SlideShare a Scribd company logo
1 of 22
ChemE 2200 – Chemical Thermodynamics Lecture 1
Today:
Introduction to Statistical Thermodynamics
Defining Question:
What is a partition function?
Reading for Today’s Lecture:
McQuarrie & Simon, Chp 17.1-17.3, MathChapters H & J.
Reading for Thermodynamics Lecture 2:
McQuarrie & Simon, Chp 17.4, 17.6, 18.1-18.2.
Physical Chemistry II for Engineers
Syllabus:
Applied Quantum Chemistry
Classical Thermodynamics
Chemical Kinetics
Statistical Thermodynamics
PChem II for Engineers – Part 2.
Statistical Thermodynamics:
Classical Thermodynamics:
physical observables
classical
thermodynamics
abstract quantities
P, V, T, N, and chemical identity U – internal energy (1st Law)
Description of the Equilibrium State.
S – entropy (2nd Law)
Conversions of Energy: Heat – thermal equilibrium
Work – mechanical equilibrium
Chemical Reaction – 2H2 + CO  CH3OH
Physical Reaction – liquid  gas
Start with molecular energy levels from quantum chemistry.
Use statistics to predict populations of energy levels.
Given Nmolecules, Etotal, and V, predict P, T, CV, CP, and entropy.
Empirical; not based on microscopic (molecular) description.
Thermodynamics and Chemical Kinetics
in the Chemical & Biomolecular Engineering Curriculum
Mathematics & Science
Calculus
Physics
Chemisty
Biology
Engineering Sciences
Mass & Energy Balances
Fluid Mechanics
Thermodynamics
Chemical Kinetics
Chemical & Biomolecular Process Units
Heat & Mass Transfer
Separation Processes
Chemical Reactor Design
Unit Operations Laboratory
Chemical & Biomolecular Processes
Process Design
Process Optimization & Control
Understanding Thermodynamics
“Thermodynamics is a funny subject. The first time you go through it,
you don't understand it at all. The second time you go through it, you think
you understand it, except for one or two points. The third time you go through
it, you know you don't understand it, but by that time you are so used to the
subject, it doesn't bother you anymore.”
Arnold Sommerfeld (1868-1951)
Ordinarius Professor of Physics
Director, Theoretical Physics Institute
University of Munich
Understanding Thermodynamics
“The first time you go through it (thermodynamics),
you don't understand it at all.”
Why?
Copious mathematics (mostly The Calculus)
Myriad variables.
A functional command of thermodynamics.
Calculate heat flow and work done for a process.
Our Goals:
Abstract quantities: energy and entropy.
Predict the spontaneity of a process, such as a chemical reaction,
and its dependence on concentration, temperature, and pressure.
An understanding of thermodynamic phenomena.
A molecular basis for thermodynamic quantities.
Introduction to Statistical Thermodynamics
What is the Equilibrium State of a System (of Molecules)?
Nmolecules, V, T
empirical
postulates
Esystem, Ssystem
Macroscopic Description
can replace either with P
Microscopic Description
position (x, y, z) of every molecule
momentum (px, py, pz) of every molecule
Esystem, Ssystem
statistics
Introduction to Statistical Thermodynamics
Consider a system of N molecules, i = 1, 2, 3, … N
Example: An Ideal Gas in a cubic box, V = a3
no interaction between molecules.
indistinguishable molecules.
Energy states are given by Particles in a Box
Define Ni  number of molecules in state ei Ni is a State Population number



i
i
N
Ntotal
molecules
total
 e


i
i
i
N
Etotal
energy
total
The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …)
1
,
1
,
1
:
1 


e z
y
x n
n
n
1
,
1
,
2
:
2 


e z
y
x n
n
n
 
2
2
2
2
2
,
,
8
z
y
x
n
n
n n
n
n
ma
h
z
y
x



e
The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …)
Example 1: 10 molecules, e1 = 0, e2 = 1, e3 = 3
e = 0
1
3
State A
10
2
3
5
3
2
1
total






