SlideShare a Scribd company logo
1 of 22
Download to read offline
Lebanese University - Faculty of Sciences
Section ¶
Chapter 2: Double Integration
Solved Problems
Dr. Kamel ATTAR
attar.kamel@gmail.com
F Wednesday 24/Mars/2021 F
2Ú22
Exercises
Solutions
1 Exercises
Cartesian coordinates
Polar coordinates
2 Solutions
Cartesian coordinates
Polar coordinates
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
3Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Cartesian coordinates
. Exercise 1.
Let D = {(x, y) ∈ R2
: x2
+ y2
≥ 1, y ≤ x2
+ 1, 0 ≤ y , 0 ≤ x ≤ 1}
1. Sketch D.
2. Using Cartesian coordinates, write the expression J =
ZZ
D
f(x, y)dxdy by two different ways.
Go to Solution
. Exercise 2. Let D = {(x, y) ∈ R2
: x2
+ y2
≥ 1, y ≤ x2
+ 2 , 0 ≤ y, −1 ≤ x ≤ 1}
1. Sketch D.
2. Using Cartesian coordinates, write the expression J =
ZZ
D
f(x, y)dxdy by two different ways.
Go to Solution
. Exercise 3. Let K =
Z 1
0
dx
Z 1
x
sin(y2
) dy
1. Write and sketch the domain of integration D.
2. Calculate K.
Go to Solution
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
4Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
. Exercise 4. Let I =
Z 1
0
dx
Z x
x2
2xe2y3
−3y2
dy
1. Write and sketch the domain of integration D.
2. Write I in another form by changing the order of integration.
3. Calculate I.
Go to Solution
. Exercise 5.
1. Calculate I =
Z 1
0
dy
Z 2−y
√
1−y2
x dx.
2. Sketch the domain of integration of I.
3. Refind the value of I by changing the order of integration.
Go to Solution
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
5Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Polar coordinates
. Exercise 6. Calculate the following integrals by using the polar coordinates.
1.
ZZ
D
x2
y dxdy , D =
n
(x, y); y ≥ 0 , x2
+ y2
− 2x ≤ 0
o
2.
ZZ
D
ln(x2
+ y2
) dxdy , D =
n
(x, y); x2
+ y2
≥ 1 , x2
+ y2
≤ 4
o
3.
ZZ
D
dxdy
(x2 + y2)2
, D =
n
(x, y); x ≥ 1 , x2
+ y2
− 2x ≤ 0
o
4.
ZZ
D
y dxdy , D =
n
(x, y) ∈ R2
+; x2
+ y2
≤ 1 , x2
+ y2
≥ 2y
o
Go to Solution
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
6Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
. Exercise 7. Let ∆ be the domain defined by:
∆ = {(x, y) ∈ R2
: x2
+ y2
− 2y ≤ 0, y ≥ 1, x ≥ 0}
1. Draw ∆.
2. By using the polar coordinates, calculate I =
ZZ
∆
dxdy
(x2 + y2)2
Go to Solution
. Exercise 8. Let ∆ be the domain defined by:
∆ = {(x, y) ∈ R2
: x2
+ y2
− 2x ≤ 0, y ≥ 0, x ≥ 1} ,
1. Draw ∆.
2. By using the polar coordinates, calculate I =
ZZ
∆
dxdy
(x2 + y2)2
Go to Solution
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
7Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 1.
Vertical Section
J =
ZZ
D
f(x, y)dxdy =
Z 1
0
Z x2
+1
√
1−x2
f(x, y) dy
!
dx
Horizontal Section
J =
ZZ
D
f(x, y)dxdy
=
Z 1
−1
Z 1
√
1−y2
f(x, y) dx
!
dy
+
Z 2
1
Z 1
√
y−1
f(x, y) dx
!
dy .
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
8Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 2.
Vertical Section
J =
Z 1
−1
Z x2
+2
√
1−x2
f(x, y) dy
!
dx
Horizontal Section
J =
Z 1
0
Z −
√
1−y2
−1
f(x, y) dx +
Z 1
√
1−y2
f(x, y) dx
!
dy
+
Z 2
1
Z 1
−1
f(x, y) dx
!
dy
+
Z 3
2
Z −
√
y−2
−1
f(x, y) dx +
Z 1
√
y−2
f(x, y) dx
!
dy
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
9Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 3.
1.
2. We change the order of integration and obtain
K =
Z 1
0
Z y
0
sin(y2
) dx

