)
 Blue (low P– Low T)
 Red (Low P– high T)
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Use the animation to verify certain conditions.
 Methane
 Propane
 Octane
http://demonstrations.wolfram.com/DePriesterChartForHydrocarbons/
www.ChemicalEngineeringGuy.com
 For multicomponent, we are interested on calculating dew and bubble points
www.ChemicalEngineeringGuy.com
 If the specifications that you are given for your single-stage equilibrium separations
process are not T and P alone but say:
 V/F = 0 and T or P
 (which is a bubble point temperature or pressure, respectively)
 or V/F = 0 and T or P
 (which is a dew point temperature or pressure, respectively)
 Do NOT use Rachford-Rice Equation!
 In this case, we will have something between 0 < V/F <1
www.ChemicalEngineeringGuy.com
 Let us first consider bubble point calculations
 In this case the liquid-phase composition xi is given
 it corresponds to the case where V is very small and
 Recall:
 The bubble point of a liquid is the point where the liquid just starts to evaporate (boil),
that is, when the first vapor bubble is formed.
 If the temperature is given:
 then we must lower the pressure until the first bubble is formed.
 If the pressure is given:
 then we must increase the temperature until the first bubble is formed.
0V 
i ix z
1i iK x 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 NOTE:In both cases, this corresponds to adjusting T or p until the computed sum of
vapor fractions is just 1, that is,
 Since:
 Then 
1iy 
i
i i i i
i
y
K y K x
x
  
1i iK x 
www.ChemicalEngineeringGuy.com
 At bubble point, V/F = 0, by definition in equilibrium
 From the equation: 
 Step 1: Guess any Bubble Point Temperature
 Step 2: Determine K-values from the Chart/Equation/Table/Plot
 Step 3: If the function ( ) then Bubble Point is correct
 Step 4: If the function is not 1 change Bubble point accordingly:
 function >1  reduce T
 function < 1  increase T
 Step 5: Repeat Iteration until % error is met
Tip:
Best Educated Guess is 
1i iK x  1i iK z 
i ix z
1i iK z 
old
new
i i
K
K
K z

www.ChemicalEngineeringGuy.com
 Bubble point at given temperature T.
 A liquid mixture contains 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3)
(all in mol-%), i.e.,
 At T = 400 K, the pressure is gradually decreased.
 What is the bubble pressure and composition of the first vapor that is formed?
 Assume ideal liquid mixture and ideal gas (Raoult’s law).
1 2 30.5; 0.3; 0.2x x x  
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Solution.
 The task is to find a Pressure that satisfies 
 Since T is given, this is trivial (not required)
 We can simply calculate P from the previous equation
 We start by computing the vapor pressures for the three components at T = 400K.
 Using the Antoine data, we get:
 At the bubble point, the liquid phase composition is given, so the partial pressure of
each component is
( )i ix P T p 
1
2
3
( 400 ) 10.248
( 400 ) 4.647
( 400 ) 3.358
P T K bar
P T K bar
P T K bar
  
  
  
1 1 1
2 2 2
3 3 3
(0.5)(10.248 ) 5.124
(0.3)(4.647 ) 1.394
(0.2)(3.358 ) 0.672bar
p x P bar bar
p x P bar bar
p x P bar
   
   
   
www.ChemicalEngineeringGuy.com
 Thus, from the equation of the bubble pressure we get:
 Finally, the vapor composition (composition of the first vapor bubble) is
1 2 3 7.189p p p p bar   
1
1
2
2
3
3
5.124
0.713
7.189
1.394
0.194
7.189
0.672
0.093
7.189
p bar
y
p bar
p bar
y
p bar
p bar
y
p bar
  
  
  
www.ChemicalEngineeringGuy.com
 A hydrocarbon liquid mix with
 Composition (10,20,30,40% mol of; nC3, nC4, nC5, nC6)
 Find the temperature at which we will get the first bubble formation.
 Do NOT Assume ideal solution/gas
/ 0, 700V F P kPa 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Solution:
 Step 1. Guess any T:
 ; nearest to nC63 6C nCT T T 
200 392
700 101
T C F
P kPa psi
   
 
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
390
nC
nC
nC
nC
K
K
K
K
T F





Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
9.8
5.7
3.1
1.8
390
nC
nC
nC
nC
K
K
K
K
T F





www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Guess new T… Recommended is to: Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 3.69i iF x K Z 
3 3 4 4 5 5 6 6
3 4 5 6
(0.10) (0.20) (0.30) (0.40)
(9.8)(0.10) (5.7)(0.20) (3.1)(0.30) (1.8)(0.40)
3.70
i i nC nC nC nC nC nC nC nC
i i nC nC nC nC
i i
i i
K Z K Z K Z K Z K Z
K Z K K K K
K Z
K Z
   
   
   





9.8
2.66
3.7
K  
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
2.66
?
?
?
?
nC
nC
nC
nC
K
K
K
K
T





www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
2.66
0.80
0.30
0.12
128
nC
nC
nC
nC
K
K
K
K
T F




 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 0.61i iF x K Z 
3 3 4 4 5 5 6 6
3 4 5 6
(0.10) (0.20) (0.30) (0.40)
(2.66)(0.10) (0.80)(0.20) (0.3)(0.30) (0.12)(0.40)
0.61
i i nC nC nC nC nC nC nC nC
i i nC nC nC nC
i i
i i
K Z K Z K Z K Z K Z
K Z K K K K
K Z
K Z
   
   
   





2.66
4.36
0.61
K  
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
4.36
1.80
0.85
0.36
200
nC
nC
nC
nC
K
K
K
K
T F




 
www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 1.18i iF x K Z 
3 3 4 4 5 5 6 6
3 4 5 6
(0.10) (0.20) (0.30) (0.40)
(4.36)(0.10) (1.80)(0.20) (0.85)(0.30) (0.36)(0.40)
1.18
i i nC nC nC nC nC nC nC nC
i i nC nC nC nC
i i
i i
K Z K Z K Z K Z K Z
K Z K K K K
K Z
K Z
   
   
   





4.36
3.70
1.20
K  
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
3.70
0.78
0.65
0.28
180
nC
nC
nC
nC
K
K
K
K
T F




 
www.ChemicalEngineeringGuy.com
 Step 3. Use f(x) function
 Step 4. K-value is Not what we expected
 Normalize (divide by K function value)
 Do this for the smallest (MVC)  Propane
 Repeat Iteration!
( ) 0.93i iF x K Z 
3.68
3.94
0.93
K  
www.ChemicalEngineeringGuy.com
 Step 2. Read K values
3
4
5
6
3.94
1.40
0.60
0.27
188
nC
nC
nC
nC
K
K
K
K
T F




 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 At this point, K = 1 approx.
 Accept T = 188°F or 190°F
 Note that Real Value of mix is  T = 87°C  188.6°F
www.ChemicalEngineeringGuy.com
 Let us next consider dew point calculations.
 In this case the vapor-phase composition yi is given
 (it corresponds to the case where L is very small ( ) and
 The dew point of a vapor (gas) is the point where the vapor just begins to condense,
that is, when the first liquid drop is formed.
 If the temperature is given
 then we must increase the pressure until the first liquid is formed.
 If the pressure is given
 then we must decrease the temperature until the first liquid is formed.
0L  i iy z
www.ChemicalEngineeringGuy.com
 In both cases, this corresponds to adjusting T or p until
 Or, more conveniently:
1ix 
1i
i
y
K

Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 At the dew point, by definition, and from f(1) = 0, we can find:
 If this is true, then, when P and T are given:
 Must be changed since T is too large… The steps are as follows:
 Step 1. Guess any Dew Point Temperature
 Step 2: Determine the K-values based on that
 Step 3. Calculate . If function is not near 1, then:
 Increase T when Function is less than 1.
 Decrease T when Function is greater than 1.
 Step 4. Recalculate New K-values based on normalization of K-old
 Step 5. Repeat Iteration until acceptable % error value.
1i
i
Z
K

1i
i
Z
K

/ 1V F 
1i
i
Z
K

www.ChemicalEngineeringGuy.com
 Calculate the Dew point at given Temperature T.
 A vapor mixture contains:
 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,
 At T = 400 K, the pressure is gradually increased.
 What is the dew point pressure and the composition of the first liquid that is
formed?
 Assume ideal liquid mixture and ideal gas (Raoult’s law).
1 2 30.5; 0.3; 0.2y y y  
www.ChemicalEngineeringGuy.com
 Solution.
 The task is to find the value of p that satisfies
 Since T is given, this is trivial; we can simply calculate 1/p from (7.48).
 From previous experiments and data, we got the following regression:
 and we find
 The liquid phase composition is:
 Then, we find
1
( )
i
i
y
P T p



