SlideShare a Scribd company logo
Conics
DEFINITION Conic sections are plane curves that can be formed by cutting a double right circular cone with a plane at various angles.
AXIS DOUBLE RIGHT CIRCULAR CONE A circle is formed when the plane intersects one cone and is perpendicular to the axis
	An ellipse is formed when the plane intersects one cone and is NOT perpendicular to the axis.
	A parabola is formed when the plane intersects one cone and is parallel to the edge of the cone.
	A hyperbola is formed when the plane intersects both cones.
DEGENERATE CONIC
	In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2.  	It can be defined as the locus of points whose distances are in a fixed ratio to some point, called a focus, and some line, called a directrix.
GENERAL EQUATION OF CONICS 𝑨𝒙𝟐+𝑩𝒙𝒚+𝑪𝒚𝟐+𝑫𝒙+𝑬𝒚+𝑭=𝟎   DISCRIMINANT Ellipse Parabola Hyperbola 𝑩𝟐−𝟒𝑨𝑪<𝟎   𝑩𝟐−𝟒𝑨𝑪=𝟎   𝑩𝟐−𝟒𝑨𝑪>𝟎  
Parabola: 	A = 0    or 	C = 0 Circle: 		A = C Ellipse:		A = B, but both have the 					same sign	 Hyperbola:	A and C have Different  					signs
The Parabola The parabolais a set of points which are equidistant from a fixed point (the focus) and the fixed line (the directrix).
PROPERTIES The line through the focus perpendicular to the directrix is called the axis of symmetry or simply the axis of the curve. The point where the axis intersects the curve is the vertex of the parabola. The vertex (denoted by V) is a point midway between the focus and directrix.
[object Object]
The line through F perpendicular to the axis is called the latus rectum whose length is |4a|. The endpoints are 𝑳𝟏and𝑳𝟐. This determines how the wide the parabola opens.
The line parallel to the latus rectum is called the directrix. 
𝑳𝟏   𝑷(𝒙,𝒚)   Directrix Latus Rectum abr />|a| Vertex Focus Axis of Symmetry 𝑳𝟐  
TYPES OF PARABOLA
𝑽(𝟎,𝟎)   𝑳𝟏(𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒓𝒊𝒈𝒉𝒕   𝑭(𝒂,𝟎)   𝑳𝟐(𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=𝟒𝒂𝒙   𝑫:𝒙=−𝒂   TYPE 1
𝑽(𝟎,𝟎)   𝑳𝟏(−𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒍𝒆𝒇𝒕   𝑭(−𝒂,𝟎)   𝑳𝟐(−𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=−𝟒𝒂𝒙   𝑫:𝒙=𝒂   TYPE 2
𝑽(𝟎,𝟎)   𝑳𝟏(𝟐𝒂,𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:  𝒖𝒑𝒘𝒂𝒓𝒅   𝑭(𝟎,𝒂)   𝑳𝟐(−𝟐𝒂,𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=𝟒𝒂𝒚   𝑫:𝒚=−𝒂   TYPE 3
𝑽(𝟎,𝟎)   𝑳𝟏(−𝟐𝒂,−𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:𝒅𝒐𝒘𝒏𝒘𝒂𝒓𝒅   𝑭(𝟎,−𝒂)   𝑳𝟐(𝟐𝒂,−𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=−𝟒𝒂𝒚   𝑫:𝒚=𝒂   TYPE 4
Sample Problem Locate the coordinates of the vertex (V), focus (F), endpoints of the latus rectum (𝑳𝟏𝑳𝟐), the equation of the directrix, and sketch the graph of 𝒙𝟐=−𝟖𝒚.  
solution 1. 𝒙𝟐=−𝟖𝒚 takes the form 𝒙𝟐=−𝟒𝒂𝒚 2. the parabola opens downward 3. Compute the value of 𝒂 4. so, −𝟒𝒂=−𝟖, or 𝒂=𝟐 5. the required coordinates are   𝑽(𝟎,𝟎)   𝑫:𝒚=𝒂   𝑭𝟎,−𝒂=𝑭(𝟎,−𝟐)   𝑫:𝒚=𝟐   𝑳𝟏−𝟐𝒂,−𝒂=𝑳𝟏(−𝟒,−𝟐)   𝑳𝟐𝟐𝒂,−𝒂=𝑳𝟐(𝟒, −𝟐)  

More Related Content

What's hot

nature of the roots and discriminant
nature of the roots and discriminantnature of the roots and discriminant
nature of the roots and discriminant
maricel mas
 