dy =
Z 1
0
y sin(y2
) dy = −
1
2
[cos(y2
)]
Z 1
0
= −
1
2
(cos 1−1) .
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
10Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 4.
1. D = {(x, y) ∈ R2
: 0 ≤ x ≤ 1 et x2
≤ y ≤ x}
2.
0 ≤ y ≤ 1 et y ≤ x ≤
√
y
Thus
I =
Z 1
0
dy
Z y
√
y
2xe2y3
−3y2
dx
3.
I =
Z 1
0
e2y3
−3y2
dy
Z √
y
y
2x dx =
Z 1
0
e2y3
−3y2
dy
h
x2
i√
y
y
=
Z 1
0
(y − y2
)e2y3
−3y2
dy
= −
1
6
h
e2y3
−3y2
i1
0
= −
1
6

e−1
− 1

.
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
11Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 5.
1.
I =
Z 1
0
dy
Z 2−y
√
1−y2
x dx =
Z 1
0

x2
2
2−y
√
1−y2
dy =
1
2
Z 1
0
(2y2
− 4y + 3) dy =
5
6
.
2. D =
n
(x, y) ∈ R
2
; 0 6 y 6 1 and
q
1 − y2 6 x 6 2 − y
o
.
3. Fixant x d’abord et cherchons la variation verticale de y on obtient que,
I Pour 0 6 x 6 1 on a y ∈ [
p
1 − x2; 1],
I Pour 1 6 x 6 2 on a y ∈ [0; 2 − x].
I =
ZZ
D
x dx dy =
Z 1
0
dx
Z 1
√
1−x2
x dy +
Z 2
1
dx
Z 2−x
0
x dy =
Z 1
0
x(1 −
p
1 − x2) dx +
Z 2
0
x(2 − x) dx
=
Z 1
0
(x − x
p
1 − x2) dx +
Z 2
1
(2x − x
2
) dx =
1
2
−
1
2
.
2
3

(1 − x
2
)
3
2
1
0
+ 3 −
7
3
=
5
6
.
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
12Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 6.
1.
x2
+ y2
− 2x ≤ 0 =
⇒ (x − 1)2
+ y2
≤ 1
Using polar coordinates:
x = r cos θ , y = r sin θ , |J| = r .
We have
x2
+ y2
− 2x ≤ 0 =
⇒ r2
− 2r cos θ = 0 =
⇒ r = 2 cos θ
We obtain
0 ≤ θ ≤
π
2
et 0 ≤ r ≤ 2 cos θ
Finally
I =
Z π
2
0
Z 2 cos θ
0
r2
cos2
θr sin θ rdrdθ =
Z π
2
0
cos2
θ sin θdθ
Z 2 cos θ
0
r4
dr
=
32
5
Z π
2
0
cos7
θ sin θdθ = −
32
5

cos8 θ
8
π
2
0
=
4
5
.
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
13Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
2.
Using polar coordinates
x = r cos θ , y = r sin θ , |J| = r .
We have
x2
+ y2
= 1 =
⇒ r = 1 et x2
+ y2
= 4 =
⇒ r = 2
I =
Z 2π
0
Z 2
1
ln(r2
)rdrdθ = 2
Z 2π
0
dθ
Z 2
1
ln(r)rdr u = ln r , v0
= r
= 2π [r2
ln r]2
1 −
Z 2
1
rdr
!
= 2π(4 ln 2 −
3
2
) . u0
=
1
r
, v =
r2
2
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
14Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
3.
Using polar coordinates
x = r cos θ , y = r sin θ , |J| = r .
We have
x = 1 =
⇒ r1 =
1
cos θ
et x
2
+ y
2
− 2x = 0
=
⇒ r
2
− 2r cos θ = 0 =
⇒ r2 = 2 cos θ
Then
1
cos θ
≤ r ≤ 2 cos θ
To find the angle limits, we have to find the intersections points. Indeed
{x
2
+y
2
−2x = 0}∩{x = 1} =
⇒ −1+y
2
= 0 =
⇒ y = ±1 =
⇒ A = (1, 1) et B(−1, 1) .
D’où
−
π
4
≤ θ ≤
π
4
I =
Z π
4
− π
4
Z 2 cos θ
1/ cos θ
1
r4
rdrdθ =
Z π
4
− π
4
dθ

