Finding: Surface Area of
Triangular Prism 3
- Mr Kim
Please view:
Surface Area of Triangular Prism 1 & 2
Before you view this lesson
10 m
12 m
17 m
10 m
12 m
Find the Area of all 5 Faces
of this Prism
17 m
17 m
10 m
12 m
Front Area is
17 m
10 m
12 m
Front Area is

2
1
17 m
10 m
12 m
Front Area is
12
2
1

17 m
10 m
Front Area is
?12
2
1

?
12 m
17 m
10 m
?12
2
1

?
We have to find
that length
12 m
17 m
10 m
?12
2
1

We will call that
unknown length x
x
12 m
17 m
10 m
?12
2
1

To find x we need to use
Pythagoras theorem
x
12 m
17 m
10 m
12 m
?12
2
1

x
17 m
10 m
12 m
?12
2
1

x
Focus on this Triangle here
17 m
10 m
12 m
?12
2
1

x
We need this
length
17 m
10 m
12 m
?12
2
1

x
And this length
17 m
10 m
12 m
?12
2
1

x
Now if it’s 10 m
here
17 m
10 m
12 m
?12
2
1

x
10 m
It’s 10 m there as
well
17 m
10 m
12 m
?12
2
1

x
10 m
Now this length
17 m
10 m
12 m
?12
2
1

x
10 m
This length is half of…
17 m
10 m
12 m
?12
2
1

x
10 m
12 m
This whole length
17 m
10 m
12 m
?12
2
1

x
10 m
12 m
This whole length
17 m
10 m
12 m
?12
2
1

x
10 m
12 m
So 12 ÷ 2 =
17 m
10 m
12 m
?12
2
1

x
10 m
12 m
So 12 ÷ 2 = 6 m
6 m
17 m
10 m
12 m
?12
2
1

x
10 m
6 m
Now if we use Pythagoras
theorem we will get…
17 m
10 m
12 m
?12
2
1

x
10 m
6 m
x
x
Now if we use Pythagoras
theorem we will get…
17 m
10 m
12 m
?12
2
1

x
10 m
6 m
x
2
x
squared
17 m
10 m
12 m
?12
2
1

x
10 m
6 m
x
2
x
Equals
17 m
10 m
12 m
?12
2
1

x
6 m
x
10 m
22
10x
10²
17 m
10 m
12 m
?12
2
1

x
6 m
x
10 m
22
10x
The Hypotenuse
(10 m) must be written first
17 m
10 m
12 m
?12
2
1

x
6 m
x
10 m
22
10x
The Hypotenuse
(10 m) must be written first
not 6
17 m
10 m
12 m
?12
2
1

x
6 m
x
10 m
22
10x
10 m
Now x is not the longest
side of the triangle
17 m
10 m
12 m
?12
2
1

x
6 m
x
10 m
22
10x
10 m
This side is.
17 m
10 m
12 m
?12
2
1

x
6 m
x
10 m10 m
 22
10x
So we MINUS
17 m
10 m
12 m
?12
2
1

xx
10 m10 m
6 m
6²
222
610 x
17 m
10 m
12 m
?12
2
1

xx
10 m10 m
6 m
222
610 x
so x equals…
x
17 m
10 m
12 m
?12
2
1

xx
10 m10 m
6 m
222
610 x
so x equals…
22
610 x
17 m
10 m
12 m
?12
2
1

xx
10 m10 m
6 m
222
610 x
22
610 x
Putting this in the
calculator gives…
17 m
10 m
12 m
?12
2
1

xx
10 m10 m
6 m
222
610 x
22
610 x
8
17 m
10 m
12 m
?12
2
1

xx
10 m10 m
6 m
222
610 x
22
610 x
8
17 m
10 m
12 m
xx
10 m10 m
6 m
222
610 x
22
610 x
8
812
2
1

17 m
10 m
812
2
1

10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
17 m
10 m
812
2
1

10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
So this is the area of
the Front face
17 m
10 m
812
2
1

10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
Now the Back is the
same as the Front…
17 m
10 m
2812
2
1

10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
So times by 2
17 m
10 m
2812
2
1

10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
Now find the area of
the Right Side
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
Add that on
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
The Right Side is a
Rectangle
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
The Right Side is a
Rectangle
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
The Right Side is a
Rectangle
1710
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
1710
Now find the area of
the Left Side
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
1710
The Left Side is the
same as the Right Side
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
21710 
So times by 2
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
21710 
And finally find the
Bottom Area
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
 21710
Add that on
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
 21710
Bottom Area
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
 21710
Bottom Area
1712
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
 21710
1712
Putting this altogether in
the calculator gives…
17 m
10 m
 2812
2
1
10 m
6 m
12 m
22
610 x
222
610 x
8
8 m
 21710
1712
2
640m
Our Final Answer!
Putting this altogether in
the calculator gives…

