SlideShare a Scribd company logo
DUALPATH
™
ARCHITECTURE FOR OUTDOOR WIRELESS PRODUCTS:
FAST ETHERNET THROUGHPUT AND 99.999% UPTIME
LIGHTPOINTE COMMUNICATIONS, INC.
© Copyright 2005. All rights reserved.
2
CONTENTS
Introduction: What is DualPath™ Architecture for Outdoor Wireless? 3
Optical Wireless Based on Free-Space Optics (FSO): Technology and Products Overview 4
Unlicensed Radio Frequency (RF) in the 5 GHz Spectrum: Technology and Products Overview 5
Seamless Switching Between the Primary Optical Wireless Path and Secondary RF Path 7
Network Configuration and Monitoring 8
The Benefits of DualPath Architecture for Outdoor Wireless 9
DualPath Architecture and WiMAX: Differentiation 11
Summary 12
WWW.LIGHTPOINTE.COM
INTRODUCTION: WHAT IS DUALPATH ARCHITECTURE
FOR OUTDOOR WIRELESS?
DUALPATH ARCHITECTURE FOR OUTDOOR WIRELESS IS THE COMBINATION (BLENDING) OF TWO
MARKET-ADOPTED OUTDOOR WIRELESS TECHNOLOGIES TO PROVIDE THE HIGHEST AVAILABLE CON-
NECTIVITY THROUGHPUT AND NETWORK UPTIME, MORE COMMONLY REFERRED TO AS “NETWORK
AVAILABILITY.” ONLY THROUGH AN INTEGRATED, COMBINED OUTDOOR WIRELESS SOLUTION CAN
SHORTCOMINGS OF CURRENT STAND-ALONE OUTDOOR WIRELESS PRODUCTS BE ADDRESSED, RESULT-
ING IN NEW AND IMPROVED ALTERNATIVES FOR ENTERPRISES AND MOBILE CARRIERS SEEKING TO
DEPLOY POINT-TO-POINT CONNECTIONS WITH TRUE FIBER-OPTIC CAPACITY AND COVETED 99.999%
NETWORK AVAILABILITY. NO STANDALONE OUTDOOR WIRELESS PRODUCT TODAY CAN PROVIDE THIS
FIBER-LIKE PERFORMANCE — LET ALONE PROVIDE IT BOTH EASILY AND ECONOMICALLY. DUALPATH
ARCHITECTURE FOR OUTDOOR WIRELESS IS A PROPRIETARY DESIGN PLATFORM PATENTED BY
LIGHTPOINTE IN THE UNITED STATES AND EUROPE (US 6,763,195 B1; AND EP 1 249 084
B1). DUALPATH ARCHITECTURE TAKES THE BEST OF EXISTING STANDALONE OUTDOOR WIRELESS
PRODUCTS AND COMBINES THEM AS AN INTEGRATED AND SUPERIOR OUTDOOR WIRELESS POINT-TO-
POINT SOLUTION WITH SEAMLESS SWITCHING AND QUALITY OF SERVICE (QOS) FEATURES.
3
WWW.LIGHTPOINTE.COM
OPTICAL WIRELESS BASED ON FREE-SPACE OPTICS
(FSO)
TECHNOLOGY AND PRODUCTS OVERVIEW:
Commercially available Optical Wireless products based on FSO technology have been in the
Enterprise marketplace for more than a decade. They are deployed by the world’s best-known
brands and organizations, representing all industries and geographic regions. Optical Wireless
products are license-free worldwide and operate in the unlicensed terahertz frequency, also
referred to as “near infrared” spectrum. Optical Wireless products utilize pulses of invisible light
and specially designed optical lenses to transmit voice, video or data between two points up to
distances of 5 kilometers (3.1 miles). FSO technology first emerged in the 1960s during the Cold
War as secure and tap-proof outdoor wireless communications for military use in the field.
During this era, FSO links were set up within a matter of minutes. Highly classified military
information and troop movement strategies could be sent and received without fear of intercep-
tion, due to the fact that the beams of light were confined to a narrow cone of “free space” and
immune to radio frequency jamming or interception devices. Today, Optical Wireless products
based on FSO technology are commercially installed in more than 60 countries, carrying mis-
sion-critical information, including financial, health-care and patient data, corporate communica-
tions and voice traffic. Optical Wireless products provide throughput at rates as high as 1.25
gigabits (Gbps) in Enterprise and Mobile Carrier networks. Known for true, fiber-like capacity
and ease of installation, Optical Wireless products serve a customer base that faces one or more
of the following network challenges:
• Lack of fiber-optic cable access between two or more buildings in a local area network (LAN)
• Access to fiber-optic cable but the inability to justify the costs to lease the fiber monthly from
a local fixed-line service provider
• Rights-of-way and freedom to trench private fiber-optic cable but the lack of economic
resources to complete such an intensive and time-consuming project
• Spectrum challenges from multiple, competing radio frequency outdoor wireless products that
render 802.11b outdoor bridges ineffective or technically impossible to deploy
Optical Wireless products provide a range of bandwidth. They can deliver true fiber-like
capacity of full-duplex 100 megabits (Mbps), also called “Fast Ethernet,” and 1.25 Gbps, which
is also known as “Gigabit Ethernet.” Optical Wireless products provide full-duplex capacity in a
point-to-point network topology via line-of-sight. The products are traditionally mounted atop
buildings or other stable structures. When deployed in dry climates and at distances of 5 km or
below, Optical Wireless products can provide customers with network availability from 99% to
as high as 99.9%. A network availability performance of 99% means that during a full 1% of
4
WWW.LIGHTPOINTE.COM
the time over the course of a year, the network connection will be lost. In the case of Optical
Wireless products, such network outages are most often due to dense fog, sand storms or thick
smog from airborne pollution. These three environmental conditions — the most challenging of
which is fog for FSO-based products — restrict the performance of Optical Wireless products
and their effective performance range. In clear and dry climates, Optical Wireless products are
capable of their highest network availability. The majority of the world’s regions, however, expe-
rience some forms of morning and late afternoon fog, and varying degrees of air pollution. For
many Enterprises, 1% percent of network downtime poses harsh economic penalties and is
unacceptable for IT professionals who operate the network and are accountable for its day-to-
day operations. Other Enterprises may not even find that 99.9% of network uptime meets strin-
gent business requirements. For the critical network requirement of uptime, Optical Wireless
may not always present the most attractive solution, although in many instances, they are the
most cost-effective and highest bandwidth delivery option. In a perfect scenario, Enterprises are
able to deploy their own fiber-optic cable between LANs, and price or rights-of-way pose no
restrictions. But this is rarely the scenario for Enterprises.
UNLICENSED RADIO FREQUENCY IN THE 5 GHZ
SPECTRUM
TECHNOLOGY AND PRODUCTS OVERVIEW
As with Optical Wireless solutions, radio frequency (RF) technology has also proven itself as a
cost-effective alternative to standard leased lines for building-to-building connections. Yet, while
Optical Wireless products provide high bandwidth at the sacrifice of availability (especially in
fog or severe weather conditions), RF point-to-point solutions provide lower bandwidth with
higher availability (99.999%).
Since its first use in World War II military applications over 50 years ago, wireless local area
networking (wireless LAN) has evolved into a mainstream technology used for a variety of in-
building and outdoor implementations. This, however, was not always the case. Initial wireless
LAN implementations were proprietary — operating at only 1 Mbps to 2 Mbps, primarily in the
902-928 MHz Industrial, Scientific, Medical (ISM) frequency bands. This 900 MHz band, as it is
more commonly referred to, was one of three unlicensed bands allocated by the FCC in 1980 for
license-free spread spectrum devices — the other two were at 2.4-2.483 GHz and 5.725-5.85 GHz.
In June 1997, the first wireless LAN standard was ratified by the Institute of Electrical and
Electronic Engineers (IEEE) thereby paving the way for wireless LAN’s widespread adoption and
usage. IEEE 802.11 set the guidelines for wireless LANs to operate at the 2.4 GHz frequency
with data rates of 1 Mbps to 2 Mbps. In September 1999, due to increased pressure to ensure
