SlideShare a Scribd company logo
ProxySQL Use
Case Scenarios
HighLoad++ Nov
7-8 2017
Alkin Tezuysal
Who we are
• Alkin Tezuysal
Sr. Technical Manager, Percona
@ask_dba, https://www.linkedin.com/in/askdba/
• René Cannaò
MySQL SRE, Dropbox / ProxySQL
@proxysql
ProxySQL Users
Other Sessions
• 156. Inexpensive Datamasking for MySQL with
ProxySQL — Data Anonymization for Developers /
Rene Cannao (ProxySQL)
• 273. ProxySQL, MaxScale, MySQL Router and other
database traffic managers / Petr Zaitsev (Percona)
Top 5 reasons to use ProxySQL
• Improve database operations.
• Understand and solve performance issues.
• Create a proxy layer to shield the database.
• Add High-Availability to database topology.
• Empower the DBAs with great tool.
ProxySQL Highlights
Scalability High Availability
Advanced Query
Support
Manageability
Use case overview - Scalability
Connection Pooling
and Multiplexing
Add connection
pooling layer
Reduce
connection
thread overhead
Read / Write Split
More scalability
for any MySQL
topology
Must for any
heavy workloads
Read / Write
Sharding
Effortless
sharding
implementation
Without Dev.
support and cost
savings
Use case overview - High Availability
Seamless Failover
Gracef
ul failover
support
Query rerouting
Load Balancing
Allows easy
scaling
For better
utilization of
servers
Cluster Aware
Supports
PXC/Galera
implementations
Small footprint
for big gain
Use case overview - Advanced
Queries
Query caching Cache frequently
used data
Adds another
cache layer
Query rewrite Add SQL
flexibility
Faster problem
solving
Query blocking Add database
aware firewall
Without App.
support
Use case overview - Advanced
Queries
Query mirroring
Audit, Analyze,
Review, Cache
Warming
Allow
benchmarking on
live data
Query throttling
Set prioritization
for important
queries
Allows manual
intervention to
problem queries
Query timeout Add another
timeout layer
Flexible query
level timeout
Use case overview - Manageability
Admin Utility Authentication
support
Limit user access
to database pool
Runtime
reconfiguration
On the fly
modifications
Configure
database without
restart or
downtime
Monitoring Stats collection
and reporting
Investigate
database
workload
Scalability with ProxySQL -
Connection Pooling
• Any application without persistent connection to database
• PHP applications to be specific without built in connection pool
Application MySQLProxySQL
• Reduces number of new connections to the database
Scalability with ProxySQL -
Connection Pooling and SSL
https://www.percona.com/blog/2017/09/19/proxysql-improves-mysql-ssl-connections/
Scalability with ProxySQL –
Connection Multiplexing
• Any application with persistent connection to database
• Java applications to be specific with built in connection pools
Application
Pool
MySQL
• Reduce connections similar to Aurora
• Tested performed with 300K database connections
Application
PoolApplication
Pool
ProxySQL
Advanced Queries with ProxySQL –
Filter ORM useless requests
• PING
• SELECT 1
• USE schemaname
• SET autocommit=0
• ROLLBACK
• SET NAMES
They drastically increase latency
Advanced Queries with ProxySQL –
Filter ORM useless requests
https://www.percona.com/blog/2017/09/01/life360-used-proxysql-lower-database-load/
Hundreds of millions of PINGs per day, down to 0
Scalability with ProxySQL -
Read/Write Split
• On the fly Read / Write implementation
• Use read_only flag to switch traffic
Application
MySQL Master
• Load balancing made easy
MySQL
Slave
Write hostgroups
Read hostgroups MySQL
Slave
Scalability with ProxySQL – User and
schema level sharding
• Granular sharding per username and schema
• Backend pooling based on user activity to specific schema
Application
User A
ProxySQL