−
1
2r2
2 cos θ
1/ cos θ
=
Z π
4
− π
4
cos2
θ
2
−
1
8 cos2 θ
!
dθ =
π
8
.
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
15Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
4.
We have
x
2
+ y
2
− 2y = 0 =
⇒ r
2
− 2r sin θ = 0
=
⇒ r1 = 2 sin θ
and
x
2
+ y
2
= 1 =
⇒ r2 = 1
Then
2 sin θ ≤ r ≤ 1 .
{x
2
+ y
2
− 2y = 0} ∩ {x
2
+ y
2
= 1} =
⇒ 1 − 2y = 0 =
⇒ y =
1
2
=
⇒ A =
√
3
2
,
1
2
!
.
Thus 0 ≤ θ ≤
π
6
I =
Z π
6
0
Z 1
2 sin θ
r sin θrdrdθ =
Z π
6
0
sin θdθ

r2
2
#1
2 sin θ
=
1
2
Z π
6
0

sin θ − 4 sin
3
θ

dθ
= −
√
3
4
+
1
2
− 2
Z π
6
0
sin
3
θdθ =
√
3
2
−
5
6
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
16Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 7.
1.
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
17Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
2. For x2
+ y2
− 2y = 0 we have r(r − 2 sin θ) = 0, which is implies that r = 2 sin θ
because r 6= 0.
For y = 1, we have r sin θ = 1 then r =
1
sin θ
Therefore
∆ =





π
4
≤ θ ≤
π
2
1
sin θ
≤ r ≤ 2 sin θ
and so
I =
Z π
2
π
4
Z 2 sin θ
1
sin θ
1
r4
r dr
!
dθ =
1
2
Z π
2
π
4

sin2
θ −
1
4 sin2
θ

dθ
Having in mind
sin2
θ =
1 − cos(2θ)
2
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
18Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Thus
I =
1
4
Z π
2
π
4
dθ −
1
4
Z π
2
π
4
cos(2θ)dθ −
1
8
Z π
2
π
4
cos2 θ
sin2
θ
dθ
cos2 θ
.
Using the fact that
Z
u0
cos u = − sin u and
Z
1
tan2 θ
dθ
cos2 θ
=
Z
1
u2
du = −
1
u
= −
1
tan θ
we find
I =
1
4
h
θ
i π
2
π
4
−
1
8
h
sin(2θ)
iπ
2
π
4
−
1
8
Z π
2
π
4
1
tan2 θ
dθ
cos2 θ
.
=
π
16
+
1
8
+
1
8
h 1
tan θ
iπ
2
π
4
=
π
16
+
1
8
−
1
8
=
π
16
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
19Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Solution 8.
1.
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
20Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
2.
I =
Z π
4
0
Z 2 cos θ
1/ cos θ
1
r4
· r dr
!
dθ = −
1
2
Z π
4
0
h 1
r2
i2 cos θ
1/ cos θ
dθ
= −
1
2
Z π
4
0

1
4 cos2 θ
− cos2
θ

dθ = −
1
8
Z π
4
0
1
cos2 θ
dθ +
1
2
Z π
4
0
cos2
θ dθ
We know that
cos2
θ =
1 + cos(2θ)
2
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
21Ú22
Exercises
Solutions
Cartesian coordinates
Polar coordinates
Thus
I =
1
4
Z π
4
0
dθ +
1
4
Z π
4
0
cos(2θ)dθ −
1
8
Z π
4
0
sin2
θ
cos2 θ
dθ
sin2
θ
.
Using the fact that
Z
u0
cos u = − sin u, (cot θ)
0
= −
1
sin2
θ
and
Z
1
cot2 θ
dθ
sin2
θ
= −
Z
1
u2
du =
1
u
=
1
cot θ
= tan θ
We get
I =
1
4
h
θ
i π
4
0
+
1
8
h
sin(2θ)
i π
4
0
−
1
8
Z π
4
0
1
cot2 θ
dθ
sin2
θ
.
=
π
16
+
1
8
−
1
8
h
tan θ
i π
4
0
=
π
16
+
1
8
−
1
8
=
π
16
Go Back
Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
Thank you! Questions?