wireless LAN data rates remained on par with wired Ethernet speeds, IEEE 802.11b and IEEE
802.11a standards were defined in the 2.4 GHz and 5.8 GHz frequency bands, respectively. IEEE
802.11b defined the rules for an 11 Mbps wireless LAN solution. IEEE 802.11a, on the other
5
WWW.LIGHTPOINTE.COM
hand, provided a broader frequency band capable of supporting data rates of 54 Mbps and
potentially higher. Wireless LANs were suddenly a viable networking option with data rates
meeting or exceeding traditional Enterprise network speeds of 11 Mbps up to 54 Mbps. And the
WiFi world as we know it today was born.
Historically, wireless LANs were focused on in-building applications such as retail, ware-
housing and portable computing where an 11 Mbps network pipe is adequate. An outdoor RF
link, however, requires a much larger pipe for handling the traffic of multiple remote LANs.
Because the majority of outdoor RF links are simply outdoor implementations of WiFi — using
specialized bridges, routers and antennas to reach distances of 10 miles or beyond in some cases
— even a 54 Mbps data rate may not be enough to handle the traffic load of two or more net-
works. The need for a higher speed backhaul-type link becomes apparent.
When discussing wireless LAN speeds, it is important to understand that data rates do not
equate to actual network throughput. The data rate for the IEEE 802.11a standard, for example,
is 54 Mbps. Actual throughput, however, is closer to 20 Mbps to 30 Mbps. Why the difference?
There could be several reasons for this discrepancy, but the primary cause is due to the wireless
LAN protocol and its associated overhead. As with Ethernet, wireless LANs are based on a
Carrier Sense Multiple Access network protocol. But unlike Ethernet which implements a
Collision Detection scheme (where data is retransmitted if a collision is detected), wireless LANs
implement a Collision Avoidance scheme (where data is only sent when the air is free). This
CSMA/CA protocol, as defined, does not allow for simultaneous, two-way traffic. Thus, while
Optical Wireless solutions are “full-duplex,” RF solutions are, by their very nature, “half-duplex.”
Thus, an 11 Mbps IEEE 802.11b network will, on average, have an effective throughput of only 4
Mbps to 6 Mbps, while a 54 Mbps IEEE 802.11a network has a resulting throughput of 20 Mbps
to 30 Mbps.
To meet the higher bandwidth requirement for outdoor RF links, the latest outdoor wireless
solutions have focused on modified versions of the IEEE 802.11a standard to reach even greater
network speeds. Most have implemented a modified OFDM (Orthogonal Frequency Division
Multiplex) encoding and modulation scheme to achieve greater data rates (up to 72 Mbps) and
increase network efficiency. OFDM uses multiple overlapping carrier signals instead of just one
signal. By using multiple signals just far apart to avoid interference, data is no longer compro-
mised by radio anomalies, whereas in a single signal mode a problem can result in a lost link.
This is similar to a multi-lane highway where traffic continues to move, despite one lane being
blocked. A problem on a single lane road, by contrast, can halt traffic for hours.
Even with OFDM implementations, however, outdoor wireless links, even with data rates of
72 Mbps (or 30 Mbps to 40 Mbps throughput half-duplex), pale in comparison to Optical
Wireless from a capacity perspective. Optical Wireless products and their 100 Mbps full-duplex
data rates and higher are more than capable of handling the network load required of a build-
ing-to-building link. But, weather conditions including fog, do not impact RF signals to the
extent that they may completely halt the Optical Wireless solution.
6
WWW.LIGHTPOINTE.COM
A blended outdoor wireless solution of both Optical Wireless and RF is ideal in bandwidth-
intensive, mission-critical applications such as Voice-over-IP, medical imaging, CAD/graphic
design and video.
SEAMLESS SWITCHING BETWEEN THE PRIMARY
OPTICAL WIRELESS PATH AND SECONDARY RF PATH
To provide Fast Ethernet full-duplex primary connectivity and 72 Mbps half-duplex secondary
connectivity, a layer 2 network switch with proprietary customization and software is required.
A very small percentage of Enterprise customers who deploy Optical Wireless products for a pri-
mary network path have installed layer 2 switches that can route network traffic to a secondary
path, which may rely on E1/T1 fixed 1.54 Mbps lines or unlicensed RF in the 2.4 GHz spectrum.
But these in-the-field “solutions” are not seamless and capable of switching traffic from primary
to secondary path without a disruption in services. The common technical term of the pause or
multiple changes between primary and secondary path is known as “flapping.” With the band-
width-intensive applications employed in today’s Enterprises, disruptions in mission critical net-
work services can mean the loss of customer voice calls or even crucial financial information
being sent and received over wireless connections. Enterprises deploy multiple paths of wired
infrastructure to prevent against loss of connectivity and mission critical services. They now
have the option of doing the same with integrated switching that is at the heart of DualPath
Architecture for outdoor wireless.
Proprietary seamless switching between a primary Optical Wireless Path and secondary RF
Path ensures no disruptions in service, including dropped voice calls, unwanted jitter or latency,
or lost data. True, seamless switching is accomplished through proprietary design of hardware
and software in the Optical Wireless link heads, so the layer 2 switch can determine — based on
a customer’s threshold for severe fog or airborne particulate matter — when it is appropriate to
“failover” to the RF path. The process occurs before the Optical Path ever fails during a harsh
environmental event, enabling 99.999% network availability. The layer 2 switch at the heart of
DualPath Architecture is programmed to remain on “active ready” at all times (24/7) and pro-
vides for this proprietary functionality.
An example of this benefit of DualPath Architecture can best be illustrated by the following:
In a 99% uptime Optical Wireless Enterprise network deployment with a Fast Ethernet solution,
a customer enjoys 100 Mbps of full-duplex connectivity for all but 1% of the time over the
course of a year. During an annual period (365 days or 8,760 hours), that 1% equates to 87
hours of downtime, or an average of approximately 14 minutes per day of downtime. Simply by
deploying an outdoor wireless product based on DualPath Architecture, an Enterprise customer
eliminates all downtime (including loss of data, mission-critical voice calls) and operates a net-
work that provides full-duplex Fast Ethernet connectivity for 99% of the time and 72 Mbps half-
duplex RF the remaining 1% of the time — or just on average 14 minutes per 24-hour period.
7
WWW.LIGHTPOINTE.COM
The failover from primary Optical Path to RF Secondary Path is seamless, and the variance in
bandwidth is minimal, given the limited amount of time the RF is acting as the primary path
while an Optical Wireless path is broken by extenuating weather circumstances.
NETWORK CONFIGURATION AND MONITORING
DualPath Architecture for outdoor wireless products enables easy network configuration and
monitoring from any Internet connection via a Web-based tool. The Web-based tool provides IT
professionals with a real-time window into the performance of the primary Optical path and the
secondary RF path. The following block diagram illustrates the Web-based graphical user inter-
face (GUI) utilized for DualPath Architecture outdoor wireless products.
8
Fig. 1:
Graphical User Interface (GUI) for DualPath Architecture outdoor
wireless product. The GUI is a Web-based tool for configuration
and management of the primary Optical path, the secondary RF