• Use advanced sharding to parallelize queries
• Scale beyond the sharding per host limitations.
https://www.percona.com/blog/2016/08/30/mysql-sharding-with-proxysql/
Application
User B
MySQL
Master
MySQL
Slave
MySQL
Master
MySQL
Slave
MySQL
Master
MySQL
Slave
MySQL SlaveMySQL Master
High Availability with ProxySQL –
Seamless failover
• Neither VIP setup nor service discovery needed
• Use read_only flag to switch traffic
Application
Pool
MySQL Master
• Integration with other HA Managers
Application
PoolApplication
Pool
ProxySQL
High Availability with ProxySQL –
Improve Multi DC implementation
• No connection pools latency on SSL connections.
• Costly delays across the water.
MySQL MasterProxySQL
MySQL Master
ProxySQL
Application
DC1
DC2
High Availability with ProxySQL –
Adoption to Clustering
• PXC / Galera / Group Replication MySQL
ProxySQL
•
ProxySQL
Application
Node 1
Application
Application
MySQL
Node 2
MySQL
Node 3
Advanced Queries with ProxySQL –
Caching
• Improve performance on read intensive workloads
• Reduce slave provisioning
Application A
ProxySQL
• Improved query cache over default implementation
• Query aware caching over general caching
Application B
MySQL
Master
MySQL
Slave
MySQL
Slave
MySQL
Slave
Cache
MySQL
Slave
MySQL
Slave
Advanced Queries with ProxySQL –
Query Timeout
• Built in query killer a.k.a query sniper
• Adjustable threshold based on query rule
Application A
ProxySQL
• No idle or long running queries
Application B
MySQL
Master
MySQL
Slave
MySQL
Slave
MySQL
Slave
Query
Timeouts
MySQL
Slave
MySQL
Slave
Advanced Queries with ProxySQL –
Firewall
• Protect database from unwanted traffic
• Stop unwanted user, account , application (new code)
Application A
ProxySQL
• Fast modification to database behavior
• Added protection for DDOS and other attacks.
Application B
Query
Blocking
MySQL
Master
MySQL
Slave
MySQL
Master
MySQL
Slave
MySQL
Master
MySQL
Slave
Advanced Queries with ProxySQL –
Query rewrite engine
• Most wanted feature by DBAs
• Rewrite queries overloading the database on the fly.
Application A
ProxySQL
• Simply buy time until application can be modified
Application B
MySQL
Master
MySQL
Slave
MySQL
Slave
MySQL
Slave
Query
Rewriting
MySQL
Slave
MySQL
Slave
Advanced Queries with ProxySQL –
Query retry
• Server failures or maintenance do not loose a query.
• Fails over and resubmits the query to another host.
Application A
ProxySQL
• Improved operation and new way of handling slaves.
Application B
MySQL
Master
MySQL
Slave
MySQL
Slave
MySQL
Slave
Query
Retry
MySQL
Slave
MySQL
Slave
Advanced Queries with ProxySQL –
Query routing
• Selective routing based on importance.
• Use metrics based on stats_mysql_query_digest and decide
Application A
ProxySQL
• Go beyond read/write split.
Application B
MySQL
Master
MySQL
Slave
MySQL
Slave
MySQL
Slave
Query
Routing
MySQL
Slave
MySQL
Slave
Advanced Queries with ProxySQL –
Query mirroring
• Mirror incoming queries to different back ends
• Use it for audit, analytics, cache warming, benchmarking.
Application A
ProxySQL
Application B
Query
Mirroring
MySQL
Master
Host A
Host B
MySQL
Slave
MySQL
Master
MySQL
Slave
Clickhouse Deployment
APP
APP
APP
Clustered ProxySQL at scale
Tested with:
● 8 app servers with 3k clients’ connections each (24k total)
● 4 middle layer proxysqls processing 4k connections each from local
proxysqls (16k total)
● 256 backends/shard (meaning 256 routing rules) processing 600
connections each (150k total)
Single ProxySQL was tested with up to 1MM connections
At today, ProxySQL is able to process up to 750k QPS
Advanced Queries with ProxySQL
Query caching Query Timeout
Query Retry
Query Blocking
Query Routing
and Mirroring
Questions