More Related Content

What's hot

Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
C.G.P.I.T
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Pokkarn Narkhede
 

What's hot (20)

Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
composite functions
composite functionscomposite functions
composite functions
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Integration by Parts & by Partial Fractions
Integration by Parts & by Partial FractionsIntegration by Parts & by Partial Fractions
Integration by Parts & by Partial Fractions
 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
3.1 limit definition of the derivative
3.1 limit definition of the derivative 3.1 limit definition of the derivative
3.1 limit definition of the derivative
 
Integration of Trigonometric Functions
Integration of Trigonometric FunctionsIntegration of Trigonometric Functions
Integration of Trigonometric Functions
 
Gamma function
Gamma functionGamma function
Gamma function
 
Triple integrals and applications
Triple integrals and applicationsTriple integrals and applications
Triple integrals and applications
 
Linear Algebra and Matlab tutorial
Linear Algebra and Matlab tutorialLinear Algebra and Matlab tutorial
Linear Algebra and Matlab tutorial
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
Rational equations
Rational equationsRational equations
Rational equations
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
Factorization
Factorization Factorization
Factorization
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares Method
 

Similar to Solved exercises double integration

Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
akabaka12
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
akabaka12
 

Similar to Solved exercises double integration (20)

Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Ch[1].2
Ch[1].2Ch[1].2
Ch[1].2
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Maths04
Maths04Maths04
Maths04
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
Maths05
Maths05Maths05
Maths05
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
Sect5 1
Sect5 1Sect5 1
Sect5 1
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
MA8353 TPDE
MA8353 TPDEMA8353 TPDE
MA8353 TPDE
 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptx
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
1.3 solving equations t
1.3 solving equations t1.3 solving equations t
1.3 solving equations t
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 

More from Kamel Attar

More from Kamel Attar (10)

Network analysis
Network analysisNetwork analysis
Network analysis
 
Simplex method (minimization)
Simplex method (minimization)Simplex method (minimization)
Simplex method (minimization)
 
Simplex method (maximization)
Simplex method (maximization)Simplex method (maximization)
Simplex method (maximization)
 
Linear Programming (graphical method)
Linear Programming (graphical method)Linear Programming (graphical method)
Linear Programming (graphical method)
 
Introduction to operations research
Introduction to operations researchIntroduction to operations research
Introduction to operations research
 
Function of several variables
Function of several variablesFunction of several variables
Function of several variables
 
Simple integral
Simple integralSimple integral
Simple integral
 
Operation research-Network analysis (Critical Path Method)
Operation research-Network analysis (Critical Path Method)Operation research-Network analysis (Critical Path Method)
Operation research-Network analysis (Critical Path Method)
 
Transportation problem
Transportation problemTransportation problem
Transportation problem
 
Operations research(Sensitivity analysis)
Operations research(Sensitivity analysis)Operations research(Sensitivity analysis)
Operations research(Sensitivity analysis)
 

Recently uploaded

Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Silpa
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
Areesha Ahmad
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 

Recently uploaded (20)

Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Conjugation, transduction and transformation
Conjugation, transduction and transformationConjugation, transduction and transformation
Conjugation, transduction and transformation
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 

