SlideShare a Scribd company logo
Terahertz Spectroscopy for the Solid State
Characterisation of Amorphous Systems
Juraj Sibik and Axel Zeitler
Department of Chemical Engineering and Biotechnology, University of Cambridge,
Pembroke Street, Cambridge CB2 3RA, UK
jaz22@cam.ac.uk
http://thz.ceb.cam.ac.uk – www.pssrc.org
19 June 2015
Outline
Introduction
Dielectric Spectroscopy
Terahertz Radiation
Amorphous Materials
What Can be Measured at THz Frequencies?
Model System: Polyalcohols
Crystallisation
Stability Prediction
Summary
Outline
Introduction
Dielectric Spectroscopy
Terahertz Radiation
Amorphous Materials
Summary
Introduction Dielectric Spectroscopy
Dielectric Spectroscopy
10
5
10
6
10
7
10
8
10
9
10
10
10
11
10
12
10
13
10
14
10
15
10
16
10
17
10
18
10
19
10
20
10
21
10
3
10
2
10
1
10
0
10
-1
10
-2
10
-3
10
-4
10
-5
10
-6
10
-7
10
-8
10
-9
10
-10
10
-11
10
-12
10
-13
Visible Light
Infrared UltravioletRadiowaves Microwaves X-rays Gamma
1 MHz 1 ZHz1 EHz1 PHz1 THz1 GHz
Frequency / Hz
THz
1 nm1 m1 mm1 m1 km
Wavelength / m
Complementary technique to terahertz spectroscopy at lower
frequencies
2 of 31
Introduction Dielectric Spectroscopy
Absorption Mechanisms
This technique spans
the frequency range
over 102 to 1012 Hz
Dipoles and charges
respond to the
excitation by an
external electric field
and move as a whole
during relaxation
ˆε = ε + iε = (n + iκ)2
where α = 4πκ/λ0
Image source: https://commons.wikimedia.org/wiki/file:
Dielectric_responses.svg 3 of 31
Introduction Dielectric Spectroscopy
Dielectric Relaxation – Molecular Mobility
α-relaxation
Structural relaxation
process
Relaxation time changes
from 10−12 to 102 s upon
glass transition
Concept of cooperatively
rearranging regions
(CRR)
β-relaxations
Local motions involving
the entire molecule or
intra-molecular
reorientations
Much faster than α
relaxations
Commonly observed
either as a separate peak
or as a high frequency
wing of the α-relaxation.
G. Adam, J.H. Gibbs, The Journal of Chemical Physics. 43, 139 (1965). 4 of 31
Introduction Dielectric Spectroscopy
Dielectric Relaxation in Amorphous Solids
α and β relaxation process are
separated in frequency (but are
very broad and often overlap)
The secondary β-relaxation
processes are typically related to
local mobility
It is possible to directly measure the
relaxation times using dielectric
spectroscopy
H. Wagner, R. Richert, J. Non-Cryst. Sol. 242, 19 (1998).
S. Bhattacharya, R. Suryanarayanan, 98, 2935 (2009). 5 of 31
Outline
Introduction
Dielectric Spectroscopy
Terahertz Radiation
Amorphous Materials
Summary
Introduction Terahertz Radiation
What does Terahertz Radiation Refer to?
1 0
5
1 0
6
1 0
7
1 0
8
1 0
9
1 0
1 0
1 0
1 1
1 0
1 2
1 0
1 3
1 0
1 4
1 0
1 5
1 0
1 6
1 0
1 7
1 0
1 8
1 0
1 9
1 0
2 0
1 0
2 1
1 0
3
1 0
2
1 0
1
1 0
0
1 0
- 1
1 0
- 2
1 0
- 3
1 0
- 4
1 0
- 5
1 0
- 6
1 0
- 7
1 0
- 8
1 0
- 9
1 0
- 1 0
1 0
- 1 1
1 0
- 1 2
1 0
- 1 3
V i s i b l e L i g h t
I o n i s i n g
T r a n s p a r e n c y
I n f r a r e d U l t r a v i o l e t
T r a n s p a r e n c y
S p e c t r o s c o p i c I n f o r m a t i o n
T H zR a d i o w a v e s M i c r o w a v e s X - r a y s G a m m a
1 M H z 1 Z H z1 E H z1 P H z1 T H z1 G H z
F r e q u e n c y / H z
1 n m1 µm1 m m1 m1 k m
W a v e l e n g t h / m
0 . 0 1 0 . 1 1 1 0 1 0 0
F r e q u e n c y / T H z
1 . 0 1 0 . 0 1 0 0 . 0 1 0 0 0 . 0
H y d r o g e n - b o n d i n g s t r e t c h e s a n d t o r s i o n s ( l i q u i d s )
S e c o n d a r y d i e l e c t r i c r e l a x a t i o n s ( s o l i d )
I n t r a m o l e c u l a r v i b r a t i o n a l m o d e s
C r y s t a l l i n e p h o n o n v i b r a t i o n s ( s o l i d )
W a v e n u m b e r / c m
- 1
M o l e c u l a r r o t a t i o n s ( g a s )
6 of 31
Introduction Terahertz Radiation
Vibrational Spectroscopy
Mid-infrared
Intramolecular Modes
Information about the structure of a single
molecule, identification of molecules
Terahertz
Intermolecular Modes
Information about the structure and
dynamics of molecular interaction
7 of 31
Introduction Terahertz Radiation