More Related Content

What's hot

Proxysql sharding
Proxysql shardingProxysql sharding
Proxysql sharding
Marco Tusa
 
ProxySQL - High Performance and HA Proxy for MySQL
ProxySQL - High Performance and HA Proxy for MySQLProxySQL - High Performance and HA Proxy for MySQL
ProxySQL - High Performance and HA Proxy for MySQL
René Cannaò
 
Galera cluster for high availability
Galera cluster for high availability Galera cluster for high availability
Galera cluster for high availability
Mydbops
 
MySQL HA Percona cluster @ MySQL meetup Mumbai
MySQL HA Percona cluster @ MySQL meetup MumbaiMySQL HA Percona cluster @ MySQL meetup Mumbai
MySQL HA Percona cluster @ MySQL meetup Mumbai
Remote MySQL DBA
 
MongoDB performance
MongoDB performanceMongoDB performance
MongoDB performance
Mydbops
 
MySQL Shell for Database Engineers
MySQL Shell for Database EngineersMySQL Shell for Database Engineers
MySQL Shell for Database Engineers
Mydbops
 
MySQL Tuning
MySQL TuningMySQL Tuning
MySQL Tuning
Ford AntiTrust
 
What is new in PostgreSQL 14?
What is new in PostgreSQL 14?What is new in PostgreSQL 14?
What is new in PostgreSQL 14?
Mydbops
 
Intro ProxySQL
Intro ProxySQLIntro ProxySQL
Intro ProxySQL
I Goo Lee
 
Modern MySQL Monitoring and Dashboards.
Modern MySQL Monitoring and Dashboards.Modern MySQL Monitoring and Dashboards.
Modern MySQL Monitoring and Dashboards.
Mydbops
 
Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...
Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...
Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...
DataStax
 
Spark / Mesos Cluster Optimization
Spark / Mesos Cluster OptimizationSpark / Mesos Cluster Optimization
Spark / Mesos Cluster Optimization
ebiznext
 
Using advanced options in MariaDB Connector/J
Using advanced options in MariaDB Connector/JUsing advanced options in MariaDB Connector/J
Using advanced options in MariaDB Connector/J
MariaDB plc
 
Sun Web Server Brief
Sun Web Server BriefSun Web Server Brief
Sun Web Server Brief
Murthy Chintalapati
 
Scaling with sync_replication using Galera and EC2
Scaling with sync_replication using Galera and EC2Scaling with sync_replication using Galera and EC2
Scaling with sync_replication using Galera and EC2
Marco Tusa
 
High performance and high availability proxies for MySQL
High performance and high availability proxies for MySQLHigh performance and high availability proxies for MySQL
High performance and high availability proxies for MySQL
Mydbops
 
PowerDNS with MySQL
PowerDNS with MySQLPowerDNS with MySQL
PowerDNS with MySQL
I Goo Lee
 
Oss4b - pxc introduction
Oss4b   - pxc introductionOss4b   - pxc introduction
Oss4b - pxc introduction
Frederic Descamps
 
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, HerokuPostgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Redis Labs
 
Plny12 galera-cluster-best-practices
Plny12 galera-cluster-best-practicesPlny12 galera-cluster-best-practices
Plny12 galera-cluster-best-practices
Dimas Prasetyo
 

What's hot (20)

Proxysql sharding
Proxysql shardingProxysql sharding
Proxysql sharding
 
ProxySQL - High Performance and HA Proxy for MySQL
ProxySQL - High Performance and HA Proxy for MySQLProxySQL - High Performance and HA Proxy for MySQL
ProxySQL - High Performance and HA Proxy for MySQL
 
Galera cluster for high availability
Galera cluster for high availability Galera cluster for high availability
Galera cluster for high availability
 
MySQL HA Percona cluster @ MySQL meetup Mumbai
MySQL HA Percona cluster @ MySQL meetup MumbaiMySQL HA Percona cluster @ MySQL meetup Mumbai
MySQL HA Percona cluster @ MySQL meetup Mumbai
 
MongoDB performance
MongoDB performanceMongoDB performance
MongoDB performance
 
MySQL Shell for Database Engineers
MySQL Shell for Database EngineersMySQL Shell for Database Engineers
MySQL Shell for Database Engineers
 
MySQL Tuning
MySQL TuningMySQL Tuning
MySQL Tuning
 
What is new in PostgreSQL 14?
What is new in PostgreSQL 14?What is new in PostgreSQL 14?
What is new in PostgreSQL 14?
 