 N
N
N
N
State B
10
1
6
3
total 



N
9
3
2
1
3
0
5
3
3
2
2
1
1
total







e

e

e
 N
N
N
E 9
3
1
1
6
0
3
total 






E
State C
10
3
0
7
total 



N
9
3
3
1
0
0
7
total 






E
Which state is more probable?
For a set of indistinguishable molecules, Number of permutations  W




!
!
!
!
3
2
1
total
N
N
N
N
2520
!
2
!
3
!
5
!
10


W 840
!
1
!
6
!
3
!
10


W 120
!
3
!
0
!
7
!
10


W
State D: (N1, N2, N3) = (1,9,0) 10
!
0
!
9
!
1
!
10


W
most
probable
The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …)
Example 2: e1 = 0, e2 = 1, e3 = 3, Ntotal = 20,000, Etotal = 10,000
3 degrees of freedom (e1, e2, e3) with 2 constraints (Ntotal, Etotal)  1 equation
000
,
20
3
2
1
total 


 N
N
N
N
000
,
10
3
3
2
2
1
1
total 
e

e

e
 N
N
N
E
000
,
10
3
1
0 3
2
1 





 N
N
N
substitute
2
1
3 000
,
20 N
N
N 


000
,
10
3
)
000
,
20
( 2
1
2 



 N
N
N
1
2 3
000
,
50
2 N
N 



solve for N3
Set N1, calculate N2 and N3, and then calculate
!
!
!
!
3
2
1
total
N
N
N
N
W 
But calculating N! is intractable for N > 100. 10! = 3,628,800 100! = 9.3  10157
How to calculate 20,000! ? 1023! ?
1
2
2
3
000
,
25 N
N 

Stirling’s Approximation for N!
But calculating N! is intractable for N > 100. How to calculate 20,000! ? 1023! ?













 )
4
ln(
)
3
ln(
)
2
ln(
)
1
ln(
)
4
3
2
1
ln(
!
ln N


N
x
1
ln



N
x
x
1
ln
McQuarrie & Simon, Figure J-1, p. 813


N
x
N
1
ln
!
ln
N
x
x
x 1
)
ln
( 

)
1
1
ln
1
(
ln 



 N
N
N
0
neglect for
N » 1
N
N
N
e
N
N
N
N
N




!
ln
!
ln Stirling’s
Approximation
McQuarrie & Simon, p. 812
The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …)
Example 2: e1 = 0, e2 = 1, e3 = 3, Ntotal = 20,000, Etotal = 10,000
!
!
!
!
3
2
1
total
N
N
N
N
W 
2
1
3 000
,
20 N
N
N 


Set N1 
0
0.2
0.4
0.6
0.8
1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
N1
max
W
W
N3 < 0 for N1 < 10,000
N2 < 0 for
N1 > 16,666
Maximum probability at N1 = 12,674, N2 = 5,989, N3 = 1,337
Full Width at
Half Maximum
(FWHM) = 100
1
2
2
3
000
,
25 N
N 

The relative width of the probability distribution decreases with Ntotal
Example 3: Consider a box of molecules, each of which can be on the left or right side.
Left Right
What are the
Left-Right
configurations?
Case 1: 4 molecules: 4 in Left side: LLLL
3 in Left side: LLLR LLRL LRLL RLLL
2 in Left side: LLRR LRLR LRRL RRLL RLRL RLLR
1 in Left side: LRRR RLRR RRLR RRRL
0 in Left side: RRRR
Number of Configurations = W(Ntotal, NLeft)
)!
(
!
!
Left
total
Left
total
N
N
N
N


1
4
6
4
1
W
Example 3: A Box of Molecules: Probabilities of Left-Right Distributions
width of distribution scales as
1/2
total
N
0 1 2 3 4 5 6 7 8 9 10
10 molecules
0 10 20 30 40 50 60 70 80 90 100
100 molecules
0 100 200 300 400 500 600 700 800 900 1000
1,000 molecules
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10,000 molecules
NLeft NLeft
NLeft NLeft
Example 4: A mole of an Ideal Gas
Infinite energy levels. 6  1023 molecules.
Numerical Modeling (as with Examples 1, 2, and 3) is not practical.
How to find the maximum of the function that gives the number of configurations?