Terahertz Time-Domain Spectroscopy
0 1 0 2 0 3 0 4 0 5 0
- 8
- 6
- 4
- 2
0
2
4
6
8
1 0
1 2
THzelectricfield/a.u.
t i m e / p s
1 2 3 4 5
0 . 1
1
1 0
1 0 0
power/a.u.
f r e q u e n c y / T H z
Typical terahertz pulse in time-domain (left) and frequency components of the pulse (right).
Coherent sub-picosecond pulses, bandwidth of 0.1 to 4.0 THz, excellent signal-to-noise
detection
8 of 31
Introduction Terahertz Radiation
Terahertz Time-Domain Technology
In THz-TDS both amplitude and phase of the electric field
is measured and not just its intensity
This means that the complex refractive index can be
extracted directly without resorting to Kramer-Kronig
relations:
ˆEsam(ω)
ˆEref(ω)
= T(ω)eiφ(ω)
In terms of absorption coefficient and refractive index:
α(ω) = −
2
d
ln
(nm + n)2
4nmn
T(ω)
n(ω) = 1 +
φ(ω)c
ωd
This can also directly be expressed in terms of dielectric
losses:
ˆn = n + iκ =
√
ˆε =
√
ε + iε
9 of 31
Outline
Introduction
Amorphous Materials
What Can be Measured at THz Frequencies?
Model System: Polyalcohols
Crystallisation
Stability Prediction
Summary
Amorphous Materials What Can be Measured at THz Frequencies?
Amorphous Materials
http://www.ndt-ed.org/EducationResources/CommunityCollege/
Materials/Structure/solidstate.htm
J. Bicerano, D. Adler, Pure & Appl. Chem., 59, 101 (1987) 10 of 31
Amorphous Materials What Can be Measured at THz Frequencies?
Disordered Materials – Losses at THz Frequencies
Amorphous Solids and Supercooled Liquids
Mid-IR: Bond vibrations, slight shift and
broadening compared to crystalline
materials
THz: No phonon vibrations occur as there
is no long range order
At lower frequencies molecular rotations
and translations take place
These molecular motions can be described
by the first order decay of macroscopic
polarisation as proposed by Debye in his
dielectric relaxation theory
11 of 31
Outline
Introduction
Amorphous Materials
What Can be Measured at THz Frequencies?
Model System: Polyalcohols
Crystallisation
Stability Prediction
Summary
Amorphous Materials Model System: Polyalcohols
Dielectric Response of Amorphous Materials
S. Kastner et al., J. Non-Cryst. Sol. 357, 510 (2011). 12 of 31
Amorphous Materials Model System: Polyalcohols
Dielectric Response of Amorphous Materials
S. Kastner et al., J. Non-Cryst. Sol. 357, 510 (2011). 12 of 31
Amorphous Materials Model System: Polyalcohols
Amorphous Sorbitol
100 150 200 250 300
0
50
100
150
200
1.5 THz
1.0 THz
0.5 THz
α[cm
-1
]
100wt% sorbitol
T [K]
Tg
Glass
transition
Structural relaxation at Tg leads to increase in absorption
J. Sibik et al., Phys. Chem. Chem. Phys. 15, 11931 (2013). 13 of 31
Amorphous Materials Model System: Polyalcohols
Amorphous Sorbitol
100 150 200 250 300
0
50
100
150
200
1.5 THz
1.0 THz
0.5 THz
α[cm
-1
]
100wt% sorbitol
T [K]
Tg
Glass
transition
Subtle but noticeable change in absorption below Tg – origin?
J. Sibik et al., Phys. Chem. Chem. Phys. 15, 11931 (2013). 13 of 31
Amorphous Materials Model System: Polyalcohols
Secondary Relaxation in Polyalcohols
A. Döss et al., Phys. Rev. Lett. 88 (2002), doi:10.1103/PhysRevLett.88.095701. 14 of 31
Amorphous Materials Model System: Polyalcohols
Terahertz Spectroscopy of Polyalcohols
10
0
10
-1
10
0
300 K
80 K
120 K
190 K
''()
(THz)
(a) glycerol
10
0
150 K
230 K
240 K
90 K
(THz)
(b) threitol
10
0
310 K
80 K
180 K
250 K
(THz)
(c) xylitol
10
0
310 K
(THz)
180 K
260 K
(d) sorbitol
90 K
10
1
10
2
(cm
-1
)
10
1
10
2
(cm
-1
)
10
1
10
2
(cm
-1
)
10
1
10
2
(cm
-1
)
The blue and red circles highlight the losses in the proximity of 0.65 Tg and Tg
respectively.
The sample of threitol recrystallised above 250 K – no data above this temperature
are shown.
J. Sibik et al., J. Phys. Chem. Lett. 5, 1968 (2014). 15 of 31
Amorphous Materials Model System: Polyalcohols
Terahertz Spectroscopy of Polyalcohols
0.5 1.0 1.5
0.1
0.3
0.5
0.7
T
T
(iii)(ii)
1.00 T
g
sorbitol(+0.1)
xylitol
threitol(+0.1)
glycerol(-0.1)
''(=1THz)
T/Tg
0.65 T
g
(i)
The sample of threitol recrystallised above 250 K – no data above this temperature
are shown.
J. Sibik et al., J. Phys. Chem. Lett. 5, 1968 (2014). 15 of 31