Intro ProxySQL
Intro ProxySQLIntro ProxySQL
Intro ProxySQL
 
Modern MySQL Monitoring and Dashboards.
Modern MySQL Monitoring and Dashboards.Modern MySQL Monitoring and Dashboards.
Modern MySQL Monitoring and Dashboards.
 
Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...
Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...
Operations, Consistency, Failover for Multi-DC Clusters (Alexander Dejanovski...
 
Spark / Mesos Cluster Optimization
Spark / Mesos Cluster OptimizationSpark / Mesos Cluster Optimization
Spark / Mesos Cluster Optimization
 
Using advanced options in MariaDB Connector/J
Using advanced options in MariaDB Connector/JUsing advanced options in MariaDB Connector/J
Using advanced options in MariaDB Connector/J
 
Sun Web Server Brief
Sun Web Server BriefSun Web Server Brief
Sun Web Server Brief
 
Scaling with sync_replication using Galera and EC2
Scaling with sync_replication using Galera and EC2Scaling with sync_replication using Galera and EC2
Scaling with sync_replication using Galera and EC2
 
High performance and high availability proxies for MySQL
High performance and high availability proxies for MySQLHigh performance and high availability proxies for MySQL
High performance and high availability proxies for MySQL
 
PowerDNS with MySQL
PowerDNS with MySQLPowerDNS with MySQL
PowerDNS with MySQL
 
Oss4b - pxc introduction
Oss4b   - pxc introductionOss4b   - pxc introduction
Oss4b - pxc introduction
 
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, HerokuPostgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
 
Plny12 galera-cluster-best-practices
Plny12 galera-cluster-best-practicesPlny12 galera-cluster-best-practices
Plny12 galera-cluster-best-practices
 

Similar to ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)

MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...
MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...
MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...
Severalnines
 
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
A Tour of Azure SQL Databases  (NOVA SQL UG 2020)A Tour of Azure SQL Databases  (NOVA SQL UG 2020)
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
Timothy McAliley
 
Azure Data services
Azure Data servicesAzure Data services
Azure Data services
Rajesh Kolla
 
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControl
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControlWebinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControl
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControl
Continuent
 
Better, faster, cheaper infrastructure with apache cloud stack and riak cs redux
Better, faster, cheaper infrastructure with apache cloud stack and riak cs reduxBetter, faster, cheaper infrastructure with apache cloud stack and riak cs redux
Better, faster, cheaper infrastructure with apache cloud stack and riak cs redux
John Burwell
 
Introduction to MariaDB MaxScale
Introduction to MariaDB MaxScaleIntroduction to MariaDB MaxScale
Introduction to MariaDB MaxScale
I Goo Lee
 
ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!
ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!
ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!
ScaleBase
 
MySQL :What's New #GIDS16
MySQL :What's New #GIDS16MySQL :What's New #GIDS16
MySQL :What's New #GIDS16
Sanjay Manwani
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
Alessandro Melchiori
 
Create cloud service on AWS
Create cloud service on AWSCreate cloud service on AWS
Create cloud service on AWS
Amazon Web Services
 
Webinar Slides: Geo-Distributed MySQL Clustering Done Right!
Webinar Slides: Geo-Distributed MySQL Clustering Done Right!Webinar Slides: Geo-Distributed MySQL Clustering Done Right!
Webinar Slides: Geo-Distributed MySQL Clustering Done Right!
Continuent
 
MySQL 5.7 what's new
MySQL 5.7 what's newMySQL 5.7 what's new
MySQL 5.7 what's new
Ricky Setyawan
 
MySQL Intro JSON NoSQL
MySQL Intro JSON NoSQLMySQL Intro JSON NoSQL
MySQL Intro JSON NoSQL
Mark Swarbrick
 
Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...
Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...
Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...
Continuent
 
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
Jeff Chu
 
MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15
MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15
MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15
Dave Stokes
 
Databases in the Cloud - DevDay Austin 2017 Day 2
Databases in the Cloud - DevDay Austin 2017 Day 2Databases in the Cloud - DevDay Austin 2017 Day 2
Databases in the Cloud - DevDay Austin 2017 Day 2
Amazon Web Services
 