e
!
!
!
!
)
,
(
3
2
1
total
N
N
N
N
W
N
f i
i
with two constraints:










i
i
N
N
N
N
N 3
2
1
total
i
i
i
N
N
N
N
E e





e

e

e
 

3
3
2
2
1
1
total
Use Lagrange’s Method of Undetermined Multipliers (Math 1920).
f = function to be (conditionally) maximized
g1 = constraint 1
g2 = constraint 2
Define K = f + ag1 + bg2
The constrained maximum of f is at 2
1
0 g
g
f
K 
b


a





0
)
,
(
,
0
)
,
(
such that 2
1 
 y
x
g
y
x
g
Lagrange’s Method of Undetermined Multipliers – one constraint
f(x, y) = y2 + 4y  x2y constraint: g(x, y) = 0 = 9  x2  y2
The gradient of f(x, y) is parallel to
the gradient of constraint g(x, y)
at the constrained maximum of f(x, y).
The constrained maximum is
f(±2.49, 1.67)  6.4
source: Norm Prokup, www.geogebra
Lagrange’s Method of Undetermined Multipliers – one constraint
f(x, y) = x2  y constraint: g(x, y) = 0 = 16  x2  y2
The gradient of f(x, y) is parallel to
the gradient of constraint g(x, y)
at the constrained maximum of f(x, y).
The constrained maximum is
f(3.97, 0.5)  16.25
Lagrange’s Method of Undetermined Multipliers for a mole of an Ideal Gas
The function to maximize is
2
1
0 g
g
f
K 
b


a





We seek the population distribution among particle-in-a-box energy states
with the maximum number of configurations, W.
 Ntotal
For convenience we will find the maximun of the function ln W.











e
!
!
!
!
ln
ln
)
,
(
3
2
1
total
N
N
N
N
W
N
f i
i






 !
ln
!
ln
!
ln
!
ln 3
2
1
total N
N
N
N









 




 1
1
total
total
total ln
ln
i
i
i
i
i N
N
N
N
N
N
i
i
i
i N
N
N
N
N
f ln
ln
)
,
( total
total 


e
Constraints: total molecules: 





e
1
total
1 0
)
,
(
i
i
i
i N
N
N
g
total energy: 


e



e
1
total
2 0
)
,
(
i
i
i
i
i N
E
N
g
K  f + ag2 + bg2 





e

b








a


 






1
total
1
total
total
total ln
ln
i
i
i
i
i
i
i N
E
N
N
N
N
N
N
Next step: find a and b such that




1
total !
ln
!
ln
i
i
N
N
apply Stirling’s
approximation
Lagrange’s Method of Undetermined Multipliers for a mole of an Ideal Gas
K  f + ag2 + bg2 





e

b








a


 






1
total
1
total
total
total ln
ln
i
i
i
i
i
i
i N
E
N
N
N
N
N
N
2
1
0 g
g
f
K 
b


a





Next step: find a and b such that
The function K must be at a maximum with respect to all variables N1, N2, N3, …






e





















b




























a














































i
i
i
i
i
i
i
i
i
i
i
i
i
i
N
i
N
N
N
E
N
N
N
N
N
N
N
N
N
N
N
N
N
N
K
i
j
total
total
total
total ln
ln
ln
0
0
0 0
i
i
N
i
N
N
K
i
j
be

a
















1
ln
0
i
i
N be

a


 )
1
(
ln
i
e
e
Ni
be

a


 )
1
(




be

a






1
)
1
(
1
total
i
i
i
i
e
e
N
N 


be

a



1
)
1
(
i
i
e
e
i
e
N
e be

a



 total
)
1
(
i
i
e
e
N
Ni be

be


 total
1
1 1
i
N
1

Statistical Thermodynamics for a mole of an Ideal Gas
i
i
e
e
N
Ni be

be


 total
For a fixed number of molecules and a fixed total energy
the population of energy level ei is
The population distribution decreases exponentially at a rate set by b.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ni Ni
energy level ei energy level ei
large b small b
5
.
0

