SlideShare a Scribd company logo
Implementation of
Cluster-wide Causal
Consistency in
- What is causal consistency
- Academics view on Causal Consistency
- MongoDB architecture
- Causal Consistency building blocks
- Making Causal Consistency secure
- Making Causal Consistency fast
- Making Causal Consistency reliable
- Causal consistency for end-users
Outline
Client-side properties of causal consistency
- Read your writes
- Writes follow reads
- Monotonic reads
- Monotonic writes
Implementing with a non causally consistent
system
- Single server systems are causally consistent
- Read and write from the same node
- Add an application logic to handle the scenarios that have to be causally
consistent
Ordering of Events in Distributed System
Process P Process Q Process R
q2: <C2> = 11
p1
r1: <C3> = 11
q1
<C3> = 0<C1> = 10 <C2> = 10
r2: <C3> = 12
q3
Server-side causal consistency
Causal consistency is a partial order of events in a distributed
system. If an event A causes another event B, then causal
consistency provides an assurance that each other process of the
system observes event A before observing event B.
If an event A is not causally related to an event B then they are
concurrent.
System’s Architecture
Gossiping clusterTime
ClusterTime: {uint64}
Timestamp(1495470881, 6)
Ticking clusterTime
{ts: 6} ...
{ts: 5} ...
{ts: 11} ...
insert({x:1}, clusterTime: 4)
<clusterTime>: 6
<Wall clock>: 11
Reporting operationTime
insert({x:1})
{ts: 11} ...
{ts: 5} ...
{ok:1}, { operationTime: 12}
{ts: 12} ...
<clusterTime>: 11
<Wall clock>: 11
Waiting for afterClusterTime
find({x:1}, afterClusterTime: {10},
clusterTime: {15})
{ts: 6} ...
{ts: 5} ...
{x:1}, { operationTime: {11}}
{ts: 11} ...
Breaking clusterTime
{ts: Timestamp(1495470881, 6), term: 1},
...
{ts: Timestamp(1495470881, 5), term: 1},
...
{Timestamp(0xFFFFFFFF, 0xFFFFFFFF}
...
insert({x:1}, clusterTime:
{0xFFFFFFFF, 0xFFFFFFFE})
LogicalClock:clusterTime =
Timestamp(0xFFFFFFFF, 0xFFFFFFFE)
Protecting clusterTime
"$clusterTime" : {
"clusterTime" : Timestamp(1495470881, 5),
"signature" : {
"hash" : BinData(0,"7olYjQCLtnfORsI9IAhdsftESR4="),
"keyId" : NumberLong("6422998367101517844")
}
}
Protecting against operator errors
{ts: 6} ...
{ts: 5} ...
insert({x:1}, clusterTime: 100,000)
<clusterTime>: 6
<Wall clock>: 11
{Error}, { operationTime: 6}
Signing a range of clusterTime
find({x:1}, clusterTime: <val>,
signature:<hash>)
<timeRange> =
<val> | 0x0000’0000’0000’FFFF
cache:{ <timeRange>:<hash> }
Use dummy signatures
- When the auth is off
- When a user has advanceClusterTime privilege
How end users see it
let session=db.getMongo().startSession({causalConsistency: true})
db = session.getDatabase(db.getName());
{checking:100}
find({name:”misha”})
afterClusterTime: 15
update({name:”misha”
checking:100})
{ok:1} operationTime: 15
startSession()
Misha Tyulenev
misha@mongodb.com

More Related Content

What's hot

Microservices With Spring Boot and Spring Cloud Netflix
Microservices With Spring Boot and Spring Cloud NetflixMicroservices With Spring Boot and Spring Cloud Netflix
Microservices With Spring Boot and Spring Cloud Netflix
Krzysztof Sobkowiak
 
Aljoscha Krettek - Portable stateful big data processing in Apache Beam
Aljoscha Krettek - Portable stateful big data processing in Apache BeamAljoscha Krettek - Portable stateful big data processing in Apache Beam
Aljoscha Krettek - Portable stateful big data processing in Apache Beam
Ververica
 