11 0.5 0.3 0.2
0.1729
10.248 4.647 3.358
bar
p

   
5.75p bar 1
( )
i
i
i
y
x
P T p
 

 
1 2 3
0.5 5.78 0.3 5.78 0.2 5.78
0.282; 0.373; 0.345
10.248 4.647 3.749
x x x
x x x     
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 For the previous mixture of Bubble Point:
 Calculate its Dew Point
 That is, assume it is a vapor
 You are looking for condensation point
www.ChemicalEngineeringGuy.com
 Component / Molar flow
 C1 20
 C2 15
 C3 12
 C4 15
 IC4 12
 NC5 15
 IC5 10
 C6 5
 C7 3
• A) Get Dew point @ T= ? P = 50bar
• B) Get Bubble point @ T= 220°C, P = 10bar
• C) What phase do we have at 25/25
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Component / Molar flow
 B 0.25
 T 0.25
 O-X 0.25
 P-X 0.25
• A) Get Dew point @ T= 150°C, P = 50bar
• B) Get Dew point @ T= 220°C, P = 10bar
• C) What is the Critical Point & Meaning?
www.ChemicalEngineeringGuy.com
 Rachford-Rice Equation
 Derivation
 Procedure – Newton’s Method
 Worked Example
 Multicomponent Flash Distillation:
 Exercises
 Simulations
www.ChemicalEngineeringGuy.com
 Next, consider a flash where a feed F (with composition zi) is split into
 A vapor product V (with composition yi)
 A liquid product (with composition xi)
 For each of the Nc components, we can write a material balance:
 In addition, the vapor and liquid is assumed to be in equilibrium,
i i iFz Lx Vy 
i i iy K x
www.ChemicalEngineeringGuy.com
 The K-values:

 Must be computed from the VLE model.
 In addition, we have the two relationships:
 With a given feed (F, zi), we then have:
 3Nc + 2 equations
 3Nc + 4 unknowns (xi , yi , Ki , L, V, T, p).
 Thus, we need two additional specifications, and with these the equation set should
be solvable
, ,( ),i i i iK K T P x y
1
1
1
i
i
i i
x
y
x y
 
 
   
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 The simplest flash is usually to specify p and T (pT-flash)
 because Ki depends mainly on p and T .
 Let us show one common approach for solving the resulting equations, which has
good numerical properties.
 Substituting into the mass balance:
 Gives
 Solving with respect to xi gives:
 Simplify via  L = F − L (total mass balance) to derive
i i iFz Lx Vy 
i i iy K x
(K )i i i iFz Lx V x 
( )
( ) (1)
( ) 1 ( 1)
1 ( 1)
i i i
i i
i V
Fi i
V
F
i
i
i
Fz x L VK
L F z z
x
L V K K
z
x
K
 

 
  
 

  
www.ChemicalEngineeringGuy.com
 Here, we cannot directly calculate xi because the vapor split V /F is not known.
 To find V /F we may use:
 the relationship
 alternatively
 OR the addition of both…
 However, it has been found that the combination Σi(yi−xi) = 0
 It results in an equation with good numerical properties
 This is the so-called Rachford-Rice Flash Equation
1
1
1
i
i
i i
x
y
x y
 
 
   
 isat
i
p T
K
p

( 1)
0
1 ( 1)
i i
i
z K
K


  

www.ChemicalEngineeringGuy.com
 Rachford-Rice Equation:
 Is a monotonic function in V/F
 It is easy to solve numerically.
 A physical solution must satisfy 0 ≤ V /F ≤ 1.
 If we assume that Raoult’s holds, then Ki depends on p and T only.
 Then, with T and p specified, we know Ki and the Rachford-Rice equation can be
solved for V /F.
 For non-ideal cases, Ki depends also on xi and yi
 One approach is add an outer iteration loop on Ki .
 isat
i
p T
K
p

www.ChemicalEngineeringGuy.com
 This will be the typical procedure for the RRE
 Note that this is based on a numerical method
 Newton-Raphson Method
 Uses the original function, f(phi)
 It also requires the derivative of the function, f’(phi)
( 1)
( )
1 ( 1)
i i
i
z K
f
K

 
  

0.50
V
F
  
2
2
(1 )
'( )
[1 ( 1)]
i i
i
z K
f
K

 
  

( , , , ... )i j k zF z z z z
(V,y ,y ,y ...y )i j k z
(L,x ,x ,x ...x )i j k z
( , )T P
( , , ... )i j k zK K K K
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
1. Given  F, zi, T and P
2. Get Ki for species (either graph, equations or experimental values)
 Antoine Equation (ideal)
 K-Values from DePriester Chart
3. Assume a phi value (vaporized material in the feed) (hint  good start is 0.5)
4. Get the Numerical Value of Rachford Rice Equation
 Example:
 BTX ( Benzene, Toluene, Xylene) System:
( 1)
0
1 ( 1)
i i
i
z K
K


  

0.50
V
F
  
(1 )(1 ) (1 )
( )
1 ( 1) 1 ( 1) 1 ( 1)
xylene xylenebenzene benzene toluene toluene
benzene toluene xylene
z Kz K z K
f
K K K
 
   
        
www.ChemicalEngineeringGuy.com
5. Get the Numerical Value of the Derivative of Rachford Rice Equation
 Example:
 BTX ( Benzene, Toluene, Xylene) System:
V
F
 
22 2
2 2 2
(1 )(1 ) (1 )
'( )
[1 ( 1)] [1 ( 1)] [1 ( 1)]
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z Kz K z K
f
K K K
 
   
        
2
2
(1 )
'( )
[1 ( 1)]
i i
i
z K
f
K

 
  

www.ChemicalEngineeringGuy.com
6. Recalculate phi (Newton Raphson Method)
7. Verify Rel. Error, if < 0.0001, this is ok, otherwise go to step 3 (repeat iteration)
V
F
 
( )
'( )
old
new old
old
f
f

   

% .error 100%new old
old
rel abs x
   
  
 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
8. Get V, L, xi, and yi (see equations)
 Note that in all cases:
 You will need K and phi
V V F
L L F V
  
  
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
V
F
 
www.ChemicalEngineeringGuy.com
 Given a Flash with the following data:
 Composition (zi)
 (BTX, 0.60, 0.25, 0.15)
 VLE (Antoine Constant) Data:
 A) Get the compositions, flow rates of Vapor & Liquid streams
i A B C
B 6.879 1196.700 219.160
T 6.950 1342.000 219.190
X 7.000 1476.390 213.870
1 , 100
100
&
kmol
h
P atm T C
F
V L unknown
  


www.ChemicalEngineeringGuy.com
 Step 1 – Get the given Data:
1 , 100 , 100
0.6; 0.25, 0.15
kmol
h
benzene toluene xylene
P atm T C F
Z Z Z
   
  
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 2 Get Ki-values
 Via Raoult’s Law
 Via DePriester Diagrams (not available for BTX)
 If we use Raoult’s Law & Antoine’s Equation:
1.7756
0.7322
0.2611
benzene
toluene
xylene
K
K
K



www.ChemicalEngineeringGuy.com
 Step 3. Assume phi
 Recommended is:
 WHY?
0.5 
www.ChemicalEngineeringGuy.com
 Step 4. Calculate The Value of the Rachford-Rice Equaiton (RRE)
0.5
(1 )
( )
1 ( 1)
(1 )(1 ) (1 )
( )
1 ( 1) 1 ( 1) 1 ( 1)
0.60(1 1.7756) 0.25(1 0.7322)
( )
1 0.50(1.7756 1) 1 0.50(0.732
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        
 
  
  

0.15(1 0.2611)
2 1) 1 0.50(0.2611 1)
( ) 0.0823f


  
  
www.ChemicalEngineeringGuy.com
 Step 5. Calculate The Value of the derivative of RRE
2
2
22 2
2 2 2
2
2
0.5
(1 )
'( )
[1 ( 1)]
(1 )(1 ) (1 )
'( )
[1 ( 1)] [1 ( 1)] [1 ( 1)]
0.60(1 1.7756) 0.25
'( )
1 0.50(1.7756 1)]
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        

  
 

2 2
2 2
(1 0.7322) 0.15(1 0.2611)
1 0.50(0.7322 1)] 1 0.50(0.2611 1)]
'( ) 0.4172f
 

   
 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 6. Calculate the new “phi”
( )
'( )
0.0823
0.50
0.4172
0.6972
old
new old
old
new
new
f
f

   


