GANDHINAGAR INSTITUTE OF
TECHONOLOGY(012)
SUBJECT : Complex Variables & Numerical Methods
(2141905)
Active Learning Assignment on the topic of
“Complex Numbers & Functions”
BE Mechanical Sem:4
Prepared By: Yash D. Pandya
Guided By : Prof. Mansi Vaishnani
OVERVIEW
 De Moivre’s Theorem
 Roots of a Complex Number
 Example
 Hyperbolic Function
 Reference
De Moivre’s Theorem
 If n is a rational number, then the value or one of the values of
.sincosis)sin(cos  nini n

Corollary 1
Corollary 2
Corollary 3
 sincos)sin(cos ini n
 
 nini n
sincos)sin(cos 
 nini n
sincos)sin(cos  
Roots of a Complex Number
 De Moivre’s therom is also useful for finding roots of a complex number.
 If n is any positive integer, then by De Moivre’s therom…


sincossincossincos i
n
ni
n
n
n
i
n
n



















 
    




sin2sinandcos2cos
function;trictrigonometheofnatureperiodicbyobtainedbemayrootsremainingThe
sincossincos
;sincosofrootntheofoneissincosThus,
1



kk
n
i
n
i
i
n
i
n
n
th
Roots of a Complex Number
General Form
      





 





 


n
k
i
n
k
kiki nn


2
sin
2
cos
2sin2cossincos
11
   
above.asorderinrootssamethegivek willofluesfurther vaThe
)1(2
sin
)1(2
cos,1
.........
.........
2
sin
2
cos,1
sincos,0
For
follows;As.1...,3,2,1forsincosofrootstheallgiveswhich
1



 



 






 





 



n
n
i
n
n
nk
n
i
n
k
n
i
n
k
nki n




Example:1
 Solve and find its all roots.014
z
 
.3,2,1,0;
4
12
sin
4
12
cos
)2sin()2cos(
)sin(cos
)1(
4
1
4
1
4
1











 





 




k
k
i
k
kik
i
z



)1(
2
1
22
1
4
7
sin
4
7
cos,3
)1(
2
1
22
1
4
5
sin
4
5
cos,2
)1(
2
1
22
1
4
3
sin
4
3
cos,1
)1(
2
1
22
1
4
sin
4
cos,0
For
4
3
2
1
i
i
izk
i
i
izk
i
i
izk
i
i
izk








Example:2
 Find all roots of .3
8i
iz
iz
iz
80
08
then,8Let
3
3
3



 We have = /2 and r = |z| = 8….therefore, 
.2,1,0;
6
14
sin
6
14
cos2
2
2sin
2
2cos8z
Hence,
2
2sin
2
2cos8
2
sin
2
cos8
)sin(cos
3
1
3
1
3











 





 















































k
k
i
k
kik
kik
i
irz











iiiizk
i
i
izk
i
i
izk
2)0(2
2
3
sin
2
3
cos2
6
9
sin
6
9
cos2,2For
3
22
3
2
6
5
sin
6
5
cos2,1For
3
22
3
2
6
sin
6
cos2,0For
3
2
1










































 Above the different 3 value of Z are roots of the given function.
Hyperbolic Function
Defination of Hyperbolic Function
 
 
 
 
R,x
ee
ee
(x)
(x)
R,x
ee
x
x
R,x
ee
x
x
xx
xx
xx
xx














tanh
as...definedisandtanhbydenotedisxoftangentHyperbolic
2
cosh
as...definedandcoshbydenotedisxofcosineHyperbolic
2
sinh
as...definedandsinhbydenotedisxofsineHyperbolic
Hyperbolic Function
Relation between circular & Hyperbolic Function
)1.(..........)sinh()sin(,
)sinh(
2
2
2
2
)sin(
...
2
sin
)()(
xiixTherefore
xi
ee
i
i
ee
i
ee
i
ee
ix
equationaboveinixbyxreplacing
i
ee
x
xx
xx
xx
ixiixi
ixix







 














Hyperbolic Function
Relation between circular & Hyperbolic Function
.cot)coth(
,cothcot
,sec)(sec
secsec
,cos)(cos
coscos
,tan)tanh(
tanhtan
,cos)cosh(
coshcos,
xiix
(x)i(ix)
xixh
h(x),(ix)
ecxiixech
ech(x),iec(ix)
xiix
(x),i(ix)
xix
(x),(ix)Similarly










Hyperbolic Function
Hyperbolic Identities
   
)(sinh4)sinh(3)3sinh(
)cosh()sinh(2)2sinh(
1)(coth)(cos
)(tanh1)(sec,
.1)(sinh)(cos
1)cosh()sinh(
1)(cos)(sin
...,
1cossin
3
22
22
22
22
22
22
xxx
xxx
xxech
xxhSimilarly
xx
xxi
ixix
aboveinixbyxreplacingNow
xx








Hyperbolic Function
Hyperbolic Function for Complex Number
)cosh(
)sinh(
)tanh(
,isfunctionOther
2
)sinh(
as,definedanddenotedisoffunctionsinehyperboliccomplexThe
2
)cosh(
as,definedanddenotedisoffunctioncosinehyperboliccomplexThe
z
z
z
ee
z
z
ee
z
z
zz
zz







