- Mr Kim
Finding IQR for odd number of scores
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
First, find the Median by
crossing off the scores
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**Make sure the scores
are in Ascending Order
first!
The scores here go
from Small to Big
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7 The scores here go
from Small to Big
**Make sure the scores
are in Ascending Order
first!
1 5 3 5 8 5 9
2 3 0 1 3
3 2 7 4
4 2 6
5 1 7
For example this is not
in ascending order
1 5 3 5 8 5 9
2 3 0 1 3
3 2 7 4
4 2 6
5 1 7
For example this is not
in ascending order
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now, start by crossing
off the Smallest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
13
Now, start by crossing
off the Smallest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now cross off the
Biggest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
57
Now cross off the
Biggest Number
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Cross off the scores in
the directions shown
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Stop here
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Always stop at “Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
So the Median (Q2)
is…
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
So the Median (Q2) is
21
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now put 2 lines
around it like shown
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now find the Lower and
Upper Quartile by dividing
the Stem-Leaf Plot in two
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
**It is very important to
divide the sides properly
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
To do this, count the
scores from the start
until you reach the Line
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Stop here!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now put a Border around
the scores that you just
counted
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now put a Border around
the other side
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
This is how you correctly
divide the sides
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now find the Median for
both sides of the scores
by crossing off each side
at a time
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
We will start with
this side
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Remember the
directions
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Stop here!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
15
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
1815
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
2
1815 
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is…
5.16
2
1815


1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
15
18
So the Lower Quartile (Q1)
is between 15 and 18
which is 16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Now cross off the
other side
Lower Quartile:
16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Remember the
directions
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“In”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
“Out”
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Stop here!
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
37
42
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
42
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
37
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
4237 
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
2
4237 
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is …37
5.39
2
4237


1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
42
So the Upper Quartile (Q3)
is between 37 and 42
which is 39.537
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So, the Interquartile Range is
Upper Quartile:
39.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So, the Interquartile Range is
Upper Quartile:
39.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
So, the Interquartile Range is
39.5 –
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
So, the Interquartile Range is
39.5 –
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
Upper Quartile:
39.5
So, the Interquartile Range is
39.5 – 16.5
1 3 5 5 5 8 9
2 0 1 1 3
3 2 4 7
4 2 6
5 1 7
Lower Quartile:
16.5
So, the Interquartile Range is
39.5 – 16.5 = 23
Our Final Answer!
Upper Quartile:
39.5

Finding Interquartile Range from Stem-Leaf Plot 1

  • 1.
  • 2.
    Finding IQR forodd number of scores
  • 3.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 4.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 First, find the Median by crossing off the scores
  • 5.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **Make sure the scores are in Ascending Order first!
  • 6.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **Make sure the scores are in Ascending Order first!
  • 7.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **Make sure the scores are in Ascending Order first! The scores here go from Small to Big
  • 8.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 9.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 10.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 11.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 The scores here go from Small to Big **Make sure the scores are in Ascending Order first!
  • 12.
    1 5 35 8 5 9 2 3 0 1 3 3 2 7 4 4 2 6 5 1 7 For example this is not in ascending order
  • 13.
    1 5 35 8 5 9 2 3 0 1 3 3 2 7 4 4 2 6 5 1 7 For example this is not in ascending order
  • 14.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now, start by crossing off the Smallest Number
  • 15.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 13 Now, start by crossing off the Smallest Number
  • 16.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 17.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now cross off the Biggest Number
  • 18.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 57 Now cross off the Biggest Number
  • 19.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 20.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Cross off the scores in the directions shown
  • 21.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 22.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 23.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 24.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 25.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 26.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 27.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 28.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 29.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 30.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 31.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 32.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 33.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 34.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 35.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Stop here
  • 36.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Always stop at “Out”
  • 37.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 So the Median (Q2) is…
  • 38.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 So the Median (Q2) is 21
  • 39.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now put 2 lines around it like shown
  • 40.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now find the Lower and Upper Quartile by dividing the Stem-Leaf Plot in two
  • 41.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 **It is very important to divide the sides properly
  • 42.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 To do this, count the scores from the start until you reach the Line
  • 43.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 44.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 45.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 46.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 47.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 48.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 49.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 50.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 51.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Stop here!
  • 52.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now put a Border around the scores that you just counted
  • 53.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 54.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now put a Border around the other side
  • 55.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 56.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 This is how you correctly divide the sides
  • 57.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now find the Median for both sides of the scores by crossing off each side at a time
  • 58.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 We will start with this side
  • 59.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Remember the directions
  • 60.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 61.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 62.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 63.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 64.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “In”
  • 65.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 “Out”
  • 66.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Stop here!
  • 67.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7
  • 68.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18
  • 69.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is…
  • 70.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 15
  • 71.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 1815
  • 72.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 2 1815 
  • 73.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is… 5.16 2 1815  
  • 74.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 15 18 So the Lower Quartile (Q1) is between 15 and 18 which is 16.5
  • 75.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5
  • 76.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Now cross off the other side Lower Quartile: 16.5
  • 77.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Remember the directions
  • 78.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “In”
  • 79.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “Out”
  • 80.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “In”
  • 81.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “Out”
  • 82.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “In”
  • 83.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 “Out”
  • 84.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Stop here!
  • 85.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5
  • 86.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 37 42
  • 87.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So the Upper Quartile (Q3) is between 37 and 42 which is …37 42
  • 88.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 37
  • 89.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 4237 
  • 90.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 2 4237 
  • 91.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is …37 5.39 2 4237  
  • 92.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 42 So the Upper Quartile (Q3) is between 37 and 42 which is 39.537
  • 93.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5
  • 94.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So, the Interquartile Range is Upper Quartile: 39.5
  • 95.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So, the Interquartile Range is Upper Quartile: 39.5
  • 96.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5 So, the Interquartile Range is 39.5 –
  • 97.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5 So, the Interquartile Range is 39.5 –
  • 98.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 Upper Quartile: 39.5 So, the Interquartile Range is 39.5 – 16.5
  • 99.
    1 3 55 5 8 9 2 0 1 1 3 3 2 4 7 4 2 6 5 1 7 Lower Quartile: 16.5 So, the Interquartile Range is 39.5 – 16.5 = 23 Our Final Answer! Upper Quartile: 39.5