path, and the seamless layer 2 switch. Source: LightPointe
WWW.LIGHTPOINTE.COM
THE BENEFITS OF DUALPATH ARCHITECTURE FOR
OUTDOOR WIRELESS
Today’s Enterprises demand true high-bandwidth network connectivity and uptime to be effi-
cient and competitive. This connectivity is needed for inter-building linkage of Enterprise LANs
that operate at Fast Ethernet and Gigabit Ethernet speeds to support bandwidth-intensive appli-
cations such as combined voice and data solutions, healthcare digital imaging, and video. Today,
17 percent of all Enterprise LANs operate at Gigabit Ethernet speed inside buildings.
But legacy E1/T1 wired infrastructure is the primary connectivity option available outside
between buildings or to reach fiber-optic network backbones. When operating 100 Mbps LANs
or Gigabit Ethernet LANs, 1.54 Mbps lines are insufficient, creating significant bottlenecks and
recurring costs, due to long-term leases with local service providers that provide access to E1/T1
connectivity.
OUTDOOR WIRELESS ALTERNATIVES TO BYPASS E1/T1 BOTTLENECKS
• Optical Wireless solutions (based on free-space optics — FSO — technology), which provide
fiber-like bandwidth but cannot ensure 99.999% uptime.
• Unlicensed radio frequency (RF) solutions, which cannot provide the full line speed of Fast
Ethernet or Gigabit Ethernet but deliver 99.999% uptime.
• Licensed RF solutions, which can provide the bandwidth of many FSO-based systems, but at
double or triple the costs, in addition to requirements for regulatory approval.
• Each of the three outdoor wireless connectivity solutions by themselves have shortcoming and
create challenges for Enterprises in search of cost-effective, true fiber-like outdoor wireless
bandwidth and 99.999% uptime.
• The only current option for 99.999% uptime with fiber-like bandwidth for Enterprises is
redundant paths of fiber-optic cable between buildings or connecting back to fiber-optic back-
bones. But the enormous upfront costs to trench privately owned fiber or recurring leases
with service providers to lease fiber creates an insurmountable hurdle for all but the most
financially flush Enterprises.
9
WWW.LIGHTPOINTE.COM
NEW OUTDOOR WIRELESS CHOICE
• Enterprises need a new outdoor wireless connectivity choice that enables their organizations
to realize LAN investments made to operate networks designed for bandwidth-intensive, mis-
sion critical application such as VoIP, healthcare digital imaging and video.
• LightPointe has created a new outdoor wireless Enterprise alternative in the FlightStrata™ 100
XA, which provides full-duplex Fast Ethernet connectivity and 99.999% uptime for the
Enterprise at distances up to 5 kilometers and at an attractive price point.
• LightPointe, the leader in Optical Wireless solutions based on FSO technology, has deployed
more than 2,700 Optical Wireless products in 60 countries in all weather conditions. Optical
Wireless solutions can achieve 99% and 99.9% uptime at distances up to 5 kilometers in cli-
mates with excellent visibility.
• In some environmental conditions, such as dense fog, Optical Wireless systems alone may not be
capable of delivering the 99.999% uptime desired by some installations. Enterprises that require
the highest of network availability and fiber-like bandwidth face less-than-attractive alternatives
among current wireless offerings. However, when Optical Wireless and unlicensed RF solutions
are combined as an integrated solution powered by intelligent switching and network manage-
ment, they deliver a high-performance balance of throughput and network availability.
• The FlightStrata 100 XA is optimal for Enterprises whose networks require fiber-like band-
width and 99.999% network uptime.
DUALPATH ARCHITECTURE FEATURES AND BENEFITS
• 100 Mbps, full-duplex primary path of license-free Fast Ethernet connectivity at distances up
to 5 km
• Half-duplex secondary path of license-free RF connectivity (half-duplex 72 Mbps) at distances
beyond 5 km
• Proprietary auto-switching functionality that enables transparent failover between optical and
radio path should the optical path be disrupted or blocked by harsh environmental conditions,
including dense fog, airborne particulates or snow
• Web-based network management GUI that provides network professionals simple system config-
uration as well as 24/7 monitoring capability for all critical elements of the integrated solution.
• IP Protocol
• Power over Ethernet (PoE) for RF
• RJ-45 Interface for both the optical and radio path
• Secure — the optical path uses beams of invisible light, while the RF path has built-in encryp-
tion capability for WEP and AES
• Outdoor, point-to-point solution
• License-free
10
WWW.LIGHTPOINTE.COM
11
DUALPATH AND WIMAX: DIFFERENTIATION
WiMAX has received much attention and commentary in the past three years. This potential net-
work phenomenon — as yet to be proven in the marketplace — is appealing: Internet access of
50+ Mbps via mobile wireless connectivity. Some pundits have dubbed WiMAX as “WiFi on
steroids.” Market reality, however, is that the primary chipset maker of WiMAX technology only
announced commercial availability in April 2005. The adoption of WiFi technology required
nearly a decade of intensive lobbying, organizing, and industry maneuvering to make it a reality,
priced appropriately for the marketplace.
The most important differentiation between DualPath Architecture and WiMAX is network
topology. DualPath Architecture is based on a point-to-point high throughput topology. WiMAX —
as promoted — is a point-to-multipoint network topology.
The second important differentiation between DualPath Architecture and WiMAX is technol-
ogy. DualPath Architecture relies on Optical technology for its primary transmission. This
enables full-duplex Fast Ethernet and Gigabit Ethernet throughput. WiMAX relies on RF technol-
ogy, and throughput rates are dependent on the number of users accessing the network, net-
work applications overhead, and the distance between base stations and access points.
The third important differentiation between DualPath Architecture and WiMAX is target
market. DualPath Architecture is aimed at the short-haul, high-capacity market, primarily the
Enterprise, with an eye on future products that will serve the Mobile Carrier market for its back-
haul requirements to handle a growing subscriber base and the deployment of 3G networks.
WiMAX, as promoted, is aimed at the service provider market seeking to provide end-customer
access to the Internet at distances beyond what DualPath Architecture offers.
WWW.LIGHTPOINTE.COM
SUMMARY
DualPath Architecture for outdoor wireless products is a patented design that brings to market a
fully integrated outdoor wireless solution for Enterprises. LightPointe’s DualPath Architecture
product, FlightStrata 100 XA, blends Optical Wireless and unlicensed radio frequency products
with an intelligent seamless switch to provide Fast Ethernet throughput and 99.999% uptime in
all weather conditions at distances up to 5 kilometers.
No other outdoor wireless market solution can offer the combination of network availability,
throughput or distance to serve Enterprise customers.
12
WWW.LIGHTPOINTE.COM
Corporate Office
10140 Barnes Canyon Road
San Diego, California 92121
Tel: +1.858.643.5200
Fax: +1.858.643.5201
Asia/Pacific
391A Orchard Road, #12-02
Ngee Ann City Tower A
Singapore 238873
Tel: + 65.6286.5918
Fax: + 65.6234.3898
Middle East/Africa
Dubai Internet City
Cisco Systems Building 10
Suite 105
PO Box 500 263
Dubai, U.A.E.
Tel: + 971.50.457.7927
Fax: + 971.4.390.8625
© 2005 LightPointe Communications, Inc. All rights reserved.
LightPointe, the LightPointe and FlightStrata 100 XA logos and
Flight are trademarks of LightPointe Communications in the
United States and certain other countries. All other brands and
products are marks of their respective owners. 03/05

