This document describes a content-based movie recommendation system using machine learning techniques. It discusses how content-based filtering utilizes metadata like plot, cast, and genre to recommend similar movies. Term frequency-inverse document frequency and cosine similarity are used to measure similarity between movies. Sentiment analysis with naive Bayes classification determines if reviews are positive or negative. The system was tested on IMDb data and achieved 98.77% accuracy for sentiment analysis. Users can search movies and receive recommendations, view movie details, and rate results to improve recommendations. Future work includes incorporating location data and ratings from other sites into a hybrid recommendation model.