Amorphous Materials Model System: Polyalcohols
Terahertz Spectroscopy of Polyalcohols
At temperatures well below Tg, a
temperature-independent microscopic peak is
observed, which persists into the liquid phase
and which is identified as being due to
librational/torsional modes.
For 0.65 Tg < T < Tg, additional thermally
dependent contributions are observed, and we
found strong evidence for its relation to the
Johari-Goldstein secondary relaxation process.
Clear spectroscopic evidence is found for a
secondary glass transition at 0.65 Tg, which is not
related to the fragility of the glasses.
At temperatures above Tg, the losses become
dominated by primary α-relaxation processes.
Our results show that the thermal changes in the
losses seem to be underpinned by a universal
change in the hydrogen bonding structure of the
samples.
0.5 1.0
Molecular relaxations
0.67 T
g
''
THz
T/T
g
T
g
VDOS
JG-
Libration-vibration motions
Decoupling
(independent of m)
J. Sibik et al., J. Phys. Chem. Lett. 5, 1968 (2014). 16 of 31
Outline
Introduction
Amorphous Materials
What Can be Measured at THz Frequencies?
Model System: Polyalcohols
Crystallisation
Stability Prediction
Summary
Amorphous Materials Crystallisation
Phase Transitions – in situ Spectroscopy
0 . 7 5 0 . 9 0 1 . 0 5 1 . 2 0 1 . 3 5 1 . 5 0 1 . 6 5 1 . 8 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0
w a v e n u m b e r / c m
- 1
absorbance/a.u.
f r e q u e n c y / T H z
f o r m I I I
f o r m I
Conversion of carbamazepine form III to I at 433 K
Terahertz spectroscopy is very sensitive to changes in supramolecular structure
J.A. Zeitler et al., Thermochimica Acta. 436, 71 (2005). 17 of 31
Amorphous Materials Crystallisation
Phase Transitions – Kinetics
Kinetics of the solid state transition. Mechanism occurs as
solid-gas-solid transition and can be resolved using THz-TDS.
J.A. Zeitler et al., ChemPhysChem. 8, 1924 (2007). 18 of 31
Amorphous Materials Crystallisation
Amorphous vs. Crystalline Organic Solids
1 0 2 0 3 0 4 0 5 0 6 0 7 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
a m o r p h o u s
c r y s t a l l i n e
Absorbance(decadic)
W a v e n u m b e r [ c m
- 1
]
Crystalline vs. amorphous indomethacine.
C.J. Strachan et al., Chem. Phys. Lett. 390, 20 (2004). 19 of 31
Amorphous Materials Crystallisation
Relaxation and Crystallisation
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0
2
4
6
8
1 0
1 2
1 4
Absorbance(decadic)
W a v e n u m b e r [ c m
- 1
]
654321
330-340 K
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0
2
4
6
8
1 0
1 2
1 4 65432
Absorbance(decadic)
W a v e n u m b e r [ c m
- 1
]
1
340-356 K
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0
2
4
6
8
1 0
1 2
1 4 65432
Absorbance(decadic)
W a v e n u m b e r [ c m
- 1
]
1
357-368 K
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0
0
2
4
6
8
1 0
1 2
1 4
Absorbance(decadic)
W a v e n u m b e r [ c m
- 1
]
654321
410-440 K
J.A. Zeitler et al., J. Pharm. Sci. 96, 2703 (2007). 20 of 31
Amorphous Materials Crystallisation
Change in Absorbance
2 9 0 3 0 0 3 1 0 3 2 0 3 3 0 3 4 0 3 5 0 3 6 0 3 7 0 3 8 0 3 9 0 4 0 0 4 1 0 4 2 0 4 3 0 4 4 0 4 5 0
0 . 5
1 . 0
1 . 5
2 . 0
3 0 0 3 1 0 3 2 0 3 3 0 3 4 0 3 5 0
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
f o r m IT g
f o r m I I Ig l a s s y
s t a t e
Normalisedabsorbance(decadic)
T e m p e r a t u r e [ K ]
f e a t u r e 1 f e a t u r e 2
f e a t u r e 3 f e a t u r e 4
f e a t u r e 5 f e a t u r e 6
r u b b e r y
s t a t e
c r y s t a l l -
i s a t i o n
p h a s e t r a n s i t i o n
At Tg sample relaxes and crystallises subsequently at higher temperature.
J.A. Zeitler et al., J. Pharm. Sci. 96, 2703 (2007). 21 of 31
Amorphous Materials Crystallisation
Crystallisation Kinetics
0 1 2
0
40
80
120
160
200
240
a )
α(cm
-1
)
Frequency (THz)
320 325 330 335 340 345
0.0
0.2
0.4
0.6
0.8
1.0
r a
, amorphous fraction
r c
, crystalline fraction
Avrami-Erofeev fit
Temperature (K)
ra
,rc
b )
a) Terahertz spectra of paracetamol crystallising form the amorphous phase. As