be

 i
e 1
.
3

be

 i
e
Later we will derive
kT
1

b
low T high T
k is Boltzmann’s constant.
The exponential population decrease is a Boltzmann distribution.
Statistical Thermodynamics for a mole of an Ideal Gas
i
i
e
e
N
Ni be

be


 total
For a fixed number of molecules and a fixed total energy
the population of energy level ei is
The sum i
e be

 is a key descriptor of the equilibrium state of a system of molecules.
kT
i
i
e
e
Q /
Define e

be



  Q is called the Partition Function.
Q reflects how the molecules are partitioned into the molecular energy levels ei.
Q is determined by the molecular energy levels ei and the temperature T.
Aside: Some textbooks use Z for the partition function for the German Zustrandssomme.
state sum
Statistical Thermodynamics for a mole of an Ideal Gas
i
i
e
e
N
Ni be

be


 total
For a fixed number of molecules and a fixed total energy
the population of energy level ei is
The sum i
e be

 is a key descriptor of the equilibrium state of a system of molecules.
kT
i
i
e
e
Q /
Define e

be



  Q is called the Partition Function.
1 1.4 3
Q = 1.05 1.58 1.99 3.86
1
lim
0


Q
T




Q
T
lim
Figure from Atkins’ Physical Chemistry, p. 566.
spacing
between
levels
 elevel
3
.
0
level

e
kT

More Related Content

Similar to ChemE_2200_lecture_T1.ppt weryuiutewryyuuu

Thermodynamic principles fin
Thermodynamic principles finThermodynamic principles fin
Thermodynamic principles fin
MUBOSScz
 
0900 mac ozone met soc-2011
0900 mac ozone met soc-20110900 mac ozone met soc-2011
0900 mac ozone met soc-2011
kierentorres
 

Similar to ChemE_2200_lecture_T1.ppt weryuiutewryyuuu (20)

Thermodynamic principles fin
Thermodynamic principles finThermodynamic principles fin
Thermodynamic principles fin
 
By using the anharmonic correlated einstein model to define the expressions o...
By using the anharmonic correlated einstein model to define the expressions o...By using the anharmonic correlated einstein model to define the expressions o...
By using the anharmonic correlated einstein model to define the expressions o...
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1
 
statistic mechanics
statistic mechanicsstatistic mechanics
statistic mechanics
 
Quantum information probes
Quantum information probes Quantum information probes
Quantum information probes
 
Nuclear Decay - A Mathematical Perspective
Nuclear Decay - A Mathematical PerspectiveNuclear Decay - A Mathematical Perspective
Nuclear Decay - A Mathematical Perspective
 
Atomic structure
Atomic structureAtomic structure
Atomic structure
 
Statistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VIStatistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VI
 
MD_course.ppt
MD_course.pptMD_course.ppt
MD_course.ppt
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
Phase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methodsPhase-field modeling of crystal nucleation I: Fundamentals and methods
Phase-field modeling of crystal nucleation I: Fundamentals and methods
 
Schrödinger wave equation
Schrödinger wave equationSchrödinger wave equation
Schrödinger wave equation
 
0900 mac ozone met soc-2011
0900 mac ozone met soc-20110900 mac ozone met soc-2011
0900 mac ozone met soc-2011
 
Presentation
PresentationPresentation
Presentation
 
Ch7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atomsCh7 quantum theory and the electronic structure of atoms
Ch7 quantum theory and the electronic structure of atoms
 
Part VIII - The Standard Model
Part VIII - The Standard ModelPart VIII - The Standard Model
Part VIII - The Standard Model
 