  
 
www.ChemicalEngineeringGuy.com
 Step 7. Verify phi value (error)
 Error is too large, repeat from step 3
% . 100%
0.6972
% . 100%
0.5000
% . 139%
new
old
rel error x
rel error x
rel error





www.ChemicalEngineeringGuy.com
 The most convenient way to do this is via a Spreadsheet… as we will need to iterate
 Step 7. Verify phi value (error)
 Best Case  phi = 0.6806; error is acceptable
Trial phi f(1) f(2) f(3) f(phi) f'(1) f'(2) f'(3) f'(phi) New Phi %error
1 0.5 -0.33532 0.0773 0.175775 -0.08225 0.187402 0.023901 0.205979 0.417282 0.6971 39.42
2 0.6971 -0.30205 0.08232 0.228567 0.008834 0.152057 0.027105 0.348286 0.527447 0.6804 2.40
3 0.6804 -0.30462 0.08187 0.222879 0.000126 0.154654 0.026808 0.026808 0.20827 0.6797 0.09
4 0.6797 -0.30471 0.08185 0.222679 -0.00018 0.154749 0.026797 0.026797 0.208344 0.6806 0.13
5 0.6806 -0.30458 0.08187 0.222971 0.000269 0.154611 0.026813 0.026813 0.208236 0.6793 0.19
6 0.6793 -0.30478 0.08184 0.222544 -0.00039 0.154813 0.02679 0.02679 0.208394 0.6812 0.28
7 0.6812 -0.30448 0.08189 0.223167 0.000572 0.154518 0.026823 0.026823 0.208164 0.6785 0.40
2
2
22 2
2 2 2
2
2
0.5
(1 )
'( )
[1 ( 1)]
(1 )(1 ) (1 )
'( )
[1 ( 1)] [1 ( 1)] [1 ( 1)]
0.60(1 1.7756) 0.25
'( )
1 0.50(1.7756 1)]
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        

  
 

2 2
2 2
(1 0.7322) 0.15(1 0.2611)
1 0.50(0.7322 1)] 1 0.50(0.2611 1)]
'( ) 0.4172f
 

   
 
f’(1) f’(2) f’(3)
0.5
(1 )
( )
1 ( 1)
(1 )(1 ) (1 )
( )
1 ( 1) 1 ( 1) 1 ( 1)
0.60(1 1.7756) 0.25(1 0.7322)
( )
1 0.50(1.7756 1) 1 0.50(0.732
i i
i
xylene xylenebenzene benzene toluene toluene
benzene toluene xylenei
z K
f
K
z Kz K z K
f
K K K
f
 

 
  
 
   
        
 
  
  

0.15(1 0.2611)
2 1) 1 0.50(0.2611 1)
( ) 0.0823f


  
  
f(1) f(2) f(3)
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 8. Calculate all other Values
 For compositions, use Spreadsheet
(0.6803)(100) 68.03 /
100 68.03 31.97 /
V V F V kmol h
L L F V kmol h
     
     
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
www.ChemicalEngineeringGuy.com
 Step 8. Calculate all other Values
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
Species i Ki zi phi yi xi
Benzene 1 1.78 0.60 0.6806 0.69728 0.392703
Toluene 2 0.73 0.25 0.6806 0.22385 0.305722
Xylene 3 0.26 0.15 0.6806 0.07879 0.301747
www.ChemicalEngineeringGuy.com
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 A feed:
 (1) 20 mol % ethane
 (2) 20 mol % isobutane
 (3) 20 mol % n-pentane
 (4) 40 mol % n-hexane
 Flash Operation is at T = 100°c, P = 600kPa
 A) What mole fraction of the feed is vaporized?
 B) Composition of vapor?
www.ChemicalEngineeringGuy.com
 Step 1: Calculate K Values
 F = must be assumed, 100
 Z = given, 0.2,0.20,0.20,0.40
 Given, 100°C (212F), 600kPa (87 psi)
 Step 2. Calculate K Values
 Use DePriester Chart.
 Ethane  12.5
 isobutane  2.80
 n-pentane  0.95
 n-hexane  0.45
www.ChemicalEngineeringGuy.com
 Step 3. Assume phi-values
0.50 
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 4. Calculate RRE
 Step 5. Calculate Derivative of RRE:
Ethane  12.5
isobutane  2.80
n-pentane  0.95
n-hexane  0.45
Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error
1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71
2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68
3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04
4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00
5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00
6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00
7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
www.ChemicalEngineeringGuy.com
 Step 7. Verify if error is acceptable.
 V/F = 0.7597
 A) Percentage of Vapor = 75.97%
Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error
1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71
2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68
3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04
4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00
5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00
6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00
7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 B) Composition of vapor?
Species i Ki zi phi yi xi
Ethane 1 12.5 0.20 0.7597 0.256764 0.020541
i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479
n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897
n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709
0.999998 1.000007
(0.7597)(100) 75.97 /
100 75.97 24.03 /
V V F V mol h
L L F V kmol h
     
     
1 ( 1)
1 ( 1)
i i
i
i
i
i
i
K z
y
K
z
x
K

  

  
www.ChemicalEngineeringGuy.com
 For a mix at T= 95°C and P = 700kPa
 The composition of 40, 30, 20, 10 mol percent:
 propane (1)
 n-butane (2)
 n-pentane (3)
 n-hexane (4)
 A) What percentage of the feed enters as liquid?
www.ChemicalEngineeringGuy.com
 Step 1. Get data
 F, T, P, zi are given!
 T= 95°C = 203°F
 P = 700kPa = 101 psi
 Step 2. Get Ki
 From K-chart:
 4.20
 1.75
 0.74
 0.34
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Step 3: Assume a phi value
 Phi = 0.5
 Step 4&5: Get RRE and its derivative
www.ChemicalEngineeringGuy.com
 Step 6: Verify, iterate
 NOTE 
 If The Value of RRE < 0, this is above the bubble point… WHY?
 If the Value of RRE derivative > RRE, this is ABOVE the dew point…
 Trick question… This is all VAPOR!
phi 0.5
i zi Ki f(phi) f'(phi)
1 0.4 4.2 -1.28 4.096
2 0.3 1.75 -0.225 0.16875
3 0.2 0.74 0.052 0.01352
4 0.1 0.34 0.066 0.04356
Sum = -1.387 4.32183
www.ChemicalEngineeringGuy.com
 In the following animation:
 Change the Flash Pressure
 See the Effect of Q in temperature
 Compare the volatility of species:
 Butane vs. heptane
https://demonstrations.wolfram.com/FlashDistillationOfAMixtureOfFourHydrocarbons/
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
 Use Aspen Plus Software to Simulate Ex 1. Rachford-Rice Flashing
 A) Verify Composition & Streams
 B) Use Physical Property Analysis:
 PV-Curve
 Mixture Properties
 C) Use Sensitivity Analysis for:
 Effect of Temperature in Vapor
 Tmin? WHY
 Tmax? WHY
www.ChemicalEngineeringGuy.com
 Phi = 0.7597
Species i Ki zi phi yi xi
Ethane 1 12.5 0.20 0.7597 0.256764 0.020541
i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479
n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897
n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709
0.999998 1.000007
(0.7597)(100) 75.97 /
100 75.97 24.03 /
V V F V mol h
L L F V kmol h
     
     
Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error
1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71
2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68
3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04
4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00
5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00
6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00
7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
Do you need the Full Version?
Contact me if needed!
Contact@ChemicalEngineeringGuy.com
https://courses.chemicalengineeringguy.com/courses
You can also check out more content here:
My Youtube Channel 
My Fan Page 
The LinkedIn
My website:
www.ChemicalEngineeringGuy.com
1. Introduction
2. Review of Mass Transfer
3. Flash Distillation Concepts
4. Multicomponent Flashing
5. Conclusion
www.ChemicalEngineeringGuy.com
1. Introduction
1. Why Flash Distillation?
2. Objectives & Goals
3. Resources & Downloads
4. Additional Notes
2. Review of Mass Transfer
1. Ideal Solution & Gas, Equilibrium, Vapor & Partial Pressures, VLE
2. Volatility / Relative Volatility
3. Phase Diagrams (Txy, Pxy, XY)
4. Ideal Solution – Ideal Gas: Raoult’s Law (Vapor-Liquid)
5. Deviations: Azeotropes
3. Flash Distillation Concepts
1. Process Technology Overview
2. Equipment
3. Operation Line
4. Flash Cascades
4. Multiple Components
1. Introduction
2. Rachford-Rice
3. Alkane System
5. Conclusion
www.ChemicalEngineeringGuy.com
 More Engineering Courses
 Process Design & Simulation
 Aspen Plus
 Aspen HYSYS
 Unit Operations
 Gas Absorption & Stripping
 Flash Distillation
 Binary Distillation
 Oil & Gas
 Petrochemical Industries
 Petroleum Refining
https://courses.chemicalengineeringguy.com/courses