Notes ellipses
Notes   ellipsesNotes   ellipses
Notes ellipses
Lori Rapp
 
Direct variation power point
Direct variation power pointDirect variation power point
Direct variation power point
toni dimella
 
Equation of Hyperbola
Equation of HyperbolaEquation of Hyperbola
Equation of Hyperbola
itutor
 
To determine if a relation is a function
To determine if a relation is a functionTo determine if a relation is a function
To determine if a relation is a function
Anthony Abidakun
 
Finding the slope of a line
Finding the slope of a lineFinding the slope of a line
Finding the slope of a line
Ahmed Nar
 
Conic sections
Conic sectionsConic sections
Conic sections
Solo Hermelin
 
Rectangular Coordinate System PPT
Rectangular Coordinate System PPTRectangular Coordinate System PPT
Rectangular Coordinate System PPT
CleofeAttosTomasUndo
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
Farzad Javidanrad
 
Conic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACHConic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACH
Mr Math
 
Combined variation
Combined variationCombined variation
Combined variation
MartinGeraldine
 
14 1 inscribed angles and intercepted arcs
14 1 inscribed angles and intercepted arcs14 1 inscribed angles and intercepted arcs
14 1 inscribed angles and intercepted arcs
gwilson8786
 
Hyperbolas
HyperbolasHyperbolas
Hyperbolas
Hazel Llorando
 
Equations of circles
Equations of circlesEquations of circles
Equations of circles
lmrogers03
 
Parabola
ParabolaParabola
Parabola
heiner gomez
 
Point, Line and plane
Point, Line and planePoint, Line and plane
Point, Line and plane
Kristine Joy Ramirez
 
Direct Variation
Direct VariationDirect Variation
Direct Variation
karen wagoner
 
Graphing polynomial functions (Grade 10)
Graphing polynomial functions (Grade 10)Graphing polynomial functions (Grade 10)
Graphing polynomial functions (Grade 10)
grace joy canseco
 
Integral Exponents
Integral ExponentsIntegral Exponents
Integral Exponents
Ver Louie Gautani
 
joint variation
  joint variation  joint variation
joint variation
rina valencia
 

What's hot (20)

nature of the roots and discriminant
nature of the roots and discriminantnature of the roots and discriminant
nature of the roots and discriminant
 
Notes ellipses
Notes   ellipsesNotes   ellipses
Notes ellipses
 
Direct variation power point
Direct variation power pointDirect variation power point
Direct variation power point
 
Equation of Hyperbola
Equation of HyperbolaEquation of Hyperbola
Equation of Hyperbola
 
To determine if a relation is a function
To determine if a relation is a functionTo determine if a relation is a function
To determine if a relation is a function
 
Finding the slope of a line
Finding the slope of a lineFinding the slope of a line
Finding the slope of a line
 
Conic sections
Conic sectionsConic sections
Conic sections
 
Rectangular Coordinate System PPT
Rectangular Coordinate System PPTRectangular Coordinate System PPT
Rectangular Coordinate System PPT
 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
 
Conic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACHConic section- Hyperbola STEM TEACH
Conic section- Hyperbola STEM TEACH
 
Combined variation
Combined variationCombined variation
Combined variation
 
14 1 inscribed angles and intercepted arcs
14 1 inscribed angles and intercepted arcs14 1 inscribed angles and intercepted arcs
14 1 inscribed angles and intercepted arcs
 
Hyperbolas
HyperbolasHyperbolas
Hyperbolas
 
Equations of circles
Equations of circlesEquations of circles
Equations of circles
 
Parabola
ParabolaParabola
Parabola
 
Point, Line and plane
Point, Line and planePoint, Line and plane
Point, Line and plane
 
Direct Variation
Direct VariationDirect Variation
Direct Variation
 
Graphing polynomial functions (Grade 10)
Graphing polynomial functions (Grade 10)Graphing polynomial functions (Grade 10)
Graphing polynomial functions (Grade 10)
 
Integral Exponents
Integral ExponentsIntegral Exponents
Integral Exponents
 
joint variation
  joint variation  joint variation
joint variation
 

Similar to Conic Sections

Module 2 Parabola.pptx
Module 2 Parabola.pptxModule 2 Parabola.pptx
Module 2 Parabola.pptx
ErickConcepcion9
 
2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx
JeromePascual12
 
Quadrilaterals
QuadrilateralsQuadrilaterals
Quadrilaterals
Denmar Marasigan
 
math conic sections.pptx
math conic sections.pptxmath conic sections.pptx
math conic sections.pptx
VarshaSanjeev
 
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdfINTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
LyndrianShalomBaclay
 
geometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptxgeometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptx
Praveen Kumar
 
ANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptxANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptx
BercasioKelvin
 
Conic section
Conic sectionConic section
Conic section
AaryanMaheshwari
 
Chapter 7.2 parabola
Chapter 7.2 parabolaChapter 7.2 parabola
Chapter 7.2 parabola
soma1996
 
Modern Geometry Topics
Modern Geometry TopicsModern Geometry Topics
Modern Geometry Topics
Menchie Magistrado
 
classification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptxclassification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptx
MeryAnnMAlday
 
Geometricalconstruction
GeometricalconstructionGeometricalconstruction
Geometricalconstruction
Saidon Aziz
 
ellipse
ellipseellipse
ellipse
kanikab1
 
Paso 4 grupo29
Paso 4 grupo29Paso 4 grupo29
Paso 4 grupo29
MARLENPARRA3
 
Plano cartesiano
Plano cartesianoPlano cartesiano
Plano cartesiano
YerelisLiscano
 
Mehul mathematics conics
Mehul mathematics conicsMehul mathematics conics
Mehul mathematics conics
mehuldas
 
CHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptxCHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptx
AmeliaEnakirerhi
 
Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9 Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9
75193
 
Geometry 201 unit 3.1
Geometry 201 unit 3.1Geometry 201 unit 3.1
Geometry 201 unit 3.1
Mark Ryder
 
Lines and angles
Lines and anglesLines and angles
Lines and angles
Alish Mahat
 

Similar to Conic Sections (20)

Module 2 Parabola.pptx
Module 2 Parabola.pptxModule 2 Parabola.pptx
Module 2 Parabola.pptx
 
2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx2. PARABOLA (PRECAL).pptx
2. PARABOLA (PRECAL).pptx
 
Quadrilaterals
QuadrilateralsQuadrilaterals
Quadrilaterals
 
math conic sections.pptx
math conic sections.pptxmath conic sections.pptx
math conic sections.pptx
 
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdfINTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
INTRODUCTION TO CONIC SECTIONS (BASIC CALCULUS).pdf
 
geometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptxgeometricalconstruction-101112193228-phpapp01.pptx
geometricalconstruction-101112193228-phpapp01.pptx
 
ANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptxANALYTIC-GEOMETRY(4).pptx
ANALYTIC-GEOMETRY(4).pptx
 
Conic section
Conic sectionConic section
Conic section
 
Chapter 7.2 parabola
Chapter 7.2 parabolaChapter 7.2 parabola
Chapter 7.2 parabola
 
Modern Geometry Topics
Modern Geometry TopicsModern Geometry Topics
Modern Geometry Topics
 
classification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptxclassification of quadrilaterals grade 9.pptx
classification of quadrilaterals grade 9.pptx
 
Geometricalconstruction
GeometricalconstructionGeometricalconstruction
Geometricalconstruction
 
ellipse
ellipseellipse
ellipse
 
Paso 4 grupo29
Paso 4 grupo29Paso 4 grupo29
Paso 4 grupo29
 
Plano cartesiano
Plano cartesianoPlano cartesiano
Plano cartesiano
 
Mehul mathematics conics
Mehul mathematics conicsMehul mathematics conics
Mehul mathematics conics
 
CHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptxCHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptx
 
Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9 Lines and angles For Class 7, 8, 9
Lines and angles For Class 7, 8, 9
 
Geometry 201 unit 3.1
Geometry 201 unit 3.1Geometry 201 unit 3.1
Geometry 201 unit 3.1
 