Disaster Recovery Site Implementation with MySQL
Disaster Recovery Site Implementation with MySQLDisaster Recovery Site Implementation with MySQL
Disaster Recovery Site Implementation with MySQL
Syed Jahanzaib Bin Hassan - JBH Syed
 
My sql
My sqlMy sql
My sql
Hassan Naji
 
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQL
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQLWebinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQL
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQL
Continuent
 

Similar to ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona) (20)

MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...
MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...
MySQL Load Balancers - MaxScale, ProxySQL, HAProxy, MySQL Router & nginx - A ...
 
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
A Tour of Azure SQL Databases  (NOVA SQL UG 2020)A Tour of Azure SQL Databases  (NOVA SQL UG 2020)
A Tour of Azure SQL Databases (NOVA SQL UG 2020)
 
Azure Data services
Azure Data servicesAzure Data services
Azure Data services
 
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControl
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControlWebinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControl
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #7: ClusterControl
 
Better, faster, cheaper infrastructure with apache cloud stack and riak cs redux
Better, faster, cheaper infrastructure with apache cloud stack and riak cs reduxBetter, faster, cheaper infrastructure with apache cloud stack and riak cs redux
Better, faster, cheaper infrastructure with apache cloud stack and riak cs redux
 
Introduction to MariaDB MaxScale
Introduction to MariaDB MaxScaleIntroduction to MariaDB MaxScale
Introduction to MariaDB MaxScale
 
ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!
ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!
ScaleBase Webinar: Scaling MySQL - Sharding Made Easy!
 
MySQL :What's New #GIDS16
MySQL :What's New #GIDS16MySQL :What's New #GIDS16
MySQL :What's New #GIDS16
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
 
Create cloud service on AWS
Create cloud service on AWSCreate cloud service on AWS
Create cloud service on AWS
 
Webinar Slides: Geo-Distributed MySQL Clustering Done Right!
Webinar Slides: Geo-Distributed MySQL Clustering Done Right!Webinar Slides: Geo-Distributed MySQL Clustering Done Right!
Webinar Slides: Geo-Distributed MySQL Clustering Done Right!
 
MySQL 5.7 what's new
MySQL 5.7 what's newMySQL 5.7 what's new
MySQL 5.7 what's new
 
MySQL Intro JSON NoSQL
MySQL Intro JSON NoSQLMySQL Intro JSON NoSQL
MySQL Intro JSON NoSQL
 
Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...
Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...
Webinar Slides: Multi-Region AWS Aurora vs Continuent Tungsten for MySQL & Ma...
 
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
Innovations of .NET and Azure (Recaps of Build 2017 selected sessions)
 
MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15
MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15
MySQL for Oracle DBA -- Rocky Mountain Oracle User Group Training Days '15
 
Databases in the Cloud - DevDay Austin 2017 Day 2
Databases in the Cloud - DevDay Austin 2017 Day 2Databases in the Cloud - DevDay Austin 2017 Day 2
Databases in the Cloud - DevDay Austin 2017 Day 2
 
Disaster Recovery Site Implementation with MySQL
Disaster Recovery Site Implementation with MySQLDisaster Recovery Site Implementation with MySQL
Disaster Recovery Site Implementation with MySQL
 
My sql
My sqlMy sql
My sql
 
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQL
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQLWebinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQL
Webinar Slides: MySQL HA/DR/Geo-Scale - High Noon #4: MS Azure Database MySQL
 

More from Ontico

One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
Ontico
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Ontico
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Ontico
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Ontico
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Ontico
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
Ontico
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Ontico
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Ontico
 
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Ontico
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Ontico
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Ontico
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
Ontico
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Ontico
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Ontico
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
Ontico
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Ontico
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Ontico
 
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Ontico
 
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Ontico
 
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Ontico
 

More from Ontico (20)

One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
One-cloud — система управления дата-центром в Одноклассниках / Олег Анастасье...
 
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)Масштабируя DNS / Артем Гавриченков (Qrator Labs)
Масштабируя DNS / Артем Гавриченков (Qrator Labs)
 
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
Создание BigData-платформы для ФГУП Почта России / Андрей Бащенко (Luxoft)
 
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
Готовим тестовое окружение, или сколько тестовых инстансов вам нужно / Алекса...
 