the crystallisation progresses distinct vibrational modes emerge from the VDOS.
b) Kinetics of the crystallisation process and corresponding fit using the
Avrami-Erofeev model.
J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 22 of 31
Amorphous Materials Crystallisation
Crystallisation of Amorphous Paracetamol
Spectra of the three observed polymorphs
J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
Amorphous Materials Crystallisation
Crystallisation of Amorphous Paracetamol
0 1 2 3
0
100
200
300
400
300
350
400
450
T
e
m
p
e
ra
tu
re
(K
)
Frequency (THz)
(cm
-1
)
Crystallisation and subsequent phase transitions
J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
Amorphous Materials Crystallisation
Crystallisation of Amorphous Paracetamol
10
30
50
300 350 400 450
10
30
50
70
50
70
90
110
300 350 400 450
180
240
300
360
T (K)
(cm
-1
)
(a)
0.7 THz
1.0 THz
LIIIIII
(b)
(cm
-1
)
A
1.5 THz
(c)
(cm
-1
)
2.5 THz
(d)
T (K)
(cm
-1
)
J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
Amorphous Materials Crystallisation
Crystallisation of Amorphous Paracetamol
0 1 2 3
0
100
200
300
0.6 0.9
20
40
(cm
-1
)
Frequency (THz)
325 K
330 K
335 K
0 25 50 75 100
Wavenumber (cm
-1
)
1 2
0
100
200
300
300 K
330 K
335 K
470 K
fit
n(cm
-1
)
Frequency (THz)
20 40 60
Wavenumber (cm
-1
)
Deviation from power law: onset of crystallisation
n (ν) α (ν) = A + C (ν − ν0)q
J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
Amorphous Materials Crystallisation
Crystallisation of Amorphous Paracetamol
0
10
20
30
40
290 300 310 320 330 460 470
120
130
140
290 300 310 320 330 460 470
1.0
1.1
1.2
1.3
1.4
1.5
T (K)
A(cm
-1
)
(a)
(b)
C(cm
-1
THz
-q
)
(c)
T (K)
q
In paracetamol the crystallisation from the amorphous
phase is observed to form III
Subsequent phase transitions occur to forms II and I
before the sample melts
This observation is in agreement with a previous study
of paracetamol by low frequency Raman scattering
The featureless spectra of the supercooled liquid and
liquid melt can be fitted using a power law model
The melt spectrum is dominated by the dielectric
relaxation as well as the VDOS, while in the
supercooled liquid the contribution due to the dielectric
relaxation vanishes close to Tg (q changes from 2 in the
glassy state to 1 in the liquid melt state)
Using the simple power law model introduced previously,
the onset of crystallisation can be determined precisely
J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 24 of 31
Amorphous Materials Crystallisation
Crystallisation Below Tg
0.5 1.0 1.5 2.0
0
100
200
(b)(a)
310 K
Naproxen
()(cm
-1
)
(THz)
100 K
0.4 0.6 0.8 1.0 1.2
50
100
150
200
250
1.2 THz
1.5 THz
1.8 THz
(T/T
g
)(cm
-1
)
T/T
g
0.67 Tg
~4x faster
Seeded crystallisation: rate increases at ≈ 0.67 Tg!
Role of molecular mobility below Tg
J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330
(2015). 25 of 31
Outline
Introduction
Amorphous Materials
What Can be Measured at THz Frequencies?
Model System: Polyalcohols
Crystallisation
Stability Prediction
Summary
Amorphous Materials Stability Prediction
Amorphous Drug Stability
J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330
(2015). 26 of 31
Amorphous Materials Stability Prediction
Amorphous Drug Stability
0.2 0.4 0.6 0.8 1.0 1.2
20
25
30
35
40
45
50
0.5 1.0 1.5 2.0 2.5
0
50
100
150
320 K
Indomethacin
Paracetamol
(cm
-1
)
Frequency (THz)
80 K
0.67 Tg
Paracetamol
Indomethacin
1.0THz
(cm
-1
)
T/Tg
J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330
(2015). 26 of 31
Amorphous Materials Stability Prediction
Amorphous Drug Stability
0.2 0.4 0.6 0.8 1.0 1.2
1.0
1.1
1.2
1.3 paracetamol
indomethacin
flufenamic acid
simvastatin
linear fit
0
T/T
g
J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330
(2015). 26 of 31
Amorphous Materials Stability Prediction
Prediction of Amorphous Stability
J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330
(2015). 27 of 31
Summary
Terahertz Spectroscopy
The terahertz molecular dynamics is strongly related to the molecular
mobility governing the stability of amorphous drugs.
