This document discusses Monte Carlo methods for numerical integration and estimating normalizing constants. It summarizes several approaches: estimating normalizing constants using samples; reverse logistic regression for estimating constants in mixtures; Xiao-Li's maximum likelihood formulation for Monte Carlo integration; and Persi's probabilistic numerics which provide uncertainties for numerical calculations. The document advocates first approximating the distribution of an integrand before estimating its expectation to incorporate non-parametric information and account for multiple estimators.