Addressing data plane performance measurement on OpenStack clouds using VMTP
Addressing data plane performance measurement on OpenStack clouds using VMTPAddressing data plane performance measurement on OpenStack clouds using VMTP
Addressing data plane performance measurement on OpenStack clouds using VMTP
Suhail Syed
 
Testing Asynchronous Algorithms Exhaustively on node.js
Testing Asynchronous Algorithms Exhaustively on node.jsTesting Asynchronous Algorithms Exhaustively on node.js
Testing Asynchronous Algorithms Exhaustively on node.js
MaxMotovilov
 
Graduating Flink Streaming - Chicago meetup
Graduating Flink Streaming - Chicago meetupGraduating Flink Streaming - Chicago meetup
Graduating Flink Streaming - Chicago meetup
Márton Balassi
 
IoT Research Project
IoT Research ProjectIoT Research Project
IoT Research Project
Tanvi Priyadarshini
 
Kostas Kloudas - Extending Flink's Streaming APIs
Kostas Kloudas - Extending Flink's Streaming APIsKostas Kloudas - Extending Flink's Streaming APIs
Kostas Kloudas - Extending Flink's Streaming APIs
Ververica
 
Debunking Common Myths in Stream Processing
Debunking Common Myths in Stream ProcessingDebunking Common Myths in Stream Processing
Debunking Common Myths in Stream Processing
Kostas Tzoumas
 
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Flink Forward
 
Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...
Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...
Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...
Flink Forward
 
Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...
Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...
Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...
Flink Forward
 
Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...
Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...
Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...
Flink Forward
 
Paper id 27201431
Paper id 27201431Paper id 27201431
Paper id 27201431
IJRAT
 
RTX Kernal
RTX KernalRTX Kernal
RTX Kernal
Team-VLSI-ITMU
 
Monitoring Kubernetes with Prometheus
Monitoring Kubernetes with PrometheusMonitoring Kubernetes with Prometheus
Monitoring Kubernetes with Prometheus
Tobias Schmidt
 
Cortex: Prometheus as a Service, One Year On
Cortex: Prometheus as a Service, One Year OnCortex: Prometheus as a Service, One Year On
Cortex: Prometheus as a Service, One Year On
Kausal
 
Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...
Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...
Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...
Flink Forward
 
Resilient Applications with Circuit Breakers
Resilient Applications with Circuit BreakersResilient Applications with Circuit Breakers
Resilient Applications with Circuit Breakers
Josué Neis
 

What's hot (18)

Microservices With Spring Boot and Spring Cloud Netflix
Microservices With Spring Boot and Spring Cloud NetflixMicroservices With Spring Boot and Spring Cloud Netflix
Microservices With Spring Boot and Spring Cloud Netflix
 
Aljoscha Krettek - Portable stateful big data processing in Apache Beam
Aljoscha Krettek - Portable stateful big data processing in Apache BeamAljoscha Krettek - Portable stateful big data processing in Apache Beam
Aljoscha Krettek - Portable stateful big data processing in Apache Beam
 
Addressing data plane performance measurement on OpenStack clouds using VMTP
Addressing data plane performance measurement on OpenStack clouds using VMTPAddressing data plane performance measurement on OpenStack clouds using VMTP
Addressing data plane performance measurement on OpenStack clouds using VMTP
 
Testing Asynchronous Algorithms Exhaustively on node.js
Testing Asynchronous Algorithms Exhaustively on node.jsTesting Asynchronous Algorithms Exhaustively on node.js
Testing Asynchronous Algorithms Exhaustively on node.js
 
Graduating Flink Streaming - Chicago meetup
Graduating Flink Streaming - Chicago meetupGraduating Flink Streaming - Chicago meetup
Graduating Flink Streaming - Chicago meetup
 
IoT Research Project
IoT Research ProjectIoT Research Project
IoT Research Project
 
Kostas Kloudas - Extending Flink's Streaming APIs
Kostas Kloudas - Extending Flink's Streaming APIsKostas Kloudas - Extending Flink's Streaming APIs
Kostas Kloudas - Extending Flink's Streaming APIs
 
Debunking Common Myths in Stream Processing
Debunking Common Myths in Stream ProcessingDebunking Common Myths in Stream Processing
Debunking Common Myths in Stream Processing
 
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
Fabian Hueske_Till Rohrmann - Declarative stream processing with StreamSQL an...
 
Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...
Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...
Flink Forward Berlin 2017: Kostas Kloudas - Complex Event Processing with Fli...
 
Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...
Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...
Flink Forward Berlin 2017: Aljoscha Krettek - Talk Python to me: Stream Proce...
 
Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...
Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...
Flink Forward Berlin 2017: Matt Zimmer - Custom, Complex Windows at Scale Usi...
 
Paper id 27201431
Paper id 27201431Paper id 27201431
Paper id 27201431
 
RTX Kernal
RTX KernalRTX Kernal
RTX Kernal
 
Monitoring Kubernetes with Prometheus
Monitoring Kubernetes with PrometheusMonitoring Kubernetes with Prometheus
Monitoring Kubernetes with Prometheus
 
Cortex: Prometheus as a Service, One Year On
Cortex: Prometheus as a Service, One Year OnCortex: Prometheus as a Service, One Year On
Cortex: Prometheus as a Service, One Year On
 
Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...
Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...
Flink Forward SF 2017: Stephan Ewen - Experiences running Flink at Very Large...
 
Resilient Applications with Circuit Breakers
Resilient Applications with Circuit BreakersResilient Applications with Circuit Breakers
Resilient Applications with Circuit Breakers
 

Viewers also liked

Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)
Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)
Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)
Ontico
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Ontico
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Ontico
 
Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...
Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...
Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...
Ontico
 
Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...
Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...
Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...
Ontico
 
Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...
Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...
Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...
Ontico
 
Состояние Состояния / Алексей Охрименко (IPONWEB)
Состояние Состояния / Алексей Охрименко (IPONWEB)Состояние Состояния / Алексей Охрименко (IPONWEB)
Состояние Состояния / Алексей Охрименко (IPONWEB)
Ontico
 
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Ontico
 
libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)
libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)
libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)
Ontico
 
Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)
Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)
Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)
Ontico
 

Viewers also liked (10)

Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)
Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)
Gobblin как ETL-фреймворк / Иван Ахлестин (Rambler&Co)
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
 
Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...
Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...
Распределенный отказоустойчивый сервис финансовых транзакций / Алексей Бурыло...
 
Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...
Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...
Защищаемость от DDoS на этапе проектирования системы / Рамиль Хантимиров (Sto...
 
Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...
Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...
Lambda architecture для realtime-аналитики — риски и преимущества / Николай Г...
 
Состояние Состояния / Алексей Охрименко (IPONWEB)
Состояние Состояния / Алексей Охрименко (IPONWEB)Состояние Состояния / Алексей Охрименко (IPONWEB)
Состояние Состояния / Алексей Охрименко (IPONWEB)
 
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
 
libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)
libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)
libfpta — обгоняя SQLite и Tarantool / Леонид Юрьев (Positive Technologies)
 
Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)
Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)
Как мы поддерживаем 100 разных версий клиентов в Badoo / Ярослав Голуб (Badoo)
 

Similar to Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев (MongoDB)

Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward
 
Predictive Maintenance with Deep Learning and Apache Flink
Predictive Maintenance with Deep Learning and Apache FlinkPredictive Maintenance with Deep Learning and Apache Flink
Predictive Maintenance with Deep Learning and Apache Flink
Dongwon Kim
 
An introduction to_rac_system_test_planning_methods
An introduction to_rac_system_test_planning_methodsAn introduction to_rac_system_test_planning_methods
An introduction to_rac_system_test_planning_methods
Ajith Narayanan
 
Flink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San JoseFlink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San Jose
Kostas Tzoumas
 
Graph The Planet 2019 - Intrusion Detection with Graphs
Graph The Planet 2019 - Intrusion Detection with GraphsGraph The Planet 2019 - Intrusion Detection with Graphs
Graph The Planet 2019 - Intrusion Detection with Graphs
Matt Swann
 