While molecular relaxations are often extracted by dielectric spectroscopy or
DSC and used to predict the stability of the amorphous drugs, concerns have
been raised about the robustness of these methods.
DSC is useful mainly for measurements of molecular mobility around and
above Tg, but cannot be easily used to measure molecular mobility at lower
temperatures.
Measurements by dielectric spectroscopy are very useful to measure the
local mobility in terms of JG-β relaxation, except for cases where this
relaxation is submerged in the α-relaxation.
In contrast, terahertz spectroscopy does not suffer from this limitation as it
measures fast motions and only indirectly resolves the effect of the JG-β
relaxation, which may in principle be observed even when no clear JG-β
peak is present (such as in the case of indomethacin).
28 of 31
Summary Acknowledgments
Acknowledgments
Dr Korbinian Löbmann and Professor Thomas Rades (Copenhagen)
U.K. Engineering and Physical Sciences Research Council (EPSRC,
EP/J007803/1)
29 of 31
Summary Acknowledgments
Literature I
G. Adam and J. H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids,
The Journal of Chemical Physics, 43:139, 1965.
S. Bhattacharya and R. Suryanarayanan, Local Mobility in Amorphous Pharmaceuticals-Characterization and
Implications on Stability, 98(9):2935–2953, January 2009, http://dx.doi.org/10.1002/jps.21728.
A. Döß, M. Paluch, H. Sillescu, and G. Hinze, From Strong to Fragile Glass Formers: Secondary Relaxation in
Polyalcohols, Phys. Rev. Lett., 88(9), February 2002, http://dx.doi.org/10.1103/PhysRevLett.88.095701.
S. Kastner, M. Köhler, Y. Goncharov, P. Lunkenheimer, and A. Loidl, High-frequency dynamics of type B glass formers
investigated by broadband dielectric spectroscopy, J. Non-Cryst. Sol., 357(2):510–514, January 2011,
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.074.
J. Sibik, S. R. Elliott, and J. A. Zeitler, Thermal decoupling of molecular-relaxation processes from the vibrational
density of states at terahertz frequencies in supercooled hydrogen-bonded liquids, J. Phys. Chem. Lett., 5(11):
1968–1972, 2014a, http://dx.doi.org/10.1021/jz5007302.
J. Sibik, E. Y. Shalaev, and J. A. Zeitler, Glassy dynamics of sorbitol solutions at terahertz frequencies., Phys. Chem.
Chem. Phys., 15(28):11931–11942, July 2013, http://dx.doi.org/10.1039/c3cp51936h.
J. Sibik, M. J. Sargent, M. Franklin, and J. A. Zeitler, Crystallization and Phase Changes in Paracetamol from the
Amorphous Solid to the Liquid Phase, Molecular Pharmaceutics, 11(4):1326–1334, March 2014b,
http://dx.doi.org/10.1021/mp400768m.
J. Sibik, K. Loebmann, T. Rades, and J. A. Zeitler, Predicting Crystallisation of Amorphous Drugs With Terahertz
Spectroscopy, Molecular Pharmaceutics, page 150619135054002, June 2015,
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00330.
30 of 31
Summary Acknowledgments
Literature II
C. J. Strachan, T. Rades, D. Newnham, K. C. Gordon, M. Pepper, and P. F. Taday, Using terahertz pulsed spectroscopy
to study crystallinity of pharmaceutical materials, Chem. Phys. Lett., 390(1-3):20–24, May 2004,
http://dx.doi.org/10.1016/j.cplett.2004.03.117.
H. Wagner and R. Richert, Spatial uniformity of the β-relaxation in D-sorbitol, J. Non-Cryst. Sol., 242(1):19–24, 1998.
J. A. Zeitler, P. F. Taday, K. C. Gordon, M. Pepper, and T. Rades, Solid-State Transition Mechanism in Carbamazepine
Polymorphs by Time-Resolved Terahertz Spectroscopy, ChemPhysChem, 8(13):1924–1927, 2007a,
http://dx.doi.org/10.1002/cphc.200700261.
J. A. Zeitler, P. F. Taday, M. Pepper, and T. Rades, Relaxation and crystallization of amorphous carbamazepine studied
by terahertz pulsed spectroscopy, J. Pharm. Sci., 96(10):2703–2709, October 2007b, http://dx.doi.org/10.1002/jps.20908.
J. A. Zeitler, D. A. Newnham, P. F. Taday, C. J. Strachan, M. Pepper, K. C. Gordon, and T. Rades, Temperature
dependent terahertz pulsed spectroscopy of carbamazepine, Thermochimica Acta, 436(1-2):71–77, October 2005,
http://dx.doi.org/10.1016/j.tca.2005.07.006.
31 of 31