More Related Content

What's hot

Next Generation Networks
Next Generation NetworksNext Generation Networks
Next Generation Networks
RejinaParvin
 
Sky Con Presentation
Sky Con PresentationSky Con Presentation
Sky Con Presentation
Evert Bopp
 
wlans
wlanswlans
Wireline to Wireless: Band-Aid or Network Concept 2016
Wireline to Wireless: Band-Aid or Network Concept 2016Wireline to Wireless: Band-Aid or Network Concept 2016
Wireline to Wireless: Band-Aid or Network Concept 2016
Finley Engineering Company
 
Wireless
WirelessWireless
Broadcasting 3.0
Broadcasting 3.0Broadcasting 3.0
4 G
4 G4 G
EC 8004 wireless networks -Two marks with answers
EC 8004   wireless networks -Two marks with answersEC 8004   wireless networks -Two marks with answers
EC 8004 wireless networks -Two marks with answers
KannanKrishnana
 
Mobile wireless-networks
Mobile wireless-networksMobile wireless-networks
Mobile wireless-networks
Peter R. Egli
 
Interference Analysis of Femtocells
Interference Analysis of FemtocellsInterference Analysis of Femtocells
Interference Analysis of Femtocells
ikeshav86
 
Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...
Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...
Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...
IRJET Journal
 
Neha 4g wireless network
Neha 4g wireless networkNeha 4g wireless network
Neha 4g wireless network
pankaj143neha
 
5 g-ppt
5 g-ppt5 g-ppt
5 g-ppt
mohith2398
 
Wireless networksppt
Wireless networkspptWireless networksppt
Wireless networksppt
dxmuthu
 
Wifi wimax
Wifi wimaxWifi wimax
Wifi wimax
varun1929
 
53415140 a-paper-presentation-on-wimax
53415140 a-paper-presentation-on-wimax53415140 a-paper-presentation-on-wimax
53415140 a-paper-presentation-on-wimax
Suneel Dogra
 
Infrared technology
Infrared technologyInfrared technology
Infrared technology
Naveen Sihag
 
Ap8163 datasheet
Ap8163 datasheetAp8163 datasheet
Ap8163 datasheet
Advantec Distribution
 
Introduction to cisco wireless
Introduction to  cisco wirelessIntroduction to  cisco wireless
Introduction to cisco wireless
Able George
 
5 g-ppt
5 g-ppt5 g-ppt

What's hot (20)

Next Generation Networks
Next Generation NetworksNext Generation Networks
Next Generation Networks
 
Sky Con Presentation
Sky Con PresentationSky Con Presentation
Sky Con Presentation
 
wlans
wlanswlans
wlans
 
Wireline to Wireless: Band-Aid or Network Concept 2016
Wireline to Wireless: Band-Aid or Network Concept 2016Wireline to Wireless: Band-Aid or Network Concept 2016
Wireline to Wireless: Band-Aid or Network Concept 2016
 
Wireless
WirelessWireless
Wireless
 
Broadcasting 3.0
Broadcasting 3.0Broadcasting 3.0
Broadcasting 3.0
 
4 G
4 G4 G
4 G
 
EC 8004 wireless networks -Two marks with answers
EC 8004   wireless networks -Two marks with answersEC 8004   wireless networks -Two marks with answers
EC 8004 wireless networks -Two marks with answers
 
Mobile wireless-networks
Mobile wireless-networksMobile wireless-networks
Mobile wireless-networks
 
Interference Analysis of Femtocells
Interference Analysis of FemtocellsInterference Analysis of Femtocells
Interference Analysis of Femtocells
 
Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...
Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...
Future Technology of Communication RoF (Radio over Fiber) and Fi-Wi (Fiber-Wi...
 
Neha 4g wireless network
Neha 4g wireless networkNeha 4g wireless network
Neha 4g wireless network
 
5 g-ppt
5 g-ppt5 g-ppt
5 g-ppt
 
Wireless networksppt
Wireless networkspptWireless networksppt
Wireless networksppt
 
Wifi wimax
Wifi wimaxWifi wimax
Wifi wimax
 
53415140 a-paper-presentation-on-wimax
53415140 a-paper-presentation-on-wimax53415140 a-paper-presentation-on-wimax
53415140 a-paper-presentation-on-wimax
 
Infrared technology
Infrared technologyInfrared technology
Infrared technology
 
Ap8163 datasheet
Ap8163 datasheetAp8163 datasheet
Ap8163 datasheet
 
Introduction to cisco wireless
Introduction to  cisco wirelessIntroduction to  cisco wireless
Introduction to cisco wireless
 
5 g-ppt
5 g-ppt5 g-ppt
5 g-ppt
 

Viewers also liked

Activitat 1
Activitat 1Activitat 1
Activitat 1
jordiplanascau
 
Ashley Cole
Ashley ColeAshley Cole
Ashley Cole
jamescaldwell4
 
круглый стол методика отбора мэйнстрим_21.03
круглый стол методика отбора мэйнстрим_21.03круглый стол методика отбора мэйнстрим_21.03
круглый стол методика отбора мэйнстрим_21.03Jeanne Tyan
 
7.1.intro perl
7.1.intro perl7.1.intro perl
7.1.intro perl
Varun Chhangani
 
Cinema e literatura
Cinema e literaturaCinema e literatura
Cinema e literaturadurvalaires
 
Reunio pares
Reunio paresReunio pares
Reunio paresparvuls3
 
Os graos de yeda
Os graos de yedaOs graos de yeda
Os graos de yedadurvalaires
 
Algumas questoes literarias
Algumas questoes literariasAlgumas questoes literarias
Algumas questoes literariasdurvalaires
 
Tres modelos do conto conteporaneo
Tres modelos do conto conteporaneoTres modelos do conto conteporaneo
Tres modelos do conto conteporaneo
durvalaires
 
Dev. journalism
Dev. journalismDev. journalism
Dev. journalism
ranipuja
 
Erotismo poetico
Erotismo poeticoErotismo poetico
Erotismo poeticodurvalaires
 
DEvelopment communication
DEvelopment communicationDEvelopment communication
DEvelopment communication
ranipuja
 

Viewers also liked (13)

Activitat 1
Activitat 1Activitat 1
Activitat 1
 
Tantuba
TantubaTantuba
Tantuba
 
Ashley Cole
Ashley ColeAshley Cole
Ashley Cole
 
круглый стол методика отбора мэйнстрим_21.03
круглый стол методика отбора мэйнстрим_21.03круглый стол методика отбора мэйнстрим_21.03
круглый стол методика отбора мэйнстрим_21.03
 
7.1.intro perl
7.1.intro perl7.1.intro perl
7.1.intro perl
 
Cinema e literatura
Cinema e literaturaCinema e literatura
Cinema e literatura
 
Reunio pares
Reunio paresReunio pares
Reunio pares
 
Os graos de yeda
Os graos de yedaOs graos de yeda
Os graos de yeda
 
Algumas questoes literarias
Algumas questoes literariasAlgumas questoes literarias
Algumas questoes literarias
 
Tres modelos do conto conteporaneo
Tres modelos do conto conteporaneoTres modelos do conto conteporaneo
Tres modelos do conto conteporaneo
 
Dev. journalism
Dev. journalismDev. journalism
Dev. journalism
 
Erotismo poetico
Erotismo poeticoErotismo poetico
Erotismo poetico
 
DEvelopment communication
DEvelopment communicationDEvelopment communication
DEvelopment communication
 

Similar to Dual patharchwp

WiMax and non standard solutions
WiMax and non standard solutionsWiMax and non standard solutions
WiMax and non standard solutions
Mario B.
 