Example:3
 Prove that ).1ln(sin 21
ziziz 
 
 
).1ln(sin
)1ln(
)1ln(
1ln
1)(ln
)(sinh
)sinh(
sin
,bysidesbothgMultiplyin
.sinsin
Let,
21
2
22
2
2
1
1
ziziz
ziziw
ziziiw
ziziw
iziziw
iziw
iwiz
wiiz
i
wzwz












Thank You

Complex Numbers & Functions

  • 1.
    GANDHINAGAR INSTITUTE OF TECHONOLOGY(012) SUBJECT: Complex Variables & Numerical Methods (2141905) Active Learning Assignment on the topic of “Complex Numbers & Functions” BE Mechanical Sem:4 Prepared By: Yash D. Pandya Guided By : Prof. Mansi Vaishnani
  • 2.
    OVERVIEW  De Moivre’sTheorem  Roots of a Complex Number  Example  Hyperbolic Function  Reference
  • 3.
    De Moivre’s Theorem If n is a rational number, then the value or one of the values of .sincosis)sin(cos  nini n  Corollary 1 Corollary 2 Corollary 3  sincos)sin(cos ini n    nini n sincos)sin(cos   nini n sincos)sin(cos  
  • 4.
    Roots of aComplex Number  De Moivre’s therom is also useful for finding roots of a complex number.  If n is any positive integer, then by De Moivre’s therom…   sincossincossincos i n ni n n n i n n                               sin2sinandcos2cos function;trictrigonometheofnatureperiodicbyobtainedbemayrootsremainingThe sincossincos ;sincosofrootntheofoneissincosThus, 1    kk n i n i i n i n n th
  • 5.
    Roots of aComplex Number General Form                        n k i n k kiki nn   2 sin 2 cos 2sin2cossincos 11     above.asorderinrootssamethegivek willofluesfurther vaThe )1(2 sin )1(2 cos,1 ......... ......... 2 sin 2 cos,1 sincos,0 For follows;As.1...,3,2,1forsincosofrootstheallgiveswhich 1                             n n i n n nk n i n k n i n k nki n    
  • 6.
    Example:1  Solve andfind its all roots.014 z   .3,2,1,0; 4 12 sin 4 12 cos )2sin()2cos( )sin(cos )1( 4 1 4 1 4 1                         k k i k kik i z    )1( 2 1 22 1 4 7 sin 4 7 cos,3 )1( 2 1 22 1 4 5 sin 4 5 cos,2 )1( 2 1 22 1 4 3 sin 4 3 cos,1 )1( 2 1 22 1 4 sin 4 cos,0 For 4 3 2 1 i i izk i i izk i i izk i i izk        
  • 7.
    Example:2  Find allroots of .3 8i iz iz iz 80 08 then,8Let 3 3 3     We have = /2 and r = |z| = 8….therefore,  .2,1,0; 6 14 sin 6 14 cos2 2 2sin 2 2cos8z Hence, 2 2sin 2 2cos8 2 sin 2 cos8 )sin(cos 3 1 3 1 3                                                                    k k i k kik kik i irz           
  • 8.
  • 9.
    Hyperbolic Function Defination ofHyperbolic Function         R,x ee ee (x) (x) R,x ee x x R,x ee x x xx xx xx xx               tanh as...definedisandtanhbydenotedisxoftangentHyperbolic 2 cosh as...definedandcoshbydenotedisxofcosineHyperbolic 2 sinh as...definedandsinhbydenotedisxofsineHyperbolic
  • 10.
    Hyperbolic Function Relation betweencircular & Hyperbolic Function )1.(..........)sinh()sin(, )sinh( 2 2 2 2 )sin( ... 2 sin )()( xiixTherefore xi ee i i ee i ee i ee ix equationaboveinixbyxreplacing i ee x xx xx xx ixiixi ixix                       
  • 11.
    Hyperbolic Function Relation betweencircular & Hyperbolic Function .cot)coth( ,cothcot ,sec)(sec secsec ,cos)(cos coscos ,tan)tanh( tanhtan ,cos)cosh( coshcos, xiix (x)i(ix) xixh h(x),(ix) ecxiixech ech(x),iec(ix) xiix (x),i(ix) xix (x),(ix)Similarly          
  • 12.
    Hyperbolic Function Hyperbolic Identities    )(sinh4)sinh(3)3sinh( )cosh()sinh(2)2sinh( 1)(coth)(cos )(tanh1)(sec, .1)(sinh)(cos 1)cosh()sinh( 1)(cos)(sin ..., 1cossin 3 22 22 22 22 22 22 xxx xxx xxech xxhSimilarly xx xxi ixix aboveinixbyxreplacingNow xx        
  • 13.
    Hyperbolic Function Hyperbolic Functionfor Complex Number )cosh( )sinh( )tanh( ,isfunctionOther 2 )sinh( as,definedanddenotedisoffunctionsinehyperboliccomplexThe 2 )cosh( as,definedanddenotedisoffunctioncosinehyperboliccomplexThe z z z ee z z ee z z zz zz       
  • 14.
    Example:3  Prove that).1ln(sin 21 ziziz      ).1ln(sin )1ln( )1ln( 1ln 1)(ln )(sinh )sinh( sin ,bysidesbothgMultiplyin .sinsin Let, 21 2 22 2 2 1 1 ziziz ziziw ziziiw ziziw iziziw iziw iwiz wiiz i wzwz            
  • 15.