More Related Content

What's hot

Gas Compressor Calculations Tutorial
Gas Compressor Calculations TutorialGas Compressor Calculations Tutorial
Gas Compressor Calculations Tutorial
Vijay Sarathy
 
Ch 6b 2nd law
Ch 6b  2nd lawCh 6b  2nd law
Ch 6b 2nd law
fisehaye tium
 
Process calculation condensation
Process calculation  condensationProcess calculation  condensation
Process calculation condensation
Chandran Udumbasseri
 
Full report gas absorption
Full report gas  absorptionFull report gas  absorption
Full report gas absorptionErra Zulkifli
 
Antoine coefficient table
Antoine coefficient tableAntoine coefficient table
Antoine coefficient table
Gennaro Bojorquez
 
Modeling of constant holdup cstr
Modeling of constant holdup cstrModeling of constant holdup cstr
Modeling of constant holdup cstr
Karnav Rana
 
Introduction to transport phenomena bodh raj
Introduction to transport phenomena bodh rajIntroduction to transport phenomena bodh raj
Chemical Reaction Engineering
Chemical Reaction EngineeringChemical Reaction Engineering
Chemical Reaction Engineering
Mujeeb UR Rahman
 
Processing of petroleum types of reflux
Processing of petroleum types of refluxProcessing of petroleum types of reflux
Processing of petroleum types of reflux
Karnav Rana
 
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspielSolution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
Ana Lu Hernandez Chavarria
 
Reactor and Catalyst Design
Reactor and Catalyst DesignReactor and Catalyst Design
Reactor and Catalyst Design
Gerard B. Hawkins
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A4ChEAB08
 
Gas absorbtion
Gas absorbtionGas absorbtion
Gas absorbtion
Azlan Skool
 
Transport phenomena Solved problems
Transport phenomena Solved problemsTransport phenomena Solved problems
Transport phenomena Solved problems
Wolkite University
 
Mass transfer dr auroba
Mass transfer dr aurobaMass transfer dr auroba
Mass transfer dr auroba
cbhattr
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
Gerard B. Hawkins
 
Process design for chemical engineers
Process design for chemical engineersProcess design for chemical engineers
Process design for chemical engineers
Amanda Ribeiro
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 12
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 12Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 12
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 12
Grey Enterprise Holdings, Inc.
 
Chemical Equipment Design, Lecture 1
Chemical Equipment Design, Lecture 1Chemical Equipment Design, Lecture 1
Chemical Equipment Design, Lecture 1
yousifmagdi
 
Shortcut Methods of Distillation Design
Shortcut Methods of Distillation DesignShortcut Methods of Distillation Design
Shortcut Methods of Distillation Design
Gerard B. Hawkins
 

What's hot (20)

Gas Compressor Calculations Tutorial
Gas Compressor Calculations TutorialGas Compressor Calculations Tutorial
Gas Compressor Calculations Tutorial
 
Ch 6b 2nd law
Ch 6b  2nd lawCh 6b  2nd law
Ch 6b 2nd law
 
Process calculation condensation
Process calculation  condensationProcess calculation  condensation
Process calculation condensation
 
Full report gas absorption
Full report gas  absorptionFull report gas  absorption
Full report gas absorption
 
Antoine coefficient table
Antoine coefficient tableAntoine coefficient table
Antoine coefficient table
 
Modeling of constant holdup cstr
Modeling of constant holdup cstrModeling of constant holdup cstr
Modeling of constant holdup cstr
 
Introduction to transport phenomena bodh raj
Introduction to transport phenomena bodh rajIntroduction to transport phenomena bodh raj
Introduction to transport phenomena bodh raj
 
Chemical Reaction Engineering
Chemical Reaction EngineeringChemical Reaction Engineering
Chemical Reaction Engineering
 
Processing of petroleum types of reflux
Processing of petroleum types of refluxProcessing of petroleum types of reflux
Processing of petroleum types of reflux
 
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspielSolution manual chemical reaction engineering, 3rd edition Octave levenspiel
Solution manual chemical reaction engineering, 3rd edition Octave levenspiel
 
Reactor and Catalyst Design
Reactor and Catalyst DesignReactor and Catalyst Design
Reactor and Catalyst Design
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
 
Gas absorbtion
Gas absorbtionGas absorbtion
Gas absorbtion
 
Transport phenomena Solved problems
Transport phenomena Solved problemsTransport phenomena Solved problems
Transport phenomena Solved problems
 
Mass transfer dr auroba
Mass transfer dr aurobaMass transfer dr auroba
Mass transfer dr auroba
 
Estimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe SystemsEstimation of Pressure Drop in Pipe Systems
Estimation of Pressure Drop in Pipe Systems
 
Process design for chemical engineers
Process design for chemical engineersProcess design for chemical engineers
Process design for chemical engineers
 
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 12
Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 12Perry’s Chemical Engineers’ Handbook  7ma Ed Chap 12
Perry’s Chemical Engineers’ Handbook 7ma Ed Chap 12
 
Chemical Equipment Design, Lecture 1
Chemical Equipment Design, Lecture 1Chemical Equipment Design, Lecture 1
Chemical Equipment Design, Lecture 1
 
Shortcut Methods of Distillation Design
Shortcut Methods of Distillation DesignShortcut Methods of Distillation Design
Shortcut Methods of Distillation Design
 

Similar to Flash Distillation in Chemical and Process Engineering (Part 3 of 3)

Ideal gases (leacture 3)
Ideal gases (leacture 3)Ideal gases (leacture 3)
Ideal gases (leacture 3)
MuhammadMuzaffar21
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Chemical Engineering Guy
 
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Chemical Engineering Guy
 
CHEM 213 Distillation.ppt
CHEM 213 Distillation.pptCHEM 213 Distillation.ppt
CHEM 213 Distillation.ppt
MarzoukAbdelWahedMar
 
Chemistry homework help
Chemistry homework helpChemistry homework help
Chemistry homework help
ENTIRE COURSES FINAL EXAM
 
09 Chapter 6-C
09 Chapter 6-C09 Chapter 6-C
09 Chapter 6-C
Martha Brown
 
Nuclear Engineering Exam Help
Nuclear Engineering Exam HelpNuclear Engineering Exam Help
Nuclear Engineering Exam Help
Live Exam Helper
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler
sarkawtn
 
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docxBC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
rosemaryralphs52525
 
Syllabus of engineering thermodynamics
Syllabus of engineering thermodynamicsSyllabus of engineering thermodynamics
Syllabus of engineering thermodynamics
Vicky Singh
 
Algorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdfAlgorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdf
selememg
 
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal AnnulusNatural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
PMOHANSAHU
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Chemical Engineering Guy
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engine
inventionjournals
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engine
inventionjournals
 
4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process
nazir1988
 
Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016
Muhammad Rashid Usman
 
pressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation columnpressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation column
Ali Shaan Ghumman
 

Similar to Flash Distillation in Chemical and Process Engineering (Part 3 of 3) (20)

Ideal gases (leacture 3)
Ideal gases (leacture 3)Ideal gases (leacture 3)
Ideal gases (leacture 3)
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (2 of 3)
 
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (1 of 2) (Slideshare)
 
CHEM 213 Distillation.ppt
CHEM 213 Distillation.pptCHEM 213 Distillation.ppt
CHEM 213 Distillation.ppt
 
Chemistry homework help
Chemistry homework helpChemistry homework help
Chemistry homework help
 
09 Chapter 6-C
09 Chapter 6-C09 Chapter 6-C
09 Chapter 6-C
 
Nuclear Engineering Exam Help
Nuclear Engineering Exam HelpNuclear Engineering Exam Help
Nuclear Engineering Exam Help
 
Marcet boiler
Marcet boiler Marcet boiler
Marcet boiler
 
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docxBC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
BC Chemistry 162 Laboratory Manual Experiment 6 Vapor Press.docx
 
Syllabus of engineering thermodynamics
Syllabus of engineering thermodynamicsSyllabus of engineering thermodynamics
Syllabus of engineering thermodynamics
 
Algorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdfAlgorithm of problem solving with example.pdf
Algorithm of problem solving with example.pdf
 
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal AnnulusNatural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
Natural Convection Heat Transfer of Viscoelastic Fluids in a Horizontal Annulus
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (3 of 3)
 
Gases
GasesGases
Gases
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engine
 
The Energy and the Work of Engine
The Energy and the Work of EngineThe Energy and the Work of Engine
The Energy and the Work of Engine
 
4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process4 modeling and control of distillation column in a petroleum process
4 modeling and control of distillation column in a petroleum process
 
Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016Advanced Chemical Engineering Thermodynamics-31-July-2016
Advanced Chemical Engineering Thermodynamics-31-July-2016
 
pressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation columnpressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation column
 
Gas lawschem
Gas lawschemGas lawschem
Gas lawschem
 

More from Chemical Engineering Guy

Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)
Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)
Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)
Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)
Chemical Engineering Guy
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)
Chemical Engineering Guy
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Chemical Engineering Guy
 
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Chemical Engineering Guy
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
Chemical Engineering Guy
 
Petroleum refining (1 of 3)
Petroleum refining (1 of 3)Petroleum refining (1 of 3)
Petroleum refining (1 of 3)
Chemical Engineering Guy
 
Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)
Chemical Engineering Guy
 
Petrochemicals an Overview (2 of 3)
Petrochemicals an Overview (2 of 3)Petrochemicals an Overview (2 of 3)
Petrochemicals an Overview (2 of 3)
Chemical Engineering Guy
 
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Chemical Engineering Guy
 
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Chemical Engineering Guy
 
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Chemical Engineering Guy
 
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
Chemical Engineering Guy
 
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Chemical Engineering Guy
 
Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)
Chemical Engineering Guy
 
Chemical Engineering Syllabus Explained
Chemical Engineering Syllabus ExplainedChemical Engineering Syllabus Explained
Chemical Engineering Syllabus Explained
Chemical Engineering Guy
 
Aspen Plus - Basic Course (Slideshare)
Aspen Plus - Basic Course (Slideshare)Aspen Plus - Basic Course (Slideshare)
Aspen Plus - Basic Course (Slideshare)
Chemical Engineering Guy
 
Applied Fluid Mechanics - Course Overview (AFD0)
Applied Fluid Mechanics -  Course Overview  (AFD0)Applied Fluid Mechanics -  Course Overview  (AFD0)
Applied Fluid Mechanics - Course Overview (AFD0)
Chemical Engineering Guy
 

More from Chemical Engineering Guy (20)

Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)Introduction to Mass Transfer Operations (4 of 5)
Introduction to Mass Transfer Operations (4 of 5)
 
Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)Introduction to Mass Transfer Operations (3 of 5)
Introduction to Mass Transfer Operations (3 of 5)
 
Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)Introduction to Mass Transfer Operations (2 of 5)
Introduction to Mass Transfer Operations (2 of 5)
 
Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)Introduction to Mass Transfer Operations (5 of 5)
Introduction to Mass Transfer Operations (5 of 5)
 
Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)Introduction to Mass Transfer Operations (1 of 5)
Introduction to Mass Transfer Operations (1 of 5)
 
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
Mass Transfer Principles for Vapor-Liquid Unit Operations (1 of 3)
 
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
 
Petroleum refining (1 of 3)
Petroleum refining (1 of 3)Petroleum refining (1 of 3)
Petroleum refining (1 of 3)
 
Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)Petrochemicals an Overview (1 of 3)
Petrochemicals an Overview (1 of 3)
 
Petrochemicals an Overview (2 of 3)
Petrochemicals an Overview (2 of 3)Petrochemicals an Overview (2 of 3)
Petrochemicals an Overview (2 of 3)
 
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
Aspen Plus - Bootcamp - 12 Case Studies (2 of 2) (Slideshare)
 
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
Aspen Plus - Intermediate Process Modeling (3 of 3) (Slideshare)
 
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
Gas Absorption & Stripping in Chemical Engineering (Part 3/4)
 
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
Gas Absorption & Stripping in Chemical Engineering (Part 2/4)
 
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)Aspen Plus - Physical Properties (1 of 2) (Slideshare)
Aspen Plus - Physical Properties (1 of 2) (Slideshare)
 
Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)Aspen HYSYS - Basic Course (SS)
Aspen HYSYS - Basic Course (SS)
 
Chemical Engineering Syllabus Explained
Chemical Engineering Syllabus ExplainedChemical Engineering Syllabus Explained
Chemical Engineering Syllabus Explained
 
Aspen Plus - Basic Course (Slideshare)
Aspen Plus - Basic Course (Slideshare)Aspen Plus - Basic Course (Slideshare)
Aspen Plus - Basic Course (Slideshare)
 
Applied Fluid Mechanics - Course Overview (AFD0)
Applied Fluid Mechanics -  Course Overview  (AFD0)Applied Fluid Mechanics -  Course Overview  (AFD0)
Applied Fluid Mechanics - Course Overview (AFD0)
 

Recently uploaded

DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 

Recently uploaded (20)

DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 

Flash Distillation in Chemical and Process Engineering (Part 3 of 3)