More Related Content

What's hot

Markus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracks
Markus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracksMarkus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracks
Markus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracksAalto on Tracks
 
Terahertz_Applications
Terahertz_ApplicationsTerahertz_Applications
Terahertz_Applications
krishslide
 
Terahertz generation and detection using aperture antenna
Terahertz generation and detection using aperture antennaTerahertz generation and detection using aperture antenna
Terahertz generation and detection using aperture antennaTanumoy Saha
 
THz wave air photonics: Generation and detection of THz radiation by air
THz wave air photonics: Generation and detection of THz radiation by airTHz wave air photonics: Generation and detection of THz radiation by air
THz wave air photonics: Generation and detection of THz radiation by air
soreciety
 
Strong terahertz radiation generation by beating of two spatial triangular be...
Strong terahertz radiation generation by beating of two spatial triangular be...Strong terahertz radiation generation by beating of two spatial triangular be...
Strong terahertz radiation generation by beating of two spatial triangular be...
maanx
 
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
The Air Force Office of Scientific Research
 
Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010
Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010
Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010Chaz874
 
SPECT: Single Photon Emission Computed Tomography
SPECT: Single Photon Emission Computed TomographySPECT: Single Photon Emission Computed Tomography
SPECT: Single Photon Emission Computed Tomography
Victor Ekpo
 
Non medical radiography
Non medical radiographyNon medical radiography
Non medical radiography
Tim McKenna
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
Shahid Younas
 
Basics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imagingBasics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imaging
@Saudi_nmc
 
Basic principle of gamma camera
Basic principle of gamma cameraBasic principle of gamma camera
Basic principle of gamma camera
Upakar Paudel
 
Bio-optical Sensing Dissertation
Bio-optical Sensing DissertationBio-optical Sensing Dissertation
Bio-optical Sensing Dissertation
Ricky Hennessy
 
IRJET- Liquid Mixture by using Ultrasonic Interferometer
IRJET- Liquid Mixture by using Ultrasonic InterferometerIRJET- Liquid Mixture by using Ultrasonic Interferometer
IRJET- Liquid Mixture by using Ultrasonic Interferometer
IRJET Journal
 
Neutron activation analysis
Neutron activation analysisNeutron activation analysis
Neutron activation analysis
mohilamohsin
 
Msc bioinstrumentation
Msc bioinstrumentation Msc bioinstrumentation
Msc bioinstrumentation
IklakhUlHaq
 
Ftir principle
Ftir principleFtir principle
Ftir principle
Abdul Rahman Shaikh
 
Application FTIR and NIR in food
Application FTIR and NIR in foodApplication FTIR and NIR in food
Application FTIR and NIR in food
Debomitra Dey
 

What's hot (20)

Markus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracks
Markus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracksMarkus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracks
Markus Grönholm: Terahertz Imaging @ TEDx AaltoUniversityOnTracks
 
Terahertz_Applications
Terahertz_ApplicationsTerahertz_Applications
Terahertz_Applications
 
Terahertz generation and detection using aperture antenna
Terahertz generation and detection using aperture antennaTerahertz generation and detection using aperture antenna
Terahertz generation and detection using aperture antenna
 
THz wave air photonics: Generation and detection of THz radiation by air
THz wave air photonics: Generation and detection of THz radiation by airTHz wave air photonics: Generation and detection of THz radiation by air
THz wave air photonics: Generation and detection of THz radiation by air
 
Strong terahertz radiation generation by beating of two spatial triangular be...
Strong terahertz radiation generation by beating of two spatial triangular be...Strong terahertz radiation generation by beating of two spatial triangular be...
Strong terahertz radiation generation by beating of two spatial triangular be...
 