Wireless LANs and Mobile Networks
Wireless LANs and Mobile NetworksWireless LANs and Mobile Networks
Wireless LANs and Mobile Networks
Lakshmi Sarvani Videla
 
Wi max
Wi maxWi max
Wi max
Ali Kamil
 
Laser Communication
Laser CommunicationLaser Communication
Laser Communication
Hossam Zein
 
It fundamentals wired and wireless troubleshooting
It fundamentals   wired and wireless troubleshootingIt fundamentals   wired and wireless troubleshooting
It fundamentals wired and wireless troubleshooting
Prof. Dr. AMOL KASTURE
 
Chap 01 introduction to wirelless
Chap 01 introduction to wirelless Chap 01 introduction to wirelless
Chap 01 introduction to wirelless
EngkaderAMuse
 
Brief introduction of wi max technology
Brief introduction of wi max technologyBrief introduction of wi max technology
Brief introduction of wi max technology
Md. Tamim Haider
 
Fiber applications
Fiber applicationsFiber applications
Wi fi and wimax
Wi fi and wimax Wi fi and wimax
Wi fi and wimax
Sanjay Hp
 
Wi max by yogijicreations
Wi max by yogijicreationsWi max by yogijicreations
Wi max by yogijicreations
Yogiji Creations
 
Brief introduction of wi max technology
Brief introduction of wi max technologyBrief introduction of wi max technology
Brief introduction of wi max technology
Md. Tamim Haider
 
Comparative study of bluetooth, 802 and hiperlan
Comparative study of bluetooth, 802 and hiperlanComparative study of bluetooth, 802 and hiperlan
Comparative study of bluetooth, 802 and hiperlan
IAEME Publication
 
High frequency of low noise amplifier architecture for WiMAX application: A r...
High frequency of low noise amplifier architecture for WiMAX application: A r...High frequency of low noise amplifier architecture for WiMAX application: A r...
High frequency of low noise amplifier architecture for WiMAX application: A r...
IJECEIAES
 
EMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAX
EMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAXEMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAX
EMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAX
cscpconf
 
4.report (gi fi technology)
4.report (gi fi technology)4.report (gi fi technology)
4.report (gi fi technology)
JIEMS Akkalkuwa
 
WI-FI and Wi Max
WI-FI and Wi MaxWI-FI and Wi Max
WI-FI and Wi Max
Siyad Ca
 
Wireless lan
Wireless lanWireless lan
Wireless lan
Mourad Mahrous
 
Wimax - Opportunites for Developing Nations
Wimax - Opportunites for Developing NationsWimax - Opportunites for Developing Nations
Wimax - Opportunites for Developing Nations
kamalmittal1
 
Capitulo 5
Capitulo 5Capitulo 5
Capitulo 5
rancruel027
 
012327336 aq
012327336 aq012327336 aq
012327336 aq
Siva Sankar
 

Similar to Dual patharchwp (20)

WiMax and non standard solutions
WiMax and non standard solutionsWiMax and non standard solutions
WiMax and non standard solutions
 
Wireless LANs and Mobile Networks
Wireless LANs and Mobile NetworksWireless LANs and Mobile Networks
Wireless LANs and Mobile Networks
 
Wi max
Wi maxWi max
Wi max
 
Laser Communication
Laser CommunicationLaser Communication
Laser Communication
 
It fundamentals wired and wireless troubleshooting
It fundamentals   wired and wireless troubleshootingIt fundamentals   wired and wireless troubleshooting
It fundamentals wired and wireless troubleshooting
 
Chap 01 introduction to wirelless
Chap 01 introduction to wirelless Chap 01 introduction to wirelless
Chap 01 introduction to wirelless
 
Brief introduction of wi max technology
Brief introduction of wi max technologyBrief introduction of wi max technology
Brief introduction of wi max technology
 
Fiber applications
Fiber applicationsFiber applications
Fiber applications
 
Wi fi and wimax
Wi fi and wimax Wi fi and wimax
Wi fi and wimax
 
Wi max by yogijicreations
Wi max by yogijicreationsWi max by yogijicreations
Wi max by yogijicreations
 
Brief introduction of wi max technology
Brief introduction of wi max technologyBrief introduction of wi max technology
Brief introduction of wi max technology
 
Comparative study of bluetooth, 802 and hiperlan
Comparative study of bluetooth, 802 and hiperlanComparative study of bluetooth, 802 and hiperlan
Comparative study of bluetooth, 802 and hiperlan
 
High frequency of low noise amplifier architecture for WiMAX application: A r...
High frequency of low noise amplifier architecture for WiMAX application: A r...High frequency of low noise amplifier architecture for WiMAX application: A r...
High frequency of low noise amplifier architecture for WiMAX application: A r...
 
EMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAX
EMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAXEMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAX
EMERGING BROADBAND WIRELESS TECHNOLOGIES: WIFI AND WIMAX
 
4.report (gi fi technology)
4.report (gi fi technology)4.report (gi fi technology)
4.report (gi fi technology)
 
WI-FI and Wi Max
WI-FI and Wi MaxWI-FI and Wi Max
WI-FI and Wi Max
 
Wireless lan
Wireless lanWireless lan
Wireless lan
 
Wimax - Opportunites for Developing Nations
Wimax - Opportunites for Developing NationsWimax - Opportunites for Developing Nations
Wimax - Opportunites for Developing Nations
 
Capitulo 5
Capitulo 5Capitulo 5
Capitulo 5
 
012327336 aq
012327336 aq012327336 aq
012327336 aq
 

Recently uploaded

Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
Madhumitha Jayaram
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
PuktoonEngr
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
Divyam548318
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
Mukeshwaran Balu
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 

Recently uploaded (20)

Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Wearable antenna for antenna applications
Wearable antenna for antenna applicationsWearable antenna for antenna applications
Wearable antenna for antenna applications
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt2. Operations Strategy in a Global Environment.ppt
2. Operations Strategy in a Global Environment.ppt
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
bank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdfbank management system in java and mysql report1.pdf
bank management system in java and mysql report1.pdf
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 