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
Новые технологии репликации данных в PostgreSQL / Александр Алексеев (Postgre...
 
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
PostgreSQL Configuration for Humans / Alvaro Hernandez (OnGres)
 
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
Опыт разработки модуля межсетевого экранирования для MySQL / Олег Брославский...
 
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
Внутренний open-source. Как разрабатывать мобильное приложение большим количе...
 
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
Подробно о том, как Causal Consistency реализовано в MongoDB / Михаил Тюленев...
 
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
Балансировка на скорости проводов. Без ASIC, без ограничений. Решения NFWare ...
 
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
Перехват трафика — мифы и реальность / Евгений Усков (Qrator Labs)
 
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
И тогда наверняка вдруг запляшут облака! / Алексей Сушков (ПЕТЕР-СЕРВИС)
 
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
Как мы заставили Druid работать в Одноклассниках / Юрий Невиницин (OK.RU)
 
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
Разгоняем ASP.NET Core / Илья Вербицкий (WebStoating s.r.o.)
 
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...100500 способов кэширования в Oracle Database или как достичь максимальной ск...
100500 способов кэширования в Oracle Database или как достичь максимальной ск...
 
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
Apache Ignite Persistence: зачем Persistence для In-Memory, и как он работает...
 
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
Механизмы мониторинга баз данных: взгляд изнутри / Дмитрий Еманов (Firebird P...
 
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
Как мы учились чинить самолеты в воздухе / Евгений Коломеец (Virtuozzo)
 
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
Java и Linux — особенности эксплуатации / Алексей Рагозин (Дойче Банк)
 
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
Как построить кластер для расчета сотен тысяч high-CPU/high-MEM-задач и не ра...
 

Recently uploaded

Object Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOADObject Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOAD
PreethaV16
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
PriyankaKilaniya
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
Mechatronics material . Mechanical engineering
Mechatronics material . Mechanical engineeringMechatronics material . Mechanical engineering
Mechatronics material . Mechanical engineering
sachin chaurasia
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
bjmsejournal
 
Bayesian Decision Theory details ML.pptx
Bayesian Decision Theory details ML.pptxBayesian Decision Theory details ML.pptx
Bayesian Decision Theory details ML.pptx
amrita chaturvedi
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
MadhavJungKarki
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
upoux
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf
AlvianRamadhani5
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
ijaia
 
5g-5G SA reg. -standalone-access-registration.pdf
5g-5G SA reg. -standalone-access-registration.pdf5g-5G SA reg. -standalone-access-registration.pdf
5g-5G SA reg. -standalone-access-registration.pdf
devtomar25
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
nedcocy
 
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
ijseajournal
 
Pressure Relief valve used in flow line to release the over pressure at our d...
Pressure Relief valve used in flow line to release the over pressure at our d...Pressure Relief valve used in flow line to release the over pressure at our d...
Pressure Relief valve used in flow line to release the over pressure at our d...
cannyengineerings
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
Introduction to verilog basic modeling .ppt
Introduction to verilog basic modeling   .pptIntroduction to verilog basic modeling   .ppt
Introduction to verilog basic modeling .ppt
AmitKumar730022
 

Recently uploaded (20)

Object Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOADObject Oriented Analysis and Design - OOAD
Object Oriented Analysis and Design - OOAD
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
Prediction of Electrical Energy Efficiency Using Information on Consumer's Ac...
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
Mechatronics material . Mechanical engineering
Mechatronics material . Mechanical engineeringMechatronics material . Mechanical engineering
Mechatronics material . Mechanical engineering
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
 
Bayesian Decision Theory details ML.pptx
Bayesian Decision Theory details ML.pptxBayesian Decision Theory details ML.pptx
Bayesian Decision Theory details ML.pptx
 
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
1FIDIC-CONSTRUCTION-CONTRACT-2ND-ED-2017-RED-BOOK.pdf
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
5g-5G SA reg. -standalone-access-registration.pdf
5g-5G SA reg. -standalone-access-registration.pdf5g-5G SA reg. -standalone-access-registration.pdf
5g-5G SA reg. -standalone-access-registration.pdf
 
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
一比一原版(爱大毕业证书)爱荷华大学毕业证如何办理
 
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...Call For Paper -3rd International Conference on Artificial Intelligence Advan...
Call For Paper -3rd International Conference on Artificial Intelligence Advan...
 