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
Parra - Ultrashort Pulse (USP) Laser Matter Interactions - Spring Review 2012
 
Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010
Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010
Near Infrared Surface Enhanced Raman Spectroscopy Ceh 11 3 2010
 
SPECT: Single Photon Emission Computed Tomography
SPECT: Single Photon Emission Computed TomographySPECT: Single Photon Emission Computed Tomography
SPECT: Single Photon Emission Computed Tomography
 
Non medical radiography
Non medical radiographyNon medical radiography
Non medical radiography
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
 
Basics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imagingBasics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imaging
 
Gritta ftir
Gritta ftirGritta ftir
Gritta ftir
 
Basic principle of gamma camera
Basic principle of gamma cameraBasic principle of gamma camera
Basic principle of gamma camera
 
Bio-optical Sensing Dissertation
Bio-optical Sensing DissertationBio-optical Sensing Dissertation
Bio-optical Sensing Dissertation
 
IRJET- Liquid Mixture by using Ultrasonic Interferometer
IRJET- Liquid Mixture by using Ultrasonic InterferometerIRJET- Liquid Mixture by using Ultrasonic Interferometer
IRJET- Liquid Mixture by using Ultrasonic Interferometer
 
Near infrared spectroscopy 2
Near infrared spectroscopy 2Near infrared spectroscopy 2
Near infrared spectroscopy 2
 
Neutron activation analysis
Neutron activation analysisNeutron activation analysis
Neutron activation analysis
 
Msc bioinstrumentation
Msc bioinstrumentation Msc bioinstrumentation
Msc bioinstrumentation
 
Ftir principle
Ftir principleFtir principle
Ftir principle
 
Application FTIR and NIR in food
Application FTIR and NIR in foodApplication FTIR and NIR in food
Application FTIR and NIR in food
 

Similar to Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems

Column chromatography
Column chromatographyColumn chromatography
Column chromatography
Preeti Choudhary
 
2016 Presentation at the University of Hawaii Cancer Center
2016 Presentation at the University of Hawaii Cancer Center2016 Presentation at the University of Hawaii Cancer Center
2016 Presentation at the University of Hawaii Cancer Center
Casey Greene
 
On-Shell Mediators
On-Shell MediatorsOn-Shell Mediators
On-Shell Mediators
Flip Tanedo
 
Effect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamics
Effect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamicsEffect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamics
Effect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamics
Eleni 'Hellen' Papananou
 
Turbulence in TW Hya
Turbulence in TW HyaTurbulence in TW Hya
Turbulence in TW Hya
richteague
 
Phase equillibrium studies of impure CO2 systems to underpin developments of ...
Phase equillibrium studies of impure CO2 systems to underpin developments of ...Phase equillibrium studies of impure CO2 systems to underpin developments of ...
Phase equillibrium studies of impure CO2 systems to underpin developments of ...
UK Carbon Capture and Storage Research Centre
 
on Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameteron Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameter
Inistute of Geophysics, Tehran university , Tehran/ iran
 
Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography
tech4imaging
 
Hyper variance and autonomous bus
Hyper variance and autonomous busHyper variance and autonomous bus
Hyper variance and autonomous bus
Jun Steed Huang
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
Anthony Melvin Crasto Ph.D
 
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Shu Tanaka
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Nikolai Priezjev
 
The potential of terahertz imaging for cancer diagnosis
The potential of terahertz imaging for cancer diagnosisThe potential of terahertz imaging for cancer diagnosis
The potential of terahertz imaging for cancer diagnosis
Zahid Qaisar
 
06 Filtration.ppt
06 Filtration.ppt06 Filtration.ppt
06 Filtration.ppt
Dr. shrikant jahagirdar
 
organic-spectroscopic-analysis
organic-spectroscopic-analysisorganic-spectroscopic-analysis
organic-spectroscopic-analysis
Alexandra Elena
 
Thermodynamics - Laws Embracing Our Universe
Thermodynamics -  Laws Embracing Our UniverseThermodynamics -  Laws Embracing Our Universe
Thermodynamics - Laws Embracing Our Universe
University of Hertfordshire
 
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Amro Elfeki
 
Trunsored data analysis
Trunsored data analysisTrunsored data analysis
Trunsored data analysis
Hideo Hirose
 

Similar to Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems (20)

Column chromatography
Column chromatographyColumn chromatography
Column chromatography
 
2016 Presentation at the University of Hawaii Cancer Center
2016 Presentation at the University of Hawaii Cancer Center2016 Presentation at the University of Hawaii Cancer Center
2016 Presentation at the University of Hawaii Cancer Center
 
ICR_2012
ICR_2012ICR_2012
ICR_2012
 
On-Shell Mediators
On-Shell MediatorsOn-Shell Mediators
On-Shell Mediators
 
Effect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamics
Effect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamicsEffect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamics
Effect of inorganic fillers on Poly(ethylene oxide) crystallization and dynamics
 
Turbulence in TW Hya
Turbulence in TW HyaTurbulence in TW Hya
Turbulence in TW Hya
 