Surface Area of Triangular Prism 3

  • 1.
    Finding: Surface Areaof Triangular Prism 3 - Mr Kim
  • 2.
    Please view: Surface Areaof Triangular Prism 1 & 2 Before you view this lesson
  • 3.
  • 4.
    10 m 12 m Findthe Area of all 5 Faces of this Prism 17 m
  • 5.
    17 m 10 m 12m Front Area is
  • 6.
    17 m 10 m 12m Front Area is  2 1
  • 7.
    17 m 10 m 12m Front Area is 12 2 1 
  • 8.
    17 m 10 m FrontArea is ?12 2 1  ? 12 m
  • 9.
    17 m 10 m ?12 2 1  ? Wehave to find that length 12 m
  • 10.
    17 m 10 m ?12 2 1  Wewill call that unknown length x x 12 m
  • 11.
    17 m 10 m ?12 2 1  Tofind x we need to use Pythagoras theorem x 12 m
  • 12.
    17 m 10 m 12m ?12 2 1  x
  • 13.
    17 m 10 m 12m ?12 2 1  x Focus on this Triangle here
  • 14.
    17 m 10 m 12m ?12 2 1  x We need this length
  • 15.
    17 m 10 m 12m ?12 2 1  x And this length
  • 16.
    17 m 10 m 12m ?12 2 1  x Now if it’s 10 m here
  • 17.
    17 m 10 m 12m ?12 2 1  x 10 m It’s 10 m there as well
  • 18.
    17 m 10 m 12m ?12 2 1  x 10 m Now this length
  • 19.
    17 m 10 m 12m ?12 2 1  x 10 m This length is half of…
  • 20.
    17 m 10 m 12m ?12 2 1  x 10 m 12 m This whole length
  • 21.
    17 m 10 m 12m ?12 2 1  x 10 m 12 m This whole length
  • 22.
    17 m 10 m 12m ?12 2 1  x 10 m 12 m So 12 ÷ 2 =
  • 23.
    17 m 10 m 12m ?12 2 1  x 10 m 12 m So 12 ÷ 2 = 6 m 6 m
  • 24.
    17 m 10 m 12m ?12 2 1  x 10 m 6 m Now if we use Pythagoras theorem we will get…
  • 25.
    17 m 10 m 12m ?12 2 1  x 10 m 6 m x x Now if we use Pythagoras theorem we will get…
  • 26.
    17 m 10 m 12m ?12 2 1  x 10 m 6 m x 2 x squared
  • 27.
    17 m 10 m 12m ?12 2 1  x 10 m 6 m x 2 x Equals
  • 28.
    17 m 10 m 12m ?12 2 1  x 6 m x 10 m 22 10x 10²
  • 29.
    17 m 10 m 12m ?12 2 1  x 6 m x 10 m 22 10x The Hypotenuse (10 m) must be written first
  • 30.
    17 m 10 m 12m ?12 2 1  x 6 m x 10 m 22 10x The Hypotenuse (10 m) must be written first not 6
  • 31.
    17 m 10 m 12m ?12 2 1  x 6 m x 10 m 22 10x 10 m Now x is not the longest side of the triangle
  • 32.
    17 m 10 m 12m ?12 2 1  x 6 m x 10 m 22 10x 10 m This side is.
  • 33.
    17 m 10 m 12m ?12 2 1  x 6 m x 10 m10 m  22 10x So we MINUS
  • 34.
    17 m 10 m 12m ?12 2 1  xx 10 m10 m 6 m 6² 222 610 x
  • 35.
    17 m 10 m 12m ?12 2 1  xx 10 m10 m 6 m 222 610 x so x equals… x
  • 36.
    17 m 10 m 12m ?12 2 1  xx 10 m10 m 6 m 222 610 x so x equals… 22 610 x
  • 37.
    17 m 10 m 12m ?12 2 1  xx 10 m10 m 6 m 222 610 x 22 610 x Putting this in the calculator gives…
  • 38.
    17 m 10 m 12m ?12 2 1  xx 10 m10 m 6 m 222 610 x 22 610 x 8
  • 39.
    17 m 10 m 12m ?12 2 1  xx 10 m10 m 6 m 222 610 x 22 610 x 8
  • 40.
    17 m 10 m 12m xx 10 m10 m 6 m 222 610 x 22 610 x 8 812 2 1 
  • 41.
    17 m 10 m 812 2 1  10m 6 m 12 m 22 610 x 222 610 x 8 8 m
  • 42.
    17 m 10 m 812 2 1  10m 6 m 12 m 22 610 x 222 610 x 8 8 m So this is the area of the Front face
  • 43.
    17 m 10 m 812 2 1  10m 6 m 12 m 22 610 x 222 610 x 8 8 m Now the Back is the same as the Front…
  • 44.
    17 m 10 m 2812 2 1  10m 6 m 12 m 22 610 x 222 610 x 8 8 m So times by 2
  • 45.
    17 m 10 m 2812 2 1  10m 6 m 12 m 22 610 x 222 610 x 8 8 m Now find the area of the Right Side
  • 46.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m Add that on
  • 47.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m The Right Side is a Rectangle
  • 48.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m The Right Side is a Rectangle
  • 49.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m The Right Side is a Rectangle 1710
  • 50.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m 1710 Now find the area of the Left Side
  • 51.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m 1710 The Left Side is the same as the Right Side
  • 52.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m 21710  So times by 2
  • 53.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m 21710  And finally find the Bottom Area
  • 54.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m  21710 Add that on
  • 55.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m  21710 Bottom Area
  • 56.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m  21710 Bottom Area 1712
  • 57.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m  21710 1712 Putting this altogether in the calculator gives…
  • 58.
    17 m 10 m 2812 2 1 10 m 6 m 12 m 22 610 x 222 610 x 8 8 m  21710 1712 2 640m Our Final Answer! Putting this altogether in the calculator gives…