Physical and Logical Clocks
Physical and Logical ClocksPhysical and Logical Clocks
Physical and Logical Clocks
Dilum Bandara
 
Designing a reactive data platform: Challenges, patterns, and anti-patterns
Designing a reactive data platform: Challenges, patterns, and anti-patterns Designing a reactive data platform: Challenges, patterns, and anti-patterns
Designing a reactive data platform: Challenges, patterns, and anti-patterns
Alex Silva
 
Decoding the Data Integration Matrix? - Connectors in Kafka Connect and Flink
Decoding the Data Integration Matrix? - Connectors in Kafka Connect and FlinkDecoding the Data Integration Matrix? - Connectors in Kafka Connect and Flink
Decoding the Data Integration Matrix? - Connectors in Kafka Connect and Flink
HostedbyConfluent
 
SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...
SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...
SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...
SERENEWorkshop
 
SERENE 2014 School: Gabor karsai serene2014_school
SERENE 2014 School: Gabor karsai serene2014_schoolSERENE 2014 School: Gabor karsai serene2014_school
SERENE 2014 School: Gabor karsai serene2014_school
Henry Muccini
 
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Spark Summit
 
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward
 
Intelligent Monitoring
Intelligent MonitoringIntelligent Monitoring
Intelligent Monitoring
Intelie
 
Time Series Analysis… using an Event Streaming Platform
Time Series Analysis… using an Event Streaming PlatformTime Series Analysis… using an Event Streaming Platform
Time Series Analysis… using an Event Streaming Platform
confluent
 
Time Series Analysis Using an Event Streaming Platform
 Time Series Analysis Using an Event Streaming Platform Time Series Analysis Using an Event Streaming Platform
Time Series Analysis Using an Event Streaming Platform
Dr. Mirko Kämpf
 
Linux clustering solution
Linux clustering solutionLinux clustering solution
Linux clustering solution
Chanaka Lasantha
 
Fabric - Realtime stream processing framework
Fabric - Realtime stream processing frameworkFabric - Realtime stream processing framework
Fabric - Realtime stream processing framework
Shashank Gautam
 
You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]
You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]
You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]
Chris Suszyński
 
Distributed systems in practice, in theory (JAX London)
Distributed systems in practice, in theory (JAX London)Distributed systems in practice, in theory (JAX London)
Distributed systems in practice, in theory (JAX London)
Aysylu Greenberg
 
Apache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing dataApache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing data
DataWorks Summit/Hadoop Summit
 

Similar to Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев (MongoDB) (20)

Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
Flink Forward Berlin 2017: Dongwon Kim - Predictive Maintenance with Apache F...
 
Predictive Maintenance with Deep Learning and Apache Flink
Predictive Maintenance with Deep Learning and Apache FlinkPredictive Maintenance with Deep Learning and Apache Flink
Predictive Maintenance with Deep Learning and Apache Flink
 
An introduction to_rac_system_test_planning_methods
An introduction to_rac_system_test_planning_methodsAn introduction to_rac_system_test_planning_methods
An introduction to_rac_system_test_planning_methods
 
Flink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San JoseFlink Streaming Hadoop Summit San Jose
Flink Streaming Hadoop Summit San Jose
 
Graph The Planet 2019 - Intrusion Detection with Graphs
Graph The Planet 2019 - Intrusion Detection with GraphsGraph The Planet 2019 - Intrusion Detection with Graphs
Graph The Planet 2019 - Intrusion Detection with Graphs
 
Physical and Logical Clocks
Physical and Logical ClocksPhysical and Logical Clocks
Physical and Logical Clocks
 
Designing a reactive data platform: Challenges, patterns, and anti-patterns
Designing a reactive data platform: Challenges, patterns, and anti-patterns Designing a reactive data platform: Challenges, patterns, and anti-patterns
Designing a reactive data platform: Challenges, patterns, and anti-patterns
 
Decoding the Data Integration Matrix? - Connectors in Kafka Connect and Flink
Decoding the Data Integration Matrix? - Connectors in Kafka Connect and FlinkDecoding the Data Integration Matrix? - Connectors in Kafka Connect and Flink
Decoding the Data Integration Matrix? - Connectors in Kafka Connect and Flink
 
SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...
SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...
SERENE 2014 School: Resilience in Cyber-Physical Systems: Challenges and Oppo...
 