Pressure Relief valve used in flow line to release the over pressure at our d...
Pressure Relief valve used in flow line to release the over pressure at our d...Pressure Relief valve used in flow line to release the over pressure at our d...
Pressure Relief valve used in flow line to release the over pressure at our d...
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
Introduction to verilog basic modeling .ppt
Introduction to verilog basic modeling   .pptIntroduction to verilog basic modeling   .ppt
Introduction to verilog basic modeling .ppt
 

ProxySQL Use Case Scenarios / Alkin Tezuysal (Percona)

  • 1. ProxySQL Use Case Scenarios HighLoad++ Nov 7-8 2017 Alkin Tezuysal
  • 2. Who we are • Alkin Tezuysal Sr. Technical Manager, Percona @ask_dba, https://www.linkedin.com/in/askdba/ • René Cannaò MySQL SRE, Dropbox / ProxySQL @proxysql
  • 4. Other Sessions • 156. Inexpensive Datamasking for MySQL with ProxySQL — Data Anonymization for Developers / Rene Cannao (ProxySQL) • 273. ProxySQL, MaxScale, MySQL Router and other database traffic managers / Petr Zaitsev (Percona)
  • 5. Top 5 reasons to use ProxySQL • Improve database operations. • Understand and solve performance issues. • Create a proxy layer to shield the database. • Add High-Availability to database topology. • Empower the DBAs with great tool.
  • 6. ProxySQL Highlights Scalability High Availability Advanced Query Support Manageability
  • 7. Use case overview - Scalability Connection Pooling and Multiplexing Add connection pooling layer Reduce connection thread overhead Read / Write Split More scalability for any MySQL topology Must for any heavy workloads Read / Write Sharding Effortless sharding implementation Without Dev. support and cost savings
  • 8. Use case overview - High Availability Seamless Failover Gracef ul failover support Query rerouting Load Balancing Allows easy scaling For better utilization of servers Cluster Aware Supports PXC/Galera implementations Small footprint for big gain
  • 9. Use case overview - Advanced Queries Query caching Cache frequently used data Adds another cache layer Query rewrite Add SQL flexibility Faster problem solving Query blocking Add database aware firewall Without App. support
  • 10. Use case overview - Advanced Queries Query mirroring Audit, Analyze, Review, Cache Warming Allow benchmarking on live data Query throttling Set prioritization for important queries Allows manual intervention to problem queries Query timeout Add another timeout layer Flexible query level timeout
  • 11. Use case overview - Manageability Admin Utility Authentication support Limit user access to database pool Runtime reconfiguration On the fly modifications Configure database without restart or downtime Monitoring Stats collection and reporting Investigate database workload
  • 12. Scalability with ProxySQL - Connection Pooling • Any application without persistent connection to database • PHP applications to be specific without built in connection pool Application MySQLProxySQL • Reduces number of new connections to the database
  • 13. Scalability with ProxySQL - Connection Pooling and SSL https://www.percona.com/blog/2017/09/19/proxysql-improves-mysql-ssl-connections/
  • 14. Scalability with ProxySQL – Connection Multiplexing • Any application with persistent connection to database • Java applications to be specific with built in connection pools Application Pool MySQL • Reduce connections similar to Aurora • Tested performed with 300K database connections Application PoolApplication Pool ProxySQL
  • 15. Advanced Queries with ProxySQL – Filter ORM useless requests • PING • SELECT 1 • USE schemaname • SET autocommit=0 • ROLLBACK • SET NAMES They drastically increase latency
  • 16. Advanced Queries with ProxySQL – Filter ORM useless requests https://www.percona.com/blog/2017/09/01/life360-used-proxysql-lower-database-load/ Hundreds of millions of PINGs per day, down to 0
