The document summarizes Approximate Bayesian Computation (ABC). It discusses how ABC provides a way to approximate Bayesian inference when the likelihood function is intractable or too computationally expensive to evaluate directly. ABC works by simulating data under different parameter values and accepting simulations that are close to the observed data according to a distance measure and tolerance level. Key points discussed include:
- ABC provides an approximation to the posterior distribution by sampling from simulations that fall within a tolerance of the observed data.
- Summary statistics are often used to reduce the dimension of the data and improve the signal-to-noise ratio when applying the tolerance criterion.
- Random forests can help select informative summary statistics and provide semi-automated ABC