  • 1. www.ChemicalEngineeringGuy.com 1. Multicomponent VLE  Calculation of Bubble & Dew Points  K-Values for Hydrocarbon Systems (dePriester) 2. Multicomponent Flash Distillation  Methodology: Rachford-Rice  Multicomponent Flashing Exercises  Multicomponent Flashing Simulations
  • 2. www.ChemicalEngineeringGuy.com  Multicomponent VLE Theory  Calculation of Bubble & Dew Points  K-Values for Hydrocarbon Systems (dePriester)
  • 3. www.ChemicalEngineeringGuy.com  We have been studying binary systems, that is two species  For this case, the Phase Rule stated:  If given:  F as the number of degrees of freedom  C as the number of components  P as the number of phases  Then this is true:  F = C-P+2  For a Ternary (3 species in equilibrium) System, then we get:  F = C-P+2 = 3-2+2 = 3  For a Quaternary system… and so on..  F = C-P+2 = 4-2+2 = 4…
  • 4. www.ChemicalEngineeringGuy.com  In this section, we will cover only multiple-alkane systems
  • 5. www.ChemicalEngineeringGuy.com  Recall that K-Value is a relationship between liquid and vapor phases:  Ki = yi/xi  According to chemistry, the hydrocarbons’ boiling point depends on their size, as they will have mostly van der waal forces, i.e. the greater the size of the HC the greater its boling point.  It is safe to assume that:  The larger (heavier) the HC, the greater its BP, i.e. the least volatile  If this is true:  Low boiling point HC have HIGH K-values  High boiling point HC have LOW K-values  It will now be convenient for us to work with K-Values in multicomponent systems
  • 6. www.ChemicalEngineeringGuy.com  Verify K-Values of several Hydrocarbons  Pressure – Temperature Relationship http://demonstrations.wolfram.com/KValueOfSeveralHydrocarbonsVersusTemperatureAndPressure/
  • 7. www.ChemicalEngineeringGuy.com  For light hydrocarbons, the value of Ki of each species can be obtained from the graph (called the “K chart”) prepared by DePriester  The temperature and pressure of the system must specified  Note that each plot/graph of each hydrocarbons can be written in the form of equation:  X values vary from substance to substance and the units being used Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 8. www.ChemicalEngineeringGuy.com  Input variables:  Set a Temperature  Set a Pressure  Set a component  Output variable  K-Value  As you will see, if T/P are fixed, then, for pure substances:  There is only a SINGLE line that describes these characteristic
  • 10. www.ChemicalEngineeringGuy.com  If we set T/P:  There is a unique condition for a PURE substance  See Lines:  Orange (high P– Low T)  Yellow (high P– high T)  Blue (low P– Low T)  Red (Low P– high T) Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 11. www.ChemicalEngineeringGuy.com  Use the animation to verify certain conditions.  Methane  Propane  Octane http://demonstrations.wolfram.com/DePriesterChartForHydrocarbons/
  • 12. www.ChemicalEngineeringGuy.com  For multicomponent, we are interested on calculating dew and bubble points
  • 13. www.ChemicalEngineeringGuy.com  If the specifications that you are given for your single-stage equilibrium separations process are not T and P alone but say:  V/F = 0 and T or P  (which is a bubble point temperature or pressure, respectively)  or V/F = 0 and T or P  (which is a dew point temperature or pressure, respectively)  Do NOT use Rachford-Rice Equation!  In this case, we will have something between 0 < V/F <1
  • 14. www.ChemicalEngineeringGuy.com  Let us first consider bubble point calculations  In this case the liquid-phase composition xi is given  it corresponds to the case where V is very small and  Recall:  The bubble point of a liquid is the point where the liquid just starts to evaporate (boil), that is, when the first vapor bubble is formed.  If the temperature is given:  then we must lower the pressure until the first bubble is formed.  If the pressure is given:  then we must increase the temperature until the first bubble is formed. 0V  i ix z 1i iK x  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 15. www.ChemicalEngineeringGuy.com  NOTE:In both cases, this corresponds to adjusting T or p until the computed sum of vapor fractions is just 1, that is,  Since:  Then  1iy  i i i i i i y K y K x x    1i iK x 
  • 16. www.ChemicalEngineeringGuy.com  At bubble point, V/F = 0, by definition in equilibrium  From the equation:   Step 1: Guess any Bubble Point Temperature  Step 2: Determine K-values from the Chart/Equation/Table/Plot  Step 3: If the function ( ) then Bubble Point is correct  Step 4: If the function is not 1 change Bubble point accordingly:  function >1  reduce T  function < 1  increase T  Step 5: Repeat Iteration until % error is met Tip: Best Educated Guess is  1i iK x  1i iK z  i ix z 1i iK z  old new i i K K K z 
  • 17. www.ChemicalEngineeringGuy.com  Bubble point at given temperature T.  A liquid mixture contains 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,  At T = 400 K, the pressure is gradually decreased.  What is the bubble pressure and composition of the first vapor that is formed?  Assume ideal liquid mixture and ideal gas (Raoult’s law). 1 2 30.5; 0.3; 0.2x x x   Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 18. www.ChemicalEngineeringGuy.com  Solution.  The task is to find a Pressure that satisfies   Since T is given, this is trivial (not required)  We can simply calculate P from the previous equation  We start by computing the vapor pressures for the three components at T = 400K.  Using the Antoine data, we get:  At the bubble point, the liquid phase composition is given, so the partial pressure of each component is ( )i ix P T p  1 2 3 ( 400 ) 10.248 ( 400 ) 4.647 ( 400 ) 3.358 P T K bar P T K bar P T K bar          1 1 1 2 2 2 3 3 3 (0.5)(10.248 ) 5.124 (0.3)(4.647 ) 1.394 (0.2)(3.358 ) 0.672bar p x P bar bar p x P bar bar p x P bar            
  • 19. www.ChemicalEngineeringGuy.com  Thus, from the equation of the bubble pressure we get:  Finally, the vapor composition (composition of the first vapor bubble) is 1 2 3 7.189p p p p bar    1 1 2 2 3 3 5.124 0.713 7.189 1.394 0.194 7.189 0.672 0.093 7.189 p bar y p bar p bar y p bar p bar y p bar         
  • 20. www.ChemicalEngineeringGuy.com  A hydrocarbon liquid mix with  Composition (10,20,30,40% mol of; nC3, nC4, nC5, nC6)  Find the temperature at which we will get the first bubble formation.  Do NOT Assume ideal solution/gas / 0, 700V F P kPa  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 21. www.ChemicalEngineeringGuy.com  Solution:  Step 1. Guess any T:  ; nearest to nC63 6C nCT T T  200 392 700 101 T C F P kPa psi      
  • 23. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 390 nC nC nC nC K K K K T F      Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 24. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 9.8 5.7 3.1 1.8 390 nC nC nC nC K K K K T F     
  • 25. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Guess new T… Recommended is to: Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 3.69i iF x K Z  3 3 4 4 5 5 6 6 3 4 5 6 (0.10) (0.20) (0.30) (0.40) (9.8)(0.10) (5.7)(0.20) (3.1)(0.30) (1.8)(0.40) 3.70 i i nC nC nC nC nC nC nC nC i i nC nC nC nC i i i i K Z K Z K Z K Z K Z K Z K K K K K Z K Z                  9.8 2.66 3.7 K  
  • 26. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 2.66 ? ? ? ? nC nC nC nC K K K K T     
  • 27. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 2.66 0.80 0.30 0.12 128 nC nC nC nC K K K K T F       Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 28. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 0.61i iF x K Z  3 3 4 4 5 5 6 6 3 4 5 6 (0.10) (0.20) (0.30) (0.40) (2.66)(0.10) (0.80)(0.20) (0.3)(0.30) (0.12)(0.40) 0.61 i i nC nC nC nC nC nC nC nC i i nC nC nC nC i i i i K Z K Z K Z K Z K Z K Z K K K K K Z K Z                  2.66 4.36 0.61 K  
  • 29. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 4.36 1.80 0.85 0.36 200 nC nC nC nC K K K K T F      
  • 30. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 1.18i iF x K Z  3 3 4 4 5 5 6 6 3 4 5 6 (0.10) (0.20) (0.30) (0.40) (4.36)(0.10) (1.80)(0.20) (0.85)(0.30) (0.36)(0.40) 1.18 i i nC nC nC nC nC nC nC nC i i nC nC nC nC i i i i K Z K Z K Z K Z K Z K Z K K K K K Z K Z                  4.36 3.70 1.20 K   Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 31. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 3.70 0.78 0.65 0.28 180 nC nC nC nC K K K K T F      
  • 32. www.ChemicalEngineeringGuy.com  Step 3. Use f(x) function  Step 4. K-value is Not what we expected  Normalize (divide by K function value)  Do this for the smallest (MVC)  Propane  Repeat Iteration! ( ) 0.93i iF x K Z  3.68 3.94 0.93 K  
  • 33. www.ChemicalEngineeringGuy.com  Step 2. Read K values 3 4 5 6 3.94 1.40 0.60 0.27 188 nC nC nC nC K K K K T F       Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 34. www.ChemicalEngineeringGuy.com  At this point, K = 1 approx.  Accept T = 188°F or 190°F  Note that Real Value of mix is  T = 87°C  188.6°F