  • 17. Scalability with ProxySQL - Read/Write Split • On the fly Read / Write implementation • Use read_only flag to switch traffic Application MySQL Master • Load balancing made easy MySQL Slave Write hostgroups Read hostgroups MySQL Slave
  • 18. Scalability with ProxySQL – User and schema level sharding • Granular sharding per username and schema • Backend pooling based on user activity to specific schema Application User A ProxySQL • Use advanced sharding to parallelize queries • Scale beyond the sharding per host limitations. https://www.percona.com/blog/2016/08/30/mysql-sharding-with-proxysql/ Application User B MySQL Master MySQL Slave MySQL Master MySQL Slave MySQL Master MySQL Slave
  • 19. MySQL SlaveMySQL Master High Availability with ProxySQL – Seamless failover • Neither VIP setup nor service discovery needed • Use read_only flag to switch traffic Application Pool MySQL Master • Integration with other HA Managers Application PoolApplication Pool ProxySQL
  • 20. High Availability with ProxySQL – Improve Multi DC implementation • No connection pools latency on SSL connections. • Costly delays across the water. MySQL MasterProxySQL MySQL Master ProxySQL Application DC1 DC2
  • 21. High Availability with ProxySQL – Adoption to Clustering • PXC / Galera / Group Replication MySQL ProxySQL • ProxySQL Application Node 1 Application Application MySQL Node 2 MySQL Node 3
  • 22. Advanced Queries with ProxySQL – Caching • Improve performance on read intensive workloads • Reduce slave provisioning Application A ProxySQL • Improved query cache over default implementation • Query aware caching over general caching Application B MySQL Master MySQL Slave MySQL Slave MySQL Slave Cache MySQL Slave MySQL Slave
  • 23. Advanced Queries with ProxySQL – Query Timeout • Built in query killer a.k.a query sniper • Adjustable threshold based on query rule Application A ProxySQL • No idle or long running queries Application B MySQL Master MySQL Slave MySQL Slave MySQL Slave Query Timeouts MySQL Slave MySQL Slave
  • 24. Advanced Queries with ProxySQL – Firewall • Protect database from unwanted traffic • Stop unwanted user, account , application (new code) Application A ProxySQL • Fast modification to database behavior • Added protection for DDOS and other attacks. Application B Query Blocking MySQL Master MySQL Slave MySQL Master MySQL Slave MySQL Master MySQL Slave
  • 25. Advanced Queries with ProxySQL – Query rewrite engine • Most wanted feature by DBAs • Rewrite queries overloading the database on the fly. Application A ProxySQL • Simply buy time until application can be modified Application B MySQL Master MySQL Slave MySQL Slave MySQL Slave Query Rewriting MySQL Slave MySQL Slave
  • 26. Advanced Queries with ProxySQL – Query retry • Server failures or maintenance do not loose a query. • Fails over and resubmits the query to another host. Application A ProxySQL • Improved operation and new way of handling slaves. Application B MySQL Master MySQL Slave MySQL Slave MySQL Slave Query Retry MySQL Slave MySQL Slave
  • 27. Advanced Queries with ProxySQL – Query routing • Selective routing based on importance. • Use metrics based on stats_mysql_query_digest and decide Application A ProxySQL • Go beyond read/write split. Application B MySQL Master MySQL Slave MySQL Slave MySQL Slave Query Routing MySQL Slave MySQL Slave
  • 28. Advanced Queries with ProxySQL – Query mirroring • Mirror incoming queries to different back ends • Use it for audit, analytics, cache warming, benchmarking. Application A ProxySQL Application B Query Mirroring MySQL Master Host A Host B MySQL Slave MySQL Master MySQL Slave
  • 30. Clustered ProxySQL at scale Tested with: ● 8 app servers with 3k clients’ connections each (24k total) ● 4 middle layer proxysqls processing 4k connections each from local proxysqls (16k total) ● 256 backends/shard (meaning 256 routing rules) processing 600 connections each (150k total) Single ProxySQL was tested with up to 1MM connections At today, ProxySQL is able to process up to 750k QPS
  • 31. Advanced Queries with ProxySQL Query caching Query Timeout Query Retry Query Blocking Query Routing and Mirroring