Many electrons atoms_2012.12.04 (PDF with links
Many electrons atoms_2012.12.04 (PDF with linksMany electrons atoms_2012.12.04 (PDF with links
Many electrons atoms_2012.12.04 (PDF with links
 
8_06_Paper
8_06_Paper8_06_Paper
8_06_Paper
 
punnu-nd-comPresentation2.pptx
punnu-nd-comPresentation2.pptxpunnu-nd-comPresentation2.pptx
punnu-nd-comPresentation2.pptx
 
Thermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit ChainThermal Entanglement of a Qubitqutrit Chain
Thermal Entanglement of a Qubitqutrit Chain
 

More from sadafshahbaz7777

More from sadafshahbaz7777 (20)

ITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.pptITPTeaching201026899393876892827799866.ppt
ITPTeaching201026899393876892827799866.ppt
 
IOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptxIOP-Limit-Less-careers-lesson-for-teachers.pptx
IOP-Limit-Less-careers-lesson-for-teachers.pptx
 
Ch5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.pptCh5_slides Qwertr12234543234433444344.ppt
Ch5_slides Qwertr12234543234433444344.ppt
 
Lecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .pptLecture 4-Structure and function of carbohydrates .ppt
Lecture 4-Structure and function of carbohydrates .ppt
 
social_media_for_research 234664445.pptx
social_media_for_research 234664445.pptxsocial_media_for_research 234664445.pptx
social_media_for_research 234664445.pptx
 
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
647883385-Role-of-Sufi-in-the-spread-of-Islam-in-subcontinent.pdf
 
Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888Kee_Pookong_01.ppt 2579975435676667788888
Kee_Pookong_01.ppt 2579975435676667788888
 
160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx160572975823-intro-to-social-studies.pptx
160572975823-intro-to-social-studies.pptx
 
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.pptC3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
C3LC_Waring_ap_Run Through_4-27-15_compressed.ppt
 
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
320936716-c-Constitutional-Development-of-Pakistan-Since-1947-to-Date (2).pdf
 
373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf373745833-235433Constitutional-Issues.pdf
373745833-235433Constitutional-Issues.pdf
 
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdfChoudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
Choudhury-ConstitutionMakingDilemmasPakistan-1955.pdf
 
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptxAdverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
Adverse Childhood Experiences Supplemental PowerPoint Slides (PPTX).pptx
 
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
DevelopmentofLocalGovernanceandDecentralizationtoempowerCitizensinPakistan-AH...
 
Lecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555pptLecture 1-disp2456542234566.2456655555ppt
Lecture 1-disp2456542234566.2456655555ppt
 
First financial management 23566432245556
First financial management 23566432245556First financial management 23566432245556
First financial management 23566432245556
 
lecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptlecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.ppt
 
CECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptxCECS ejn working 11-8-246787654455517.pptx
CECS ejn working 11-8-246787654455517.pptx
 
functionsoflocalgovernment-160425164745.pdf
functionsoflocalgovernment-160425164745.pdffunctionsoflocalgovernment-160425164745.pdf
functionsoflocalgovernment-160425164745.pdf
 
Gender_Equality_in_Education_-_National_HST.PPTX
Gender_Equality_in_Education_-_National_HST.PPTXGender_Equality_in_Education_-_National_HST.PPTX
Gender_Equality_in_Education_-_National_HST.PPTX
 

Recently uploaded

Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cherry
 

Recently uploaded (20)

FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 

ChemE_2200_lecture_T1.ppt weryuiutewryyuuu

  • 1. ChemE 2200 – Chemical Thermodynamics Lecture 1 Today: Introduction to Statistical Thermodynamics Defining Question: What is a partition function? Reading for Today’s Lecture: McQuarrie & Simon, Chp 17.1-17.3, MathChapters H & J. Reading for Thermodynamics Lecture 2: McQuarrie & Simon, Chp 17.4, 17.6, 18.1-18.2.
  • 2. Physical Chemistry II for Engineers Syllabus: Applied Quantum Chemistry Classical Thermodynamics Chemical Kinetics Statistical Thermodynamics
  • 3. PChem II for Engineers – Part 2. Statistical Thermodynamics: Classical Thermodynamics: physical observables classical thermodynamics abstract quantities P, V, T, N, and chemical identity U – internal energy (1st Law) Description of the Equilibrium State. S – entropy (2nd Law) Conversions of Energy: Heat – thermal equilibrium Work – mechanical equilibrium Chemical Reaction – 2H2 + CO  CH3OH Physical Reaction – liquid  gas Start with molecular energy levels from quantum chemistry. Use statistics to predict populations of energy levels. Given Nmolecules, Etotal, and V, predict P, T, CV, CP, and entropy. Empirical; not based on microscopic (molecular) description.
  • 4. Thermodynamics and Chemical Kinetics in the Chemical & Biomolecular Engineering Curriculum Mathematics & Science Calculus Physics Chemisty Biology Engineering Sciences Mass & Energy Balances Fluid Mechanics Thermodynamics Chemical Kinetics Chemical & Biomolecular Process Units Heat & Mass Transfer Separation Processes Chemical Reactor Design Unit Operations Laboratory Chemical & Biomolecular Processes Process Design Process Optimization & Control
  • 5. Understanding Thermodynamics “Thermodynamics is a funny subject. The first time you go through it, you don't understand it at all. The second time you go through it, you think you understand it, except for one or two points. The third time you go through it, you know you don't understand it, but by that time you are so used to the subject, it doesn't bother you anymore.” Arnold Sommerfeld (1868-1951) Ordinarius Professor of Physics Director, Theoretical Physics Institute University of Munich
  • 6. Understanding Thermodynamics “The first time you go through it (thermodynamics), you don't understand it at all.” Why? Copious mathematics (mostly The Calculus) Myriad variables. A functional command of thermodynamics. Calculate heat flow and work done for a process. Our Goals: Abstract quantities: energy and entropy. Predict the spontaneity of a process, such as a chemical reaction, and its dependence on concentration, temperature, and pressure. An understanding of thermodynamic phenomena. A molecular basis for thermodynamic quantities.
  • 7. Introduction to Statistical Thermodynamics What is the Equilibrium State of a System (of Molecules)? Nmolecules, V, T empirical postulates Esystem, Ssystem Macroscopic Description can replace either with P Microscopic Description position (x, y, z) of every molecule momentum (px, py, pz) of every molecule Esystem, Ssystem statistics
  • 8. Introduction to Statistical Thermodynamics Consider a system of N molecules, i = 1, 2, 3, … N Example: An Ideal Gas in a cubic box, V = a3 no interaction between molecules. indistinguishable molecules. Energy states are given by Particles in a Box Define Ni  number of molecules in state ei Ni is a State Population number    i i N Ntotal molecules total  e   i i i N Etotal energy total The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …) 1 , 1 , 1 : 1    e z y x n n n 1 , 1 , 2 : 2    e z y x n n n   2 2 2 2 2 , , 8 z y x n n n n n n ma h z y x    e