  • 35. www.ChemicalEngineeringGuy.com  Let us next consider dew point calculations.  In this case the vapor-phase composition yi is given  (it corresponds to the case where L is very small ( ) and  The dew point of a vapor (gas) is the point where the vapor just begins to condense, that is, when the first liquid drop is formed.  If the temperature is given  then we must increase the pressure until the first liquid is formed.  If the pressure is given  then we must decrease the temperature until the first liquid is formed. 0L  i iy z
  • 36. www.ChemicalEngineeringGuy.com  In both cases, this corresponds to adjusting T or p until  Or, more conveniently: 1ix  1i i y K  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 37. www.ChemicalEngineeringGuy.com  At the dew point, by definition, and from f(1) = 0, we can find:  If this is true, then, when P and T are given:  Must be changed since T is too large… The steps are as follows:  Step 1. Guess any Dew Point Temperature  Step 2: Determine the K-values based on that  Step 3. Calculate . If function is not near 1, then:  Increase T when Function is less than 1.  Decrease T when Function is greater than 1.  Step 4. Recalculate New K-values based on normalization of K-old  Step 5. Repeat Iteration until acceptable % error value. 1i i Z K  1i i Z K  / 1V F  1i i Z K 
  • 38. www.ChemicalEngineeringGuy.com  Calculate the Dew point at given Temperature T.  A vapor mixture contains:  50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,  At T = 400 K, the pressure is gradually increased.  What is the dew point pressure and the composition of the first liquid that is formed?  Assume ideal liquid mixture and ideal gas (Raoult’s law). 1 2 30.5; 0.3; 0.2y y y  
  • 39. www.ChemicalEngineeringGuy.com  Solution.  The task is to find the value of p that satisfies  Since T is given, this is trivial; we can simply calculate 1/p from (7.48).  From previous experiments and data, we got the following regression:  and we find  The liquid phase composition is:  Then, we find 1 ( ) i i y P T p    11 0.5 0.3 0.2 0.1729 10.248 4.647 3.358 bar p      5.75p bar 1 ( ) i i i y x P T p      1 2 3 0.5 5.78 0.3 5.78 0.2 5.78 0.282; 0.373; 0.345 10.248 4.647 3.749 x x x x x x      Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 40. www.ChemicalEngineeringGuy.com  For the previous mixture of Bubble Point:  Calculate its Dew Point  That is, assume it is a vapor  You are looking for condensation point
  • 41. www.ChemicalEngineeringGuy.com  Component / Molar flow  C1 20  C2 15  C3 12  C4 15  IC4 12  NC5 15  IC5 10  C6 5  C7 3 • A) Get Dew point @ T= ? P = 50bar • B) Get Bubble point @ T= 220°C, P = 10bar • C) What phase do we have at 25/25 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 42. www.ChemicalEngineeringGuy.com  Component / Molar flow  B 0.25  T 0.25  O-X 0.25  P-X 0.25 • A) Get Dew point @ T= 150°C, P = 50bar • B) Get Dew point @ T= 220°C, P = 10bar • C) What is the Critical Point & Meaning?
  • 43. www.ChemicalEngineeringGuy.com  Rachford-Rice Equation  Derivation  Procedure – Newton’s Method  Worked Example  Multicomponent Flash Distillation:  Exercises  Simulations
  • 44. www.ChemicalEngineeringGuy.com  Next, consider a flash where a feed F (with composition zi) is split into  A vapor product V (with composition yi)  A liquid product (with composition xi)  For each of the Nc components, we can write a material balance:  In addition, the vapor and liquid is assumed to be in equilibrium, i i iFz Lx Vy  i i iy K x
  • 45. www.ChemicalEngineeringGuy.com  The K-values:   Must be computed from the VLE model.  In addition, we have the two relationships:  With a given feed (F, zi), we then have:  3Nc + 2 equations  3Nc + 4 unknowns (xi , yi , Ki , L, V, T, p).  Thus, we need two additional specifications, and with these the equation set should be solvable , ,( ),i i i iK K T P x y 1 1 1 i i i i x y x y         Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 46. www.ChemicalEngineeringGuy.com  The simplest flash is usually to specify p and T (pT-flash)  because Ki depends mainly on p and T .  Let us show one common approach for solving the resulting equations, which has good numerical properties.  Substituting into the mass balance:  Gives  Solving with respect to xi gives:  Simplify via  L = F − L (total mass balance) to derive i i iFz Lx Vy  i i iy K x (K )i i i iFz Lx V x  ( ) ( ) (1) ( ) 1 ( 1) 1 ( 1) i i i i i i V Fi i V F i i i Fz x L VK L F z z x L V K K z x K              
  • 47. www.ChemicalEngineeringGuy.com  Here, we cannot directly calculate xi because the vapor split V /F is not known.  To find V /F we may use:  the relationship  alternatively  OR the addition of both…  However, it has been found that the combination Σi(yi−xi) = 0  It results in an equation with good numerical properties  This is the so-called Rachford-Rice Flash Equation 1 1 1 i i i i x y x y          isat i p T K p  ( 1) 0 1 ( 1) i i i z K K      
  • 48. www.ChemicalEngineeringGuy.com  Rachford-Rice Equation:  Is a monotonic function in V/F  It is easy to solve numerically.  A physical solution must satisfy 0 ≤ V /F ≤ 1.  If we assume that Raoult’s holds, then Ki depends on p and T only.  Then, with T and p specified, we know Ki and the Rachford-Rice equation can be solved for V /F.  For non-ideal cases, Ki depends also on xi and yi  One approach is add an outer iteration loop on Ki .  isat i p T K p 
  • 49. www.ChemicalEngineeringGuy.com  This will be the typical procedure for the RRE  Note that this is based on a numerical method  Newton-Raphson Method  Uses the original function, f(phi)  It also requires the derivative of the function, f’(phi) ( 1) ( ) 1 ( 1) i i i z K f K        0.50 V F    2 2 (1 ) '( ) [1 ( 1)] i i i z K f K        ( , , , ... )i j k zF z z z z (V,y ,y ,y ...y )i j k z (L,x ,x ,x ...x )i j k z ( , )T P ( , , ... )i j k zK K K K Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 50. www.ChemicalEngineeringGuy.com 1. Given  F, zi, T and P 2. Get Ki for species (either graph, equations or experimental values)  Antoine Equation (ideal)  K-Values from DePriester Chart 3. Assume a phi value (vaporized material in the feed) (hint  good start is 0.5) 4. Get the Numerical Value of Rachford Rice Equation  Example:  BTX ( Benzene, Toluene, Xylene) System: ( 1) 0 1 ( 1) i i i z K K       0.50 V F    (1 )(1 ) (1 ) ( ) 1 ( 1) 1 ( 1) 1 ( 1) xylene xylenebenzene benzene toluene toluene benzene toluene xylene z Kz K z K f K K K               
  • 51. www.ChemicalEngineeringGuy.com 5. Get the Numerical Value of the Derivative of Rachford Rice Equation  Example:  BTX ( Benzene, Toluene, Xylene) System: V F   22 2 2 2 2 (1 )(1 ) (1 ) '( ) [1 ( 1)] [1 ( 1)] [1 ( 1)] xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z Kz K z K f K K K                2 2 (1 ) '( ) [1 ( 1)] i i i z K f K       
  • 52. www.ChemicalEngineeringGuy.com 6. Recalculate phi (Newton Raphson Method) 7. Verify Rel. Error, if < 0.0001, this is ok, otherwise go to step 3 (repeat iteration) V F   ( ) '( ) old new old old f f       % .error 100%new old old rel abs x          Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 53. www.ChemicalEngineeringGuy.com 8. Get V, L, xi, and yi (see equations)  Note that in all cases:  You will need K and phi V V F L L F V       1 ( 1) 1 ( 1) i i i i i i i K z y K z x K         V F  
  • 54. www.ChemicalEngineeringGuy.com  Given a Flash with the following data:  Composition (zi)  (BTX, 0.60, 0.25, 0.15)  VLE (Antoine Constant) Data:  A) Get the compositions, flow rates of Vapor & Liquid streams i A B C B 6.879 1196.700 219.160 T 6.950 1342.000 219.190 X 7.000 1476.390 213.870 1 , 100 100 & kmol h P atm T C F V L unknown     
  • 55. www.ChemicalEngineeringGuy.com  Step 1 – Get the given Data: 1 , 100 , 100 0.6; 0.25, 0.15 kmol h benzene toluene xylene P atm T C F Z Z Z        Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 56. www.ChemicalEngineeringGuy.com  Step 2 Get Ki-values  Via Raoult’s Law  Via DePriester Diagrams (not available for BTX)  If we use Raoult’s Law & Antoine’s Equation: 1.7756 0.7322 0.2611 benzene toluene xylene K K K   
  • 57. www.ChemicalEngineeringGuy.com  Step 3. Assume phi  Recommended is:  WHY? 0.5 
  • 58. www.ChemicalEngineeringGuy.com  Step 4. Calculate The Value of the Rachford-Rice Equaiton (RRE) 0.5 (1 ) ( ) 1 ( 1) (1 )(1 ) (1 ) ( ) 1 ( 1) 1 ( 1) 1 ( 1) 0.60(1 1.7756) 0.25(1 0.7322) ( ) 1 0.50(1.7756 1) 1 0.50(0.732 i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                                 0.15(1 0.2611) 2 1) 1 0.50(0.2611 1) ( ) 0.0823f        
  • 59. www.ChemicalEngineeringGuy.com  Step 5. Calculate The Value of the derivative of RRE 2 2 22 2 2 2 2 2 2 0.5 (1 ) '( ) [1 ( 1)] (1 )(1 ) (1 ) '( ) [1 ( 1)] [1 ( 1)] [1 ( 1)] 0.60(1 1.7756) 0.25 '( ) 1 0.50(1.7756 1)] i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                               2 2 2 2 (1 0.7322) 0.15(1 0.2611) 1 0.50(0.7322 1)] 1 0.50(0.2611 1)] '( ) 0.4172f          Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 60. www.ChemicalEngineeringGuy.com  Step 6. Calculate the new “phi” ( ) '( ) 0.0823 0.50 0.4172 0.6972 old new old old new new f f            