Dual patharchwp

  • 1. DUALPATH ™ ARCHITECTURE FOR OUTDOOR WIRELESS PRODUCTS: FAST ETHERNET THROUGHPUT AND 99.999% UPTIME LIGHTPOINTE COMMUNICATIONS, INC. © Copyright 2005. All rights reserved.
  • 2. 2 CONTENTS Introduction: What is DualPath™ Architecture for Outdoor Wireless? 3 Optical Wireless Based on Free-Space Optics (FSO): Technology and Products Overview 4 Unlicensed Radio Frequency (RF) in the 5 GHz Spectrum: Technology and Products Overview 5 Seamless Switching Between the Primary Optical Wireless Path and Secondary RF Path 7 Network Configuration and Monitoring 8 The Benefits of DualPath Architecture for Outdoor Wireless 9 DualPath Architecture and WiMAX: Differentiation 11 Summary 12 WWW.LIGHTPOINTE.COM
  • 3. INTRODUCTION: WHAT IS DUALPATH ARCHITECTURE FOR OUTDOOR WIRELESS? DUALPATH ARCHITECTURE FOR OUTDOOR WIRELESS IS THE COMBINATION (BLENDING) OF TWO MARKET-ADOPTED OUTDOOR WIRELESS TECHNOLOGIES TO PROVIDE THE HIGHEST AVAILABLE CON- NECTIVITY THROUGHPUT AND NETWORK UPTIME, MORE COMMONLY REFERRED TO AS “NETWORK AVAILABILITY.” ONLY THROUGH AN INTEGRATED, COMBINED OUTDOOR WIRELESS SOLUTION CAN SHORTCOMINGS OF CURRENT STAND-ALONE OUTDOOR WIRELESS PRODUCTS BE ADDRESSED, RESULT- ING IN NEW AND IMPROVED ALTERNATIVES FOR ENTERPRISES AND MOBILE CARRIERS SEEKING TO DEPLOY POINT-TO-POINT CONNECTIONS WITH TRUE FIBER-OPTIC CAPACITY AND COVETED 99.999% NETWORK AVAILABILITY. NO STANDALONE OUTDOOR WIRELESS PRODUCT TODAY CAN PROVIDE THIS FIBER-LIKE PERFORMANCE — LET ALONE PROVIDE IT BOTH EASILY AND ECONOMICALLY. DUALPATH ARCHITECTURE FOR OUTDOOR WIRELESS IS A PROPRIETARY DESIGN PLATFORM PATENTED BY LIGHTPOINTE IN THE UNITED STATES AND EUROPE (US 6,763,195 B1; AND EP 1 249 084 B1). DUALPATH ARCHITECTURE TAKES THE BEST OF EXISTING STANDALONE OUTDOOR WIRELESS PRODUCTS AND COMBINES THEM AS AN INTEGRATED AND SUPERIOR OUTDOOR WIRELESS POINT-TO- POINT SOLUTION WITH SEAMLESS SWITCHING AND QUALITY OF SERVICE (QOS) FEATURES. 3 WWW.LIGHTPOINTE.COM
  • 4. OPTICAL WIRELESS BASED ON FREE-SPACE OPTICS (FSO) TECHNOLOGY AND PRODUCTS OVERVIEW: Commercially available Optical Wireless products based on FSO technology have been in the Enterprise marketplace for more than a decade. They are deployed by the world’s best-known brands and organizations, representing all industries and geographic regions. Optical Wireless products are license-free worldwide and operate in the unlicensed terahertz frequency, also referred to as “near infrared” spectrum. Optical Wireless products utilize pulses of invisible light and specially designed optical lenses to transmit voice, video or data between two points up to distances of 5 kilometers (3.1 miles). FSO technology first emerged in the 1960s during the Cold War as secure and tap-proof outdoor wireless communications for military use in the field. During this era, FSO links were set up within a matter of minutes. Highly classified military information and troop movement strategies could be sent and received without fear of intercep- tion, due to the fact that the beams of light were confined to a narrow cone of “free space” and immune to radio frequency jamming or interception devices. Today, Optical Wireless products based on FSO technology are commercially installed in more than 60 countries, carrying mis- sion-critical information, including financial, health-care and patient data, corporate communica- tions and voice traffic. Optical Wireless products provide throughput at rates as high as 1.25 gigabits (Gbps) in Enterprise and Mobile Carrier networks. Known for true, fiber-like capacity and ease of installation, Optical Wireless products serve a customer base that faces one or more of the following network challenges: • Lack of fiber-optic cable access between two or more buildings in a local area network (LAN) • Access to fiber-optic cable but the inability to justify the costs to lease the fiber monthly from a local fixed-line service provider • Rights-of-way and freedom to trench private fiber-optic cable but the lack of economic resources to complete such an intensive and time-consuming project • Spectrum challenges from multiple, competing radio frequency outdoor wireless products that render 802.11b outdoor bridges ineffective or technically impossible to deploy Optical Wireless products provide a range of bandwidth. They can deliver true fiber-like capacity of full-duplex 100 megabits (Mbps), also called “Fast Ethernet,” and 1.25 Gbps, which is also known as “Gigabit Ethernet.” Optical Wireless products provide full-duplex capacity in a point-to-point network topology via line-of-sight. The products are traditionally mounted atop buildings or other stable structures. When deployed in dry climates and at distances of 5 km or below, Optical Wireless products can provide customers with network availability from 99% to as high as 99.9%. A network availability performance of 99% means that during a full 1% of 4 WWW.LIGHTPOINTE.COM
  • 5. the time over the course of a year, the network connection will be lost. In the case of Optical Wireless products, such network outages are most often due to dense fog, sand storms or thick smog from airborne pollution. These three environmental conditions — the most challenging of which is fog for FSO-based products — restrict the performance of Optical Wireless products and their effective performance range. In clear and dry climates, Optical Wireless products are capable of their highest network availability. The majority of the world’s regions, however, expe- rience some forms of morning and late afternoon fog, and varying degrees of air pollution. For many Enterprises, 1% percent of network downtime poses harsh economic penalties and is unacceptable for IT professionals who operate the network and are accountable for its day-to- day operations. Other Enterprises may not even find that 99.9% of network uptime meets strin- gent business requirements. For the critical network requirement of uptime, Optical Wireless may not always present the most attractive solution, although in many instances, they are the most cost-effective and highest bandwidth delivery option. In a perfect scenario, Enterprises are able to deploy their own fiber-optic cable between LANs, and price or rights-of-way pose no restrictions. But this is rarely the scenario for Enterprises. UNLICENSED RADIO FREQUENCY IN THE 5 GHZ SPECTRUM TECHNOLOGY AND PRODUCTS OVERVIEW As with Optical Wireless solutions, radio frequency (RF) technology has also proven itself as a cost-effective alternative to standard leased lines for building-to-building connections. Yet, while Optical Wireless products provide high bandwidth at the sacrifice of availability (especially in fog or severe weather conditions), RF point-to-point solutions provide lower bandwidth with higher availability (99.999%). Since its first use in World War II military applications over 50 years ago, wireless local area networking (wireless LAN) has evolved into a mainstream technology used for a variety of in- building and outdoor implementations. This, however, was not always the case. Initial wireless LAN implementations were proprietary — operating at only 1 Mbps to 2 Mbps, primarily in the 902-928 MHz Industrial, Scientific, Medical (ISM) frequency bands. This 900 MHz band, as it is more commonly referred to, was one of three unlicensed bands allocated by the FCC in 1980 for license-free spread spectrum devices — the other two were at 2.4-2.483 GHz and 5.725-5.85 GHz. In June 1997, the first wireless LAN standard was ratified by the Institute of Electrical and Electronic Engineers (IEEE) thereby paving the way for wireless LAN’s widespread adoption and usage. IEEE 802.11 set the guidelines for wireless LANs to operate at the 2.4 GHz frequency with data rates of 1 Mbps to 2 Mbps. In September 1999, due to increased pressure to ensure wireless LAN data rates remained on par with wired Ethernet speeds, IEEE 802.11b and IEEE 802.11a standards were defined in the 2.4 GHz and 5.8 GHz frequency bands, respectively. IEEE 802.11b defined the rules for an 11 Mbps wireless LAN solution. IEEE 802.11a, on the other 5 WWW.LIGHTPOINTE.COM