  • 9. The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …) Example 1: 10 molecules, e1 = 0, e2 = 1, e3 = 3 e = 0 1 3 State A 10 2 3 5 3 2 1 total        N N N N State B 10 1 6 3 total     N 9 3 2 1 3 0 5 3 3 2 2 1 1 total        e  e  e  N N N E 9 3 1 1 6 0 3 total        E State C 10 3 0 7 total     N 9 3 3 1 0 0 7 total        E Which state is more probable? For a set of indistinguishable molecules, Number of permutations  W     ! ! ! ! 3 2 1 total N N N N 2520 ! 2 ! 3 ! 5 ! 10   W 840 ! 1 ! 6 ! 3 ! 10   W 120 ! 3 ! 0 ! 7 ! 10   W State D: (N1, N2, N3) = (1,9,0) 10 ! 0 ! 9 ! 1 ! 10   W most probable
  • 10. The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …) Example 2: e1 = 0, e2 = 1, e3 = 3, Ntotal = 20,000, Etotal = 10,000 3 degrees of freedom (e1, e2, e3) with 2 constraints (Ntotal, Etotal)  1 equation 000 , 20 3 2 1 total     N N N N 000 , 10 3 3 2 2 1 1 total  e  e  e  N N N E 000 , 10 3 1 0 3 2 1        N N N substitute 2 1 3 000 , 20 N N N    000 , 10 3 ) 000 , 20 ( 2 1 2      N N N 1 2 3 000 , 50 2 N N     solve for N3 Set N1, calculate N2 and N3, and then calculate ! ! ! ! 3 2 1 total N N N N W  But calculating N! is intractable for N > 100. 10! = 3,628,800 100! = 9.3  10157 How to calculate 20,000! ? 1023! ? 1 2 2 3 000 , 25 N N  
  • 11. Stirling’s Approximation for N! But calculating N! is intractable for N > 100. How to calculate 20,000! ? 1023! ?               ) 4 ln( ) 3 ln( ) 2 ln( ) 1 ln( ) 4 3 2 1 ln( ! ln N   N x 1 ln    N x x 1 ln McQuarrie & Simon, Figure J-1, p. 813   N x N 1 ln ! ln N x x x 1 ) ln (   ) 1 1 ln 1 ( ln      N N N 0 neglect for N » 1 N N N e N N N N N     ! ln ! ln Stirling’s Approximation McQuarrie & Simon, p. 812
  • 12. The State of the System is the set of population numbers = {Ni} = (N1, N2, N3, …) Example 2: e1 = 0, e2 = 1, e3 = 3, Ntotal = 20,000, Etotal = 10,000 ! ! ! ! 3 2 1 total N N N N W  2 1 3 000 , 20 N N N    Set N1  0 0.2 0.4 0.6 0.8 1 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 N1 max W W N3 < 0 for N1 < 10,000 N2 < 0 for N1 > 16,666 Maximum probability at N1 = 12,674, N2 = 5,989, N3 = 1,337 Full Width at Half Maximum (FWHM) = 100 1 2 2 3 000 , 25 N N  
  • 13. The relative width of the probability distribution decreases with Ntotal Example 3: Consider a box of molecules, each of which can be on the left or right side. Left Right What are the Left-Right configurations? Case 1: 4 molecules: 4 in Left side: LLLL 3 in Left side: LLLR LLRL LRLL RLLL 2 in Left side: LLRR LRLR LRRL RRLL RLRL RLLR 1 in Left side: LRRR RLRR RRLR RRRL 0 in Left side: RRRR Number of Configurations = W(Ntotal, NLeft) )! ( ! ! Left total Left total N N N N   1 4 6 4 1 W
  • 14. Example 3: A Box of Molecules: Probabilities of Left-Right Distributions width of distribution scales as 1/2 total N 0 1 2 3 4 5 6 7 8 9 10 10 molecules 0 10 20 30 40 50 60 70 80 90 100 100 molecules 0 100 200 300 400 500 600 700 800 900 1000 1,000 molecules 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 10,000 molecules NLeft NLeft NLeft NLeft
  • 15. Example 4: A mole of an Ideal Gas Infinite energy levels. 6  1023 molecules. Numerical Modeling (as with Examples 1, 2, and 3) is not practical. How to find the maximum of the function that gives the number of configurations?      e ! ! ! ! ) , ( 3 2 1 total N N N N W N f i i with two constraints:           i i N N N N N 3 2 1 total i i i N N N N E e      e  e  e    3 3 2 2 1 1 total Use Lagrange’s Method of Undetermined Multipliers (Math 1920). f = function to be (conditionally) maximized g1 = constraint 1 g2 = constraint 2 Define K = f + ag1 + bg2 The constrained maximum of f is at 2 1 0 g g f K  b   a      0 ) , ( , 0 ) , ( such that 2 1   y x g y x g