Lines and angles
Lines and anglesLines and angles
Lines and angles
 

Conic Sections

  • 2. DEFINITION Conic sections are plane curves that can be formed by cutting a double right circular cone with a plane at various angles.
  • 3. AXIS DOUBLE RIGHT CIRCULAR CONE A circle is formed when the plane intersects one cone and is perpendicular to the axis
  • 4. An ellipse is formed when the plane intersects one cone and is NOT perpendicular to the axis.
  • 5. A parabola is formed when the plane intersects one cone and is parallel to the edge of the cone.
  • 6. A hyperbola is formed when the plane intersects both cones.
  • 8. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2. It can be defined as the locus of points whose distances are in a fixed ratio to some point, called a focus, and some line, called a directrix.
  • 9. GENERAL EQUATION OF CONICS 𝑨𝒙𝟐+𝑩𝒙𝒚+𝑪𝒚𝟐+𝑫𝒙+𝑬𝒚+𝑭=𝟎   DISCRIMINANT Ellipse Parabola Hyperbola 𝑩𝟐−𝟒𝑨𝑪<𝟎   𝑩𝟐−𝟒𝑨𝑪=𝟎   𝑩𝟐−𝟒𝑨𝑪>𝟎  
  • 10. Parabola: A = 0 or C = 0 Circle: A = C Ellipse: A = B, but both have the same sign Hyperbola: A and C have Different signs
  • 11. The Parabola The parabolais a set of points which are equidistant from a fixed point (the focus) and the fixed line (the directrix).
  • 12. PROPERTIES The line through the focus perpendicular to the directrix is called the axis of symmetry or simply the axis of the curve. The point where the axis intersects the curve is the vertex of the parabola. The vertex (denoted by V) is a point midway between the focus and directrix.
  • 13.
  • 14. The line through F perpendicular to the axis is called the latus rectum whose length is |4a|. The endpoints are 𝑳𝟏and𝑳𝟐. This determines how the wide the parabola opens.
  • 15. The line parallel to the latus rectum is called the directrix. 
  • 16. 𝑳𝟏   𝑷(𝒙,𝒚)   Directrix Latus Rectum abr />|a| Vertex Focus Axis of Symmetry 𝑳𝟐  
  • 18. 𝑽(𝟎,𝟎)   𝑳𝟏(𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒓𝒊𝒈𝒉𝒕   𝑭(𝒂,𝟎)   𝑳𝟐(𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=𝟒𝒂𝒙   𝑫:𝒙=−𝒂   TYPE 1
  • 19. 𝑽(𝟎,𝟎)   𝑳𝟏(−𝒂,𝟐𝒂)   𝒂𝒙𝒊𝒔: 𝒙   𝒐𝒑𝒆𝒏𝒊𝒏𝒈: 𝒕𝒐 𝒕𝒉𝒆 𝒍𝒆𝒇𝒕   𝑭(−𝒂,𝟎)   𝑳𝟐(−𝒂,−𝟐𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒚𝟐=−𝟒𝒂𝒙   𝑫:𝒙=𝒂   TYPE 2
  • 20. 𝑽(𝟎,𝟎)   𝑳𝟏(𝟐𝒂,𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:  𝒖𝒑𝒘𝒂𝒓𝒅   𝑭(𝟎,𝒂)   𝑳𝟐(−𝟐𝒂,𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=𝟒𝒂𝒚   𝑫:𝒚=−𝒂   TYPE 3
  • 21. 𝑽(𝟎,𝟎)   𝑳𝟏(−𝟐𝒂,−𝒂)   𝒂𝒙𝒊𝒔: 𝒚   𝒐𝒑𝒆𝒏𝒊𝒏𝒈:𝒅𝒐𝒘𝒏𝒘𝒂𝒓𝒅   𝑭(𝟎,−𝒂)   𝑳𝟐(𝟐𝒂,−𝒂)   𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏: 𝒙𝟐=−𝟒𝒂𝒚   𝑫:𝒚=𝒂   TYPE 4
  • 22. Sample Problem Locate the coordinates of the vertex (V), focus (F), endpoints of the latus rectum (𝑳𝟏𝑳𝟐), the equation of the directrix, and sketch the graph of 𝒙𝟐=−𝟖𝒚.  
  • 23. solution 1. 𝒙𝟐=−𝟖𝒚 takes the form 𝒙𝟐=−𝟒𝒂𝒚 2. the parabola opens downward 3. Compute the value of 𝒂 4. so, −𝟒𝒂=−𝟖, or 𝒂=𝟐 5. the required coordinates are   𝑽(𝟎,𝟎)   𝑫:𝒚=𝒂   𝑭𝟎,−𝒂=𝑭(𝟎,−𝟐)   𝑫:𝒚=𝟐   𝑳𝟏−𝟐𝒂,−𝒂=𝑳𝟏(−𝟒,−𝟐)   𝑳𝟐𝟐𝒂,−𝒂=𝑳𝟐(𝟒, −𝟐)  
  • 24. 𝒚   | | | 1 2 3 𝒚=𝟐   𝑽(𝟎,𝟎)   𝒙   | | | | | -5 -4 -3 -2 -1 | | | | | 1 2 3 4 5 | | | -3 -2 -1 𝑳𝟏(−𝟒,−𝟐)   𝑳𝟐(𝟒,−𝟐)   𝑭(𝟎,−𝟐)  
  • 25. Sketch the graphs and determine the coordinates of V, F, ends of LR, and equation of the directrix. 1. 𝒙𝟐+𝟔𝐲=𝟎 2. 𝒚𝟐=−𝟐𝟒𝒙 3. 𝟐𝒚𝟐−𝟑𝒙=𝟎