  • 6. hand, provided a broader frequency band capable of supporting data rates of 54 Mbps and potentially higher. Wireless LANs were suddenly a viable networking option with data rates meeting or exceeding traditional Enterprise network speeds of 11 Mbps up to 54 Mbps. And the WiFi world as we know it today was born. Historically, wireless LANs were focused on in-building applications such as retail, ware- housing and portable computing where an 11 Mbps network pipe is adequate. An outdoor RF link, however, requires a much larger pipe for handling the traffic of multiple remote LANs. Because the majority of outdoor RF links are simply outdoor implementations of WiFi — using specialized bridges, routers and antennas to reach distances of 10 miles or beyond in some cases — even a 54 Mbps data rate may not be enough to handle the traffic load of two or more net- works. The need for a higher speed backhaul-type link becomes apparent. When discussing wireless LAN speeds, it is important to understand that data rates do not equate to actual network throughput. The data rate for the IEEE 802.11a standard, for example, is 54 Mbps. Actual throughput, however, is closer to 20 Mbps to 30 Mbps. Why the difference? There could be several reasons for this discrepancy, but the primary cause is due to the wireless LAN protocol and its associated overhead. As with Ethernet, wireless LANs are based on a Carrier Sense Multiple Access network protocol. But unlike Ethernet which implements a Collision Detection scheme (where data is retransmitted if a collision is detected), wireless LANs implement a Collision Avoidance scheme (where data is only sent when the air is free). This CSMA/CA protocol, as defined, does not allow for simultaneous, two-way traffic. Thus, while Optical Wireless solutions are “full-duplex,” RF solutions are, by their very nature, “half-duplex.” Thus, an 11 Mbps IEEE 802.11b network will, on average, have an effective throughput of only 4 Mbps to 6 Mbps, while a 54 Mbps IEEE 802.11a network has a resulting throughput of 20 Mbps to 30 Mbps. To meet the higher bandwidth requirement for outdoor RF links, the latest outdoor wireless solutions have focused on modified versions of the IEEE 802.11a standard to reach even greater network speeds. Most have implemented a modified OFDM (Orthogonal Frequency Division Multiplex) encoding and modulation scheme to achieve greater data rates (up to 72 Mbps) and increase network efficiency. OFDM uses multiple overlapping carrier signals instead of just one signal. By using multiple signals just far apart to avoid interference, data is no longer compro- mised by radio anomalies, whereas in a single signal mode a problem can result in a lost link. This is similar to a multi-lane highway where traffic continues to move, despite one lane being blocked. A problem on a single lane road, by contrast, can halt traffic for hours. Even with OFDM implementations, however, outdoor wireless links, even with data rates of 72 Mbps (or 30 Mbps to 40 Mbps throughput half-duplex), pale in comparison to Optical Wireless from a capacity perspective. Optical Wireless products and their 100 Mbps full-duplex data rates and higher are more than capable of handling the network load required of a build- ing-to-building link. But, weather conditions including fog, do not impact RF signals to the extent that they may completely halt the Optical Wireless solution. 6 WWW.LIGHTPOINTE.COM
  • 7. A blended outdoor wireless solution of both Optical Wireless and RF is ideal in bandwidth- intensive, mission-critical applications such as Voice-over-IP, medical imaging, CAD/graphic design and video. SEAMLESS SWITCHING BETWEEN THE PRIMARY OPTICAL WIRELESS PATH AND SECONDARY RF PATH To provide Fast Ethernet full-duplex primary connectivity and 72 Mbps half-duplex secondary connectivity, a layer 2 network switch with proprietary customization and software is required. A very small percentage of Enterprise customers who deploy Optical Wireless products for a pri- mary network path have installed layer 2 switches that can route network traffic to a secondary path, which may rely on E1/T1 fixed 1.54 Mbps lines or unlicensed RF in the 2.4 GHz spectrum. But these in-the-field “solutions” are not seamless and capable of switching traffic from primary to secondary path without a disruption in services. The common technical term of the pause or multiple changes between primary and secondary path is known as “flapping.” With the band- width-intensive applications employed in today’s Enterprises, disruptions in mission critical net- work services can mean the loss of customer voice calls or even crucial financial information being sent and received over wireless connections. Enterprises deploy multiple paths of wired infrastructure to prevent against loss of connectivity and mission critical services. They now have the option of doing the same with integrated switching that is at the heart of DualPath Architecture for outdoor wireless. Proprietary seamless switching between a primary Optical Wireless Path and secondary RF Path ensures no disruptions in service, including dropped voice calls, unwanted jitter or latency, or lost data. True, seamless switching is accomplished through proprietary design of hardware and software in the Optical Wireless link heads, so the layer 2 switch can determine — based on a customer’s threshold for severe fog or airborne particulate matter — when it is appropriate to “failover” to the RF path. The process occurs before the Optical Path ever fails during a harsh environmental event, enabling 99.999% network availability. The layer 2 switch at the heart of DualPath Architecture is programmed to remain on “active ready” at all times (24/7) and pro- vides for this proprietary functionality. An example of this benefit of DualPath Architecture can best be illustrated by the following: In a 99% uptime Optical Wireless Enterprise network deployment with a Fast Ethernet solution, a customer enjoys 100 Mbps of full-duplex connectivity for all but 1% of the time over the course of a year. During an annual period (365 days or 8,760 hours), that 1% equates to 87 hours of downtime, or an average of approximately 14 minutes per day of downtime. Simply by deploying an outdoor wireless product based on DualPath Architecture, an Enterprise customer eliminates all downtime (including loss of data, mission-critical voice calls) and operates a net- work that provides full-duplex Fast Ethernet connectivity for 99% of the time and 72 Mbps half- duplex RF the remaining 1% of the time — or just on average 14 minutes per 24-hour period. 7 WWW.LIGHTPOINTE.COM
  • 8. The failover from primary Optical Path to RF Secondary Path is seamless, and the variance in bandwidth is minimal, given the limited amount of time the RF is acting as the primary path while an Optical Wireless path is broken by extenuating weather circumstances. NETWORK CONFIGURATION AND MONITORING DualPath Architecture for outdoor wireless products enables easy network configuration and monitoring from any Internet connection via a Web-based tool. The Web-based tool provides IT professionals with a real-time window into the performance of the primary Optical path and the secondary RF path. The following block diagram illustrates the Web-based graphical user inter- face (GUI) utilized for DualPath Architecture outdoor wireless products. 8 Fig. 1: Graphical User Interface (GUI) for DualPath Architecture outdoor wireless product. The GUI is a Web-based tool for configuration and management of the primary Optical path, the secondary RF path, and the seamless layer 2 switch. Source: LightPointe WWW.LIGHTPOINTE.COM