Solved exercises double integration

  • 1. Lebanese University - Faculty of Sciences Section ¶ Chapter 2: Double Integration Solved Problems Dr. Kamel ATTAR attar.kamel@gmail.com F Wednesday 24/Mars/2021 F
  • 2. 2Ú22 Exercises Solutions 1 Exercises Cartesian coordinates Polar coordinates 2 Solutions Cartesian coordinates Polar coordinates Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 3. 3Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Cartesian coordinates . Exercise 1. Let D = {(x, y) ∈ R2 : x2 + y2 ≥ 1, y ≤ x2 + 1, 0 ≤ y , 0 ≤ x ≤ 1} 1. Sketch D. 2. Using Cartesian coordinates, write the expression J = ZZ D f(x, y)dxdy by two different ways. Go to Solution . Exercise 2. Let D = {(x, y) ∈ R2 : x2 + y2 ≥ 1, y ≤ x2 + 2 , 0 ≤ y, −1 ≤ x ≤ 1} 1. Sketch D. 2. Using Cartesian coordinates, write the expression J = ZZ D f(x, y)dxdy by two different ways. Go to Solution . Exercise 3. Let K = Z 1 0 dx Z 1 x sin(y2 ) dy 1. Write and sketch the domain of integration D. 2. Calculate K. Go to Solution Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 4. 4Ú22 Exercises Solutions Cartesian coordinates Polar coordinates . Exercise 4. Let I = Z 1 0 dx Z x x2 2xe2y3 −3y2 dy 1. Write and sketch the domain of integration D. 2. Write I in another form by changing the order of integration. 3. Calculate I. Go to Solution . Exercise 5. 1. Calculate I = Z 1 0 dy Z 2−y √ 1−y2 x dx. 2. Sketch the domain of integration of I. 3. Refind the value of I by changing the order of integration. Go to Solution Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 5. 5Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Polar coordinates . Exercise 6. Calculate the following integrals by using the polar coordinates. 1. ZZ D x2 y dxdy , D = n (x, y); y ≥ 0 , x2 + y2 − 2x ≤ 0 o 2. ZZ D ln(x2 + y2 ) dxdy , D = n (x, y); x2 + y2 ≥ 1 , x2 + y2 ≤ 4 o 3. ZZ D dxdy (x2 + y2)2 , D = n (x, y); x ≥ 1 , x2 + y2 − 2x ≤ 0 o 4. ZZ D y dxdy , D = n (x, y) ∈ R2 +; x2 + y2 ≤ 1 , x2 + y2 ≥ 2y o Go to Solution Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 6. 6Ú22 Exercises Solutions Cartesian coordinates Polar coordinates . Exercise 7. Let ∆ be the domain defined by: ∆ = {(x, y) ∈ R2 : x2 + y2 − 2y ≤ 0, y ≥ 1, x ≥ 0} 1. Draw ∆. 2. By using the polar coordinates, calculate I = ZZ ∆ dxdy (x2 + y2)2 Go to Solution . Exercise 8. Let ∆ be the domain defined by: ∆ = {(x, y) ∈ R2 : x2 + y2 − 2x ≤ 0, y ≥ 0, x ≥ 1} , 1. Draw ∆. 2. By using the polar coordinates, calculate I = ZZ ∆ dxdy (x2 + y2)2 Go to Solution Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 7. 7Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 1. Vertical Section J = ZZ D f(x, y)dxdy = Z 1 0 Z x2 +1 √ 1−x2 f(x, y) dy ! dx Horizontal Section J = ZZ D f(x, y)dxdy = Z 1 −1 Z 1 √ 1−y2 f(x, y) dx ! dy + Z 2 1 Z 1 √ y−1 f(x, y) dx ! dy . Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 8. 8Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 2. Vertical Section J = Z 1 −1 Z x2 +2 √ 1−x2 f(x, y) dy ! dx Horizontal Section J = Z 1 0 Z − √ 1−y2 −1 f(x, y) dx + Z 1 √ 1−y2 f(x, y) dx ! dy + Z 2 1 Z 1 −1 f(x, y) dx ! dy + Z 3 2 Z − √ y−2 −1 f(x, y) dx + Z 1 √ y−2 f(x, y) dx ! dy Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 9. 9Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 3. 1. 2. We change the order of integration and obtain K = Z 1 0 Z y 0 sin(y2 ) dx dy = Z 1 0 y sin(y2 ) dy = − 1 2 [cos(y2 )] Z 1 0 = − 1 2 (cos 1−1) . Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 10. 10Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 4. 1. D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1 et x2 ≤ y ≤ x} 2. 0 ≤ y ≤ 1 et y ≤ x ≤ √ y Thus I = Z 1 0 dy Z y √ y 2xe2y3 −3y2 dx 3. I = Z 1 0 e2y3 −3y2 dy Z √ y y 2x dx = Z 1 0 e2y3 −3y2 dy h x2 i√ y y = Z 1 0 (y − y2 )e2y3 −3y2 dy = − 1 6 h e2y3 −3y2 i1 0 = − 1 6 e−1 − 1 . Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 11. 11Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 5. 1. I = Z 1 0 dy Z 2−y √ 1−y2 x dx = Z 1 0 x2 2 2−y √ 1−y2 dy = 1 2 Z 1 0 (2y2 − 4y + 3) dy = 5 6 . 2. D = n (x, y) ∈ R 2 ; 0 6 y 6 1 and q 1 − y2 6 x 6 2 − y o . 3. Fixant x d’abord et cherchons la variation verticale de y on obtient que, I Pour 0 6 x 6 1 on a y ∈ [ p 1 − x2; 1], I Pour 1 6 x 6 2 on a y ∈ [0; 2 − x]. I = ZZ D x dx dy = Z 1 0 dx Z 1 √ 1−x2 x dy + Z 2 1 dx Z 2−x 0 x dy = Z 1 0 x(1 − p 1 − x2) dx + Z 2 0 x(2 − x) dx = Z 1 0 (x − x p 1 − x2) dx + Z 2 1 (2x − x 2 ) dx = 1 2 − 1 2 . 2 3 (1 − x 2 ) 3 2 1 0 + 3 − 7 3 = 5 6 . Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 12. 12Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 6. 1. x2 + y2 − 2x ≤ 0 = ⇒ (x − 1)2 + y2 ≤ 1 Using polar coordinates: x = r cos θ , y = r sin θ , |J| = r . We have x2 + y2 − 2x ≤ 0 = ⇒ r2 − 2r cos θ = 0 = ⇒ r = 2 cos θ We obtain 0 ≤ θ ≤ π 2 et 0 ≤ r ≤ 2 cos θ Finally I = Z π 2 0 Z 2 cos θ 0 r2 cos2 θr sin θ rdrdθ = Z π 2 0 cos2 θ sin θdθ Z 2 cos θ 0 r4 dr = 32 5 Z π 2 0 cos7 θ sin θdθ = − 32 5 cos8 θ 8 π 2 0 = 4 5 . Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 13. 13Ú22 Exercises Solutions Cartesian coordinates Polar coordinates 2. Using polar coordinates x = r cos θ , y = r sin θ , |J| = r . We have x2 + y2 = 1 = ⇒ r = 1 et x2 + y2 = 4 = ⇒ r = 2 I = Z 2π 0 Z 2 1 ln(r2 )rdrdθ = 2 Z 2π 0 dθ Z 2 1 ln(r)rdr u = ln r , v0 = r = 2π [r2 ln r]2 1 − Z 2 1 rdr ! = 2π(4 ln 2 − 3 2 ) . u0 = 1 r , v = r2 2 Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 14. 14Ú22 Exercises Solutions Cartesian coordinates Polar coordinates 3. Using polar coordinates x = r cos θ , y = r sin θ , |J| = r . We have x = 1 = ⇒ r1 = 1 cos θ et x 2 + y 2 − 2x = 0 = ⇒ r 2 − 2r cos θ = 0 = ⇒ r2 = 2 cos θ Then 1 cos θ ≤ r ≤ 2 cos θ To find the angle limits, we have to find the intersections points. Indeed {x 2 +y 2 −2x = 0}∩{x = 1} = ⇒ −1+y 2 = 0 = ⇒ y = ±1 = ⇒ A = (1, 1) et B(−1, 1) . D’où − π 4 ≤ θ ≤ π 4 I = Z π 4 − π 4 Z 2 cos θ 1/ cos θ 1 r4 rdrdθ = Z π 4 − π 4 dθ − 1 2r2 2 cos θ 1/ cos θ = Z π 4 − π 4 cos2 θ 2 − 1 8 cos2 θ ! dθ = π 8 . Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 15. 15Ú22 Exercises Solutions Cartesian coordinates Polar coordinates 4. We have x 2 + y 2 − 2y = 0 = ⇒ r 2 − 2r sin θ = 0 = ⇒ r1 = 2 sin θ and x 2 + y 2 = 1 = ⇒ r2 = 1 Then 2 sin θ ≤ r ≤ 1 . {x 2 + y 2 − 2y = 0} ∩ {x 2 + y 2 = 1} = ⇒ 1 − 2y = 0 = ⇒ y = 1 2 = ⇒ A = √ 3 2 , 1 2 ! . Thus 0 ≤ θ ≤ π 6 I = Z π 6 0 Z 1 2 sin θ r sin θrdrdθ = Z π 6 0 sin θdθ r2 2 #1 2 sin θ = 1 2 Z π 6 0 sin θ − 4 sin 3 θ dθ = − √ 3 4 + 1 2 − 2 Z π 6 0 sin 3 θdθ = √ 3 2 − 5 6 Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 16. 16Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 7. 1. Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 17. 17Ú22 Exercises Solutions Cartesian coordinates Polar coordinates 2. For x2 + y2 − 2y = 0 we have r(r − 2 sin θ) = 0, which is implies that r = 2 sin θ because r 6= 0. For y = 1, we have r sin θ = 1 then r = 1 sin θ Therefore ∆ =      π 4 ≤ θ ≤ π 2 1 sin θ ≤ r ≤ 2 sin θ and so I = Z π 2 π 4 Z 2 sin θ 1 sin θ 1 r4 r dr ! dθ = 1 2 Z π 2 π 4 sin2 θ − 1 4 sin2 θ dθ Having in mind sin2 θ = 1 − cos(2θ) 2 Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 18. 18Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Thus I = 1 4 Z π 2 π 4 dθ − 1 4 Z π 2 π 4 cos(2θ)dθ − 1 8 Z π 2 π 4 cos2 θ sin2 θ dθ cos2 θ . Using the fact that Z u0 cos u = − sin u and Z 1 tan2 θ dθ cos2 θ = Z 1 u2 du = − 1 u = − 1 tan θ we find I = 1 4 h θ i π 2 π 4 − 1 8 h sin(2θ) iπ 2 π 4 − 1 8 Z π 2 π 4 1 tan2 θ dθ cos2 θ . = π 16 + 1 8 + 1 8 h 1 tan θ iπ 2 π 4 = π 16 + 1 8 − 1 8 = π 16 Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 19. 19Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Solution 8. 1. Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 20. 20Ú22 Exercises Solutions Cartesian coordinates Polar coordinates 2. I = Z π 4 0 Z 2 cos θ 1/ cos θ 1 r4 · r dr ! dθ = − 1 2 Z π 4 0 h 1 r2 i2 cos θ 1/ cos θ dθ = − 1 2 Z π 4 0 1 4 cos2 θ − cos2 θ dθ = − 1 8 Z π 4 0 1 cos2 θ dθ + 1 2 Z π 4 0 cos2 θ dθ We know that cos2 θ = 1 + cos(2θ) 2 Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems
  • 21. 21Ú22 Exercises Solutions Cartesian coordinates Polar coordinates Thus I = 1 4 Z π 4 0 dθ + 1 4 Z π 4 0 cos(2θ)dθ − 1 8 Z π 4 0 sin2 θ cos2 θ dθ sin2 θ . Using the fact that Z u0 cos u = − sin u, (cot θ) 0 = − 1 sin2 θ and Z 1 cot2 θ dθ sin2 θ = − Z 1 u2 du = 1 u = 1 cot θ = tan θ We get I = 1 4 h θ i π 4 0 + 1 8 h sin(2θ) i π 4 0 − 1 8 Z π 4 0 1 cot2 θ dθ sin2 θ . = π 16 + 1 8 − 1 8 h tan θ i π 4 0 = π 16 + 1 8 − 1 8 = π 16 Go Back Dr. Kamel ATTAR | Chapter 2: Double Integration | Solved Problems