  • 16. Lagrange’s Method of Undetermined Multipliers – one constraint f(x, y) = y2 + 4y  x2y constraint: g(x, y) = 0 = 9  x2  y2 The gradient of f(x, y) is parallel to the gradient of constraint g(x, y) at the constrained maximum of f(x, y). The constrained maximum is f(±2.49, 1.67)  6.4 source: Norm Prokup, www.geogebra
  • 17. Lagrange’s Method of Undetermined Multipliers – one constraint f(x, y) = x2  y constraint: g(x, y) = 0 = 16  x2  y2 The gradient of f(x, y) is parallel to the gradient of constraint g(x, y) at the constrained maximum of f(x, y). The constrained maximum is f(3.97, 0.5)  16.25
  • 18. Lagrange’s Method of Undetermined Multipliers for a mole of an Ideal Gas The function to maximize is 2 1 0 g g f K  b   a      We seek the population distribution among particle-in-a-box energy states with the maximum number of configurations, W.  Ntotal For convenience we will find the maximun of the function ln W.            e ! ! ! ! ln ln ) , ( 3 2 1 total N N N N W N f i i        ! ln ! ln ! ln ! ln 3 2 1 total N N N N                 1 1 total total total ln ln i i i i i N N N N N N i i i i N N N N N f ln ln ) , ( total total    e Constraints: total molecules:       e 1 total 1 0 ) , ( i i i i N N N g total energy:    e    e 1 total 2 0 ) , ( i i i i i N E N g K  f + ag2 + bg2       e  b         a           1 total 1 total total total ln ln i i i i i i i N E N N N N N N Next step: find a and b such that     1 total ! ln ! ln i i N N apply Stirling’s approximation
  • 19. Lagrange’s Method of Undetermined Multipliers for a mole of an Ideal Gas K  f + ag2 + bg2       e  b         a           1 total 1 total total total ln ln i i i i i i i N E N N N N N N 2 1 0 g g f K  b   a      Next step: find a and b such that The function K must be at a maximum with respect to all variables N1, N2, N3, …       e                      b                             a                                               i i i i i i i i i i i i i i N i N N N E N N N N N N N N N N N N N N K i j total total total total ln ln ln 0 0 0 0 i i N i N N K i j be  a                 1 ln 0 i i N be  a    ) 1 ( ln i e e Ni be  a    ) 1 (     be  a       1 ) 1 ( 1 total i i i i e e N N    be  a    1 ) 1 ( i i e e i e N e be  a     total ) 1 ( i i e e N Ni be  be    total 1 1 1 i N 1 
  • 20. Statistical Thermodynamics for a mole of an Ideal Gas i i e e N Ni be  be    total For a fixed number of molecules and a fixed total energy the population of energy level ei is The population distribution decreases exponentially at a rate set by b. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ni Ni energy level ei energy level ei large b small b 5 . 0  be   i e 1 . 3  be   i e Later we will derive kT 1  b low T high T k is Boltzmann’s constant. The exponential population decrease is a Boltzmann distribution.
  • 21. Statistical Thermodynamics for a mole of an Ideal Gas i i e e N Ni be  be    total For a fixed number of molecules and a fixed total energy the population of energy level ei is The sum i e be   is a key descriptor of the equilibrium state of a system of molecules. kT i i e e Q / Define e  be      Q is called the Partition Function. Q reflects how the molecules are partitioned into the molecular energy levels ei. Q is determined by the molecular energy levels ei and the temperature T. Aside: Some textbooks use Z for the partition function for the German Zustrandssomme. state sum
  • 22. Statistical Thermodynamics for a mole of an Ideal Gas i i e e N Ni be  be    total For a fixed number of molecules and a fixed total energy the population of energy level ei is The sum i e be   is a key descriptor of the equilibrium state of a system of molecules. kT i i e e Q / Define e  be      Q is called the Partition Function. 1 1.4 3 Q = 1.05 1.58 1.99 3.86 1 lim 0   Q T     Q T lim Figure from Atkins’ Physical Chemistry, p. 566. spacing between levels  elevel 3 . 0 level  e kT