  • 61. www.ChemicalEngineeringGuy.com  Step 7. Verify phi value (error)  Error is too large, repeat from step 3 % . 100% 0.6972 % . 100% 0.5000 % . 139% new old rel error x rel error x rel error     
  • 62. www.ChemicalEngineeringGuy.com  The most convenient way to do this is via a Spreadsheet… as we will need to iterate  Step 7. Verify phi value (error)  Best Case  phi = 0.6806; error is acceptable Trial phi f(1) f(2) f(3) f(phi) f'(1) f'(2) f'(3) f'(phi) New Phi %error 1 0.5 -0.33532 0.0773 0.175775 -0.08225 0.187402 0.023901 0.205979 0.417282 0.6971 39.42 2 0.6971 -0.30205 0.08232 0.228567 0.008834 0.152057 0.027105 0.348286 0.527447 0.6804 2.40 3 0.6804 -0.30462 0.08187 0.222879 0.000126 0.154654 0.026808 0.026808 0.20827 0.6797 0.09 4 0.6797 -0.30471 0.08185 0.222679 -0.00018 0.154749 0.026797 0.026797 0.208344 0.6806 0.13 5 0.6806 -0.30458 0.08187 0.222971 0.000269 0.154611 0.026813 0.026813 0.208236 0.6793 0.19 6 0.6793 -0.30478 0.08184 0.222544 -0.00039 0.154813 0.02679 0.02679 0.208394 0.6812 0.28 7 0.6812 -0.30448 0.08189 0.223167 0.000572 0.154518 0.026823 0.026823 0.208164 0.6785 0.40 2 2 22 2 2 2 2 2 2 0.5 (1 ) '( ) [1 ( 1)] (1 )(1 ) (1 ) '( ) [1 ( 1)] [1 ( 1)] [1 ( 1)] 0.60(1 1.7756) 0.25 '( ) 1 0.50(1.7756 1)] i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                               2 2 2 2 (1 0.7322) 0.15(1 0.2611) 1 0.50(0.7322 1)] 1 0.50(0.2611 1)] '( ) 0.4172f          f’(1) f’(2) f’(3) 0.5 (1 ) ( ) 1 ( 1) (1 )(1 ) (1 ) ( ) 1 ( 1) 1 ( 1) 1 ( 1) 0.60(1 1.7756) 0.25(1 0.7322) ( ) 1 0.50(1.7756 1) 1 0.50(0.732 i i i xylene xylenebenzene benzene toluene toluene benzene toluene xylenei z K f K z Kz K z K f K K K f                                 0.15(1 0.2611) 2 1) 1 0.50(0.2611 1) ( ) 0.0823f         f(1) f(2) f(3) Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 63. www.ChemicalEngineeringGuy.com  Step 8. Calculate all other Values  For compositions, use Spreadsheet (0.6803)(100) 68.03 / 100 68.03 31.97 / V V F V kmol h L L F V kmol h             1 ( 1) 1 ( 1) i i i i i i i K z y K z x K        
  • 64. www.ChemicalEngineeringGuy.com  Step 8. Calculate all other Values 1 ( 1) 1 ( 1) i i i i i i i K z y K z x K         Species i Ki zi phi yi xi Benzene 1 1.78 0.60 0.6806 0.69728 0.392703 Toluene 2 0.73 0.25 0.6806 0.22385 0.305722 Xylene 3 0.26 0.15 0.6806 0.07879 0.301747
  • 65. www.ChemicalEngineeringGuy.com Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 66. www.ChemicalEngineeringGuy.com  A feed:  (1) 20 mol % ethane  (2) 20 mol % isobutane  (3) 20 mol % n-pentane  (4) 40 mol % n-hexane  Flash Operation is at T = 100°c, P = 600kPa  A) What mole fraction of the feed is vaporized?  B) Composition of vapor?
  • 67. www.ChemicalEngineeringGuy.com  Step 1: Calculate K Values  F = must be assumed, 100  Z = given, 0.2,0.20,0.20,0.40  Given, 100°C (212F), 600kPa (87 psi)  Step 2. Calculate K Values  Use DePriester Chart.  Ethane  12.5  isobutane  2.80  n-pentane  0.95  n-hexane  0.45
  • 68. www.ChemicalEngineeringGuy.com  Step 3. Assume phi-values 0.50  Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 69. www.ChemicalEngineeringGuy.com  Step 4. Calculate RRE  Step 5. Calculate Derivative of RRE: Ethane  12.5 isobutane  2.80 n-pentane  0.95 n-hexane  0.45 Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error 1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71 2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68 3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04 4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00 5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00 6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00 7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00
  • 70. www.ChemicalEngineeringGuy.com  Step 7. Verify if error is acceptable.  V/F = 0.7597  A) Percentage of Vapor = 75.97% Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error 1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71 2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68 3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04 4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00 5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00 6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00 7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 71. www.ChemicalEngineeringGuy.com  B) Composition of vapor? Species i Ki zi phi yi xi Ethane 1 12.5 0.20 0.7597 0.256764 0.020541 i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479 n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897 n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709 0.999998 1.000007 (0.7597)(100) 75.97 / 100 75.97 24.03 / V V F V mol h L L F V kmol h             1 ( 1) 1 ( 1) i i i i i i i K z y K z x K        
  • 72. www.ChemicalEngineeringGuy.com  For a mix at T= 95°C and P = 700kPa  The composition of 40, 30, 20, 10 mol percent:  propane (1)  n-butane (2)  n-pentane (3)  n-hexane (4)  A) What percentage of the feed enters as liquid?
  • 73. www.ChemicalEngineeringGuy.com  Step 1. Get data  F, T, P, zi are given!  T= 95°C = 203°F  P = 700kPa = 101 psi  Step 2. Get Ki  From K-chart:  4.20  1.75  0.74  0.34 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 74. www.ChemicalEngineeringGuy.com  Step 3: Assume a phi value  Phi = 0.5  Step 4&5: Get RRE and its derivative
  • 75. www.ChemicalEngineeringGuy.com  Step 6: Verify, iterate  NOTE   If The Value of RRE < 0, this is above the bubble point… WHY?  If the Value of RRE derivative > RRE, this is ABOVE the dew point…  Trick question… This is all VAPOR! phi 0.5 i zi Ki f(phi) f'(phi) 1 0.4 4.2 -1.28 4.096 2 0.3 1.75 -0.225 0.16875 3 0.2 0.74 0.052 0.01352 4 0.1 0.34 0.066 0.04356 Sum = -1.387 4.32183
  • 76. www.ChemicalEngineeringGuy.com  In the following animation:  Change the Flash Pressure  See the Effect of Q in temperature  Compare the volatility of species:  Butane vs. heptane https://demonstrations.wolfram.com/FlashDistillationOfAMixtureOfFourHydrocarbons/ Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 77. www.ChemicalEngineeringGuy.com  Use Aspen Plus Software to Simulate Ex 1. Rachford-Rice Flashing  A) Verify Composition & Streams  B) Use Physical Property Analysis:  PV-Curve  Mixture Properties  C) Use Sensitivity Analysis for:  Effect of Temperature in Vapor  Tmin? WHY  Tmax? WHY
  • 78. www.ChemicalEngineeringGuy.com  Phi = 0.7597 Species i Ki zi phi yi xi Ethane 1 12.5 0.20 0.7597 0.256764 0.020541 i-Butane 2 2.8 0.2 0.7597 0.23654 0.084479 n-Pentane 3 0.95 0.2 0.7597 0.197502 0.207897 n-Hexane 4 0.45 0.4 0.7597 0.309191 0.68709 0.999998 1.000007 (0.7597)(100) 75.97 / 100 75.97 24.03 / V V F V mol h L L F V kmol h             Trial phi f(1) f(2) f(3) f(4) f(phi) f'(1) f'(2) f'(3) f'(4) f'(phi) New Phi %error 1 0.500 -0.34074 -0.1895 0.010256 0.303448 -0.21651 0.580521 0.179501 0.000526 0.230202 0.990751 0.7185 43.71 2 0.7185 -0.2483 -0.157 0.010373 0.363752 -0.03115 0.308257 0.123206 0.000538 0.330788 0.762789 0.7594 5.68 3 0.7594 -0.23632 -0.1521 0.010395 0.37778 -0.00024 0.279228 0.115673 0.115673 0.356794 0.867368 0.7596 0.04 4 0.7596 -0.23624 -0.1521 0.010395 0.37788 -3.2E-05 0.279044 0.115624 0.115624 0.356983 0.867274 0.7597 0.00 5 0.7597 -0.23623 -0.1521 0.010395 0.377893 -4.3E-06 0.279019 0.115617 0.115617 0.357008 0.867262 0.7597 0.00 6 0.7597 -0.23623 -0.1521 0.010395 0.377895 -5.7E-07 0.279016 0.115616 0.115616 0.357011 0.86726 0.7597 0.00 7 0.7597 -0.23623 -0.1521 0.010395 0.377895 -7.5E-08 0.279016 0.115616 0.115616 0.357012 0.86726 0.7597 0.00 Do you need the Full Version? Contact me if needed! Contact@ChemicalEngineeringGuy.com https://courses.chemicalengineeringguy.com/courses You can also check out more content here: My Youtube Channel  My Fan Page  The LinkedIn My website:
  • 79. www.ChemicalEngineeringGuy.com 1. Introduction 2. Review of Mass Transfer 3. Flash Distillation Concepts 4. Multicomponent Flashing 5. Conclusion
  • 80. www.ChemicalEngineeringGuy.com 1. Introduction 1. Why Flash Distillation? 2. Objectives & Goals 3. Resources & Downloads 4. Additional Notes 2. Review of Mass Transfer 1. Ideal Solution & Gas, Equilibrium, Vapor & Partial Pressures, VLE 2. Volatility / Relative Volatility 3. Phase Diagrams (Txy, Pxy, XY) 4. Ideal Solution – Ideal Gas: Raoult’s Law (Vapor-Liquid) 5. Deviations: Azeotropes 3. Flash Distillation Concepts 1. Process Technology Overview 2. Equipment 3. Operation Line 4. Flash Cascades 4. Multiple Components 1. Introduction 2. Rachford-Rice 3. Alkane System 5. Conclusion
  • 81. www.ChemicalEngineeringGuy.com  More Engineering Courses  Process Design & Simulation  Aspen Plus  Aspen HYSYS  Unit Operations  Gas Absorption & Stripping  Flash Distillation  Binary Distillation  Oil & Gas  Petrochemical Industries  Petroleum Refining https://courses.chemicalengineeringguy.com/courses