  • 9. THE BENEFITS OF DUALPATH ARCHITECTURE FOR OUTDOOR WIRELESS Today’s Enterprises demand true high-bandwidth network connectivity and uptime to be effi- cient and competitive. This connectivity is needed for inter-building linkage of Enterprise LANs that operate at Fast Ethernet and Gigabit Ethernet speeds to support bandwidth-intensive appli- cations such as combined voice and data solutions, healthcare digital imaging, and video. Today, 17 percent of all Enterprise LANs operate at Gigabit Ethernet speed inside buildings. But legacy E1/T1 wired infrastructure is the primary connectivity option available outside between buildings or to reach fiber-optic network backbones. When operating 100 Mbps LANs or Gigabit Ethernet LANs, 1.54 Mbps lines are insufficient, creating significant bottlenecks and recurring costs, due to long-term leases with local service providers that provide access to E1/T1 connectivity. OUTDOOR WIRELESS ALTERNATIVES TO BYPASS E1/T1 BOTTLENECKS • Optical Wireless solutions (based on free-space optics — FSO — technology), which provide fiber-like bandwidth but cannot ensure 99.999% uptime. • Unlicensed radio frequency (RF) solutions, which cannot provide the full line speed of Fast Ethernet or Gigabit Ethernet but deliver 99.999% uptime. • Licensed RF solutions, which can provide the bandwidth of many FSO-based systems, but at double or triple the costs, in addition to requirements for regulatory approval. • Each of the three outdoor wireless connectivity solutions by themselves have shortcoming and create challenges for Enterprises in search of cost-effective, true fiber-like outdoor wireless bandwidth and 99.999% uptime. • The only current option for 99.999% uptime with fiber-like bandwidth for Enterprises is redundant paths of fiber-optic cable between buildings or connecting back to fiber-optic back- bones. But the enormous upfront costs to trench privately owned fiber or recurring leases with service providers to lease fiber creates an insurmountable hurdle for all but the most financially flush Enterprises. 9 WWW.LIGHTPOINTE.COM
  • 10. NEW OUTDOOR WIRELESS CHOICE • Enterprises need a new outdoor wireless connectivity choice that enables their organizations to realize LAN investments made to operate networks designed for bandwidth-intensive, mis- sion critical application such as VoIP, healthcare digital imaging and video. • LightPointe has created a new outdoor wireless Enterprise alternative in the FlightStrata™ 100 XA, which provides full-duplex Fast Ethernet connectivity and 99.999% uptime for the Enterprise at distances up to 5 kilometers and at an attractive price point. • LightPointe, the leader in Optical Wireless solutions based on FSO technology, has deployed more than 2,700 Optical Wireless products in 60 countries in all weather conditions. Optical Wireless solutions can achieve 99% and 99.9% uptime at distances up to 5 kilometers in cli- mates with excellent visibility. • In some environmental conditions, such as dense fog, Optical Wireless systems alone may not be capable of delivering the 99.999% uptime desired by some installations. Enterprises that require the highest of network availability and fiber-like bandwidth face less-than-attractive alternatives among current wireless offerings. However, when Optical Wireless and unlicensed RF solutions are combined as an integrated solution powered by intelligent switching and network manage- ment, they deliver a high-performance balance of throughput and network availability. • The FlightStrata 100 XA is optimal for Enterprises whose networks require fiber-like band- width and 99.999% network uptime. DUALPATH ARCHITECTURE FEATURES AND BENEFITS • 100 Mbps, full-duplex primary path of license-free Fast Ethernet connectivity at distances up to 5 km • Half-duplex secondary path of license-free RF connectivity (half-duplex 72 Mbps) at distances beyond 5 km • Proprietary auto-switching functionality that enables transparent failover between optical and radio path should the optical path be disrupted or blocked by harsh environmental conditions, including dense fog, airborne particulates or snow • Web-based network management GUI that provides network professionals simple system config- uration as well as 24/7 monitoring capability for all critical elements of the integrated solution. • IP Protocol • Power over Ethernet (PoE) for RF • RJ-45 Interface for both the optical and radio path • Secure — the optical path uses beams of invisible light, while the RF path has built-in encryp- tion capability for WEP and AES • Outdoor, point-to-point solution • License-free 10 WWW.LIGHTPOINTE.COM
  • 11. 11 DUALPATH AND WIMAX: DIFFERENTIATION WiMAX has received much attention and commentary in the past three years. This potential net- work phenomenon — as yet to be proven in the marketplace — is appealing: Internet access of 50+ Mbps via mobile wireless connectivity. Some pundits have dubbed WiMAX as “WiFi on steroids.” Market reality, however, is that the primary chipset maker of WiMAX technology only announced commercial availability in April 2005. The adoption of WiFi technology required nearly a decade of intensive lobbying, organizing, and industry maneuvering to make it a reality, priced appropriately for the marketplace. The most important differentiation between DualPath Architecture and WiMAX is network topology. DualPath Architecture is based on a point-to-point high throughput topology. WiMAX — as promoted — is a point-to-multipoint network topology. The second important differentiation between DualPath Architecture and WiMAX is technol- ogy. DualPath Architecture relies on Optical technology for its primary transmission. This enables full-duplex Fast Ethernet and Gigabit Ethernet throughput. WiMAX relies on RF technol- ogy, and throughput rates are dependent on the number of users accessing the network, net- work applications overhead, and the distance between base stations and access points. The third important differentiation between DualPath Architecture and WiMAX is target market. DualPath Architecture is aimed at the short-haul, high-capacity market, primarily the Enterprise, with an eye on future products that will serve the Mobile Carrier market for its back- haul requirements to handle a growing subscriber base and the deployment of 3G networks. WiMAX, as promoted, is aimed at the service provider market seeking to provide end-customer access to the Internet at distances beyond what DualPath Architecture offers. WWW.LIGHTPOINTE.COM
  • 12. SUMMARY DualPath Architecture for outdoor wireless products is a patented design that brings to market a fully integrated outdoor wireless solution for Enterprises. LightPointe’s DualPath Architecture product, FlightStrata 100 XA, blends Optical Wireless and unlicensed radio frequency products with an intelligent seamless switch to provide Fast Ethernet throughput and 99.999% uptime in all weather conditions at distances up to 5 kilometers. No other outdoor wireless market solution can offer the combination of network availability, throughput or distance to serve Enterprise customers. 12 WWW.LIGHTPOINTE.COM
  • 13. Corporate Office 10140 Barnes Canyon Road San Diego, California 92121 Tel: +1.858.643.5200 Fax: +1.858.643.5201 Asia/Pacific 391A Orchard Road, #12-02 Ngee Ann City Tower A Singapore 238873 Tel: + 65.6286.5918 Fax: + 65.6234.3898 Middle East/Africa Dubai Internet City Cisco Systems Building 10 Suite 105 PO Box 500 263 Dubai, U.A.E. Tel: + 971.50.457.7927 Fax: + 971.4.390.8625 © 2005 LightPointe Communications, Inc. All rights reserved. LightPointe, the LightPointe and FlightStrata 100 XA logos and Flight are trademarks of LightPointe Communications in the United States and certain other countries. All other brands and products are marks of their respective owners. 03/05