SERENE 2014 School: Gabor karsai serene2014_school
SERENE 2014 School: Gabor karsai serene2014_schoolSERENE 2014 School: Gabor karsai serene2014_school
SERENE 2014 School: Gabor karsai serene2014_school
 
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
 
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
Flink Forward SF 2017: Stephan Ewen - Convergence of real-time analytics and ...
 
Intelligent Monitoring
Intelligent MonitoringIntelligent Monitoring
Intelligent Monitoring
 
Time Series Analysis… using an Event Streaming Platform
Time Series Analysis… using an Event Streaming PlatformTime Series Analysis… using an Event Streaming Platform
Time Series Analysis… using an Event Streaming Platform
 
Time Series Analysis Using an Event Streaming Platform
 Time Series Analysis Using an Event Streaming Platform Time Series Analysis Using an Event Streaming Platform
Time Series Analysis Using an Event Streaming Platform
 
Linux clustering solution
Linux clustering solutionLinux clustering solution
Linux clustering solution
 
Fabric - Realtime stream processing framework
Fabric - Realtime stream processing frameworkFabric - Realtime stream processing framework
Fabric - Realtime stream processing framework
 
You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]
You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]
You need Event Mesh, not Service Mesh - Chris Suszynski [WJUG 301]
 
Distributed systems in practice, in theory (JAX London)
Distributed systems in practice, in theory (JAX London)Distributed systems in practice, in theory (JAX London)
Distributed systems in practice, in theory (JAX London)
 
Apache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing dataApache Beam: A unified model for batch and stream processing data
Apache Beam: A unified model for batch and stream processing data
 

More from Ontico

One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
Ontico
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Ontico
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Ontico
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Ontico
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Ontico
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
Ontico
 
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Ontico
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Ontico
 
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
Ontico
 
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
Ontico
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Ontico
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Ontico
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Ontico
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
Ontico
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Ontico
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Ontico
 
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Ontico
 
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Ontico
 
Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...
Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...
Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...
Ontico
 

More from Ontico (20)

One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
 
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Deve...
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
 
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)
 
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)MySQL Replication — Advanced Features / Петр Зайцев (Percona)
MySQL Replication — Advanced Features / Петр Зайцев (Percona)
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
 
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
 
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
 
Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...
Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...
Отказоустойчивая архитектура фронтальной системы банка / Роман Шеховцов, Алек...
 

Recently uploaded

132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
Software Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.pptSoftware Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.ppt
TaghreedAltamimi
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
riddhimaagrawal986
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 

Recently uploaded (20)

132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
Software Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.pptSoftware Quality Assurance-se412-v11.ppt
Software Quality Assurance-se412-v11.ppt
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 

Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев (MongoDB)

Editor's Notes

  1. Even if the read request goes to primary it's not guaranteed to read its own writes for example read concern level = majority may delay it
  2. Add a logical clock object to each cluster node (routers, storage, clients) Every client tracks the greatest operationTime inside a causally consistent session
  3. clusterTime is incremented only on the write to the oplog (storage) (clusterTime + election term) is a primary key in the oplog collection
  4. Every command returns an operationTime: the greatest clusterTime stored with an opLog entry at the time the command finishes its execution
  5. Every request includes the afterClusterTime A storage node waits for opLog to replicate the entry with clusterTime >= afterClusterTime
  6. Clients have to participate, but we don’t trust the clients There is a maximum time after which primary can’t do a write So we want to be sure that all cluster times from clients are from trusted source
  7. clusterTime is incremented only on the write to the oplog (storage) (clusterTime + election term) is a primary key in the oplog collection