Phase equillibrium studies of impure CO2 systems to underpin developments of ...
Phase equillibrium studies of impure CO2 systems to underpin developments of ...Phase equillibrium studies of impure CO2 systems to underpin developments of ...
Phase equillibrium studies of impure CO2 systems to underpin developments of ...
 
on Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameteron Thomesn's strange anisotropy parameter
on Thomesn's strange anisotropy parameter
 
Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography Electrical Capacitance Volume Tomography
Electrical Capacitance Volume Tomography
 
Hyper variance and autonomous bus
Hyper variance and autonomous busHyper variance and autonomous bus
Hyper variance and autonomous bus
 
Investigation of hBN by THz Time Domain Spectroscopy
Investigation of hBN by THz Time Domain SpectroscopyInvestigation of hBN by THz Time Domain Spectroscopy
Investigation of hBN by THz Time Domain Spectroscopy
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
 
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on...
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 
The potential of terahertz imaging for cancer diagnosis
The potential of terahertz imaging for cancer diagnosisThe potential of terahertz imaging for cancer diagnosis
The potential of terahertz imaging for cancer diagnosis
 
06 Filtration.ppt
06 Filtration.ppt06 Filtration.ppt
06 Filtration.ppt
 
organic-spectroscopic-analysis
organic-spectroscopic-analysisorganic-spectroscopic-analysis
organic-spectroscopic-analysis
 
Thermodynamics - Laws Embracing Our Universe
Thermodynamics -  Laws Embracing Our UniverseThermodynamics -  Laws Embracing Our Universe
Thermodynamics - Laws Embracing Our Universe
 
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 
Trunsored data analysis
Trunsored data analysisTrunsored data analysis
Trunsored data analysis
 

Recently uploaded

DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 

Recently uploaded (20)

DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 

Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems

  • 1. Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems Juraj Sibik and Axel Zeitler Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK jaz22@cam.ac.uk http://thz.ceb.cam.ac.uk – www.pssrc.org 19 June 2015
  • 2. Outline Introduction Dielectric Spectroscopy Terahertz Radiation Amorphous Materials What Can be Measured at THz Frequencies? Model System: Polyalcohols Crystallisation Stability Prediction Summary
  • 4. Introduction Dielectric Spectroscopy Dielectric Spectroscopy 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 10 21 10 3 10 2 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 Visible Light Infrared UltravioletRadiowaves Microwaves X-rays Gamma 1 MHz 1 ZHz1 EHz1 PHz1 THz1 GHz Frequency / Hz THz 1 nm1 m1 mm1 m1 km Wavelength / m Complementary technique to terahertz spectroscopy at lower frequencies 2 of 31
  • 5. Introduction Dielectric Spectroscopy Absorption Mechanisms This technique spans the frequency range over 102 to 1012 Hz Dipoles and charges respond to the excitation by an external electric field and move as a whole during relaxation ˆε = ε + iε = (n + iκ)2 where α = 4πκ/λ0 Image source: https://commons.wikimedia.org/wiki/file: Dielectric_responses.svg 3 of 31
  • 6. Introduction Dielectric Spectroscopy Dielectric Relaxation – Molecular Mobility α-relaxation Structural relaxation process Relaxation time changes from 10−12 to 102 s upon glass transition Concept of cooperatively rearranging regions (CRR) β-relaxations Local motions involving the entire molecule or intra-molecular reorientations Much faster than α relaxations Commonly observed either as a separate peak or as a high frequency wing of the α-relaxation. G. Adam, J.H. Gibbs, The Journal of Chemical Physics. 43, 139 (1965). 4 of 31
  • 7. Introduction Dielectric Spectroscopy Dielectric Relaxation in Amorphous Solids α and β relaxation process are separated in frequency (but are very broad and often overlap) The secondary β-relaxation processes are typically related to local mobility It is possible to directly measure the relaxation times using dielectric spectroscopy H. Wagner, R. Richert, J. Non-Cryst. Sol. 242, 19 (1998). S. Bhattacharya, R. Suryanarayanan, 98, 2935 (2009). 5 of 31
  • 9. Introduction Terahertz Radiation What does Terahertz Radiation Refer to? 1 0 5 1 0 6 1 0 7 1 0 8 1 0 9 1 0 1 0 1 0 1 1 1 0 1 2 1 0 1 3 1 0 1 4 1 0 1 5 1 0 1 6 1 0 1 7 1 0 1 8 1 0 1 9 1 0 2 0 1 0 2 1 1 0 3 1 0 2 1 0 1 1 0 0 1 0 - 1 1 0 - 2 1 0 - 3 1 0 - 4 1 0 - 5 1 0 - 6 1 0 - 7 1 0 - 8 1 0 - 9 1 0 - 1 0 1 0 - 1 1 1 0 - 1 2 1 0 - 1 3 V i s i b l e L i g h t I o n i s i n g T r a n s p a r e n c y I n f r a r e d U l t r a v i o l e t T r a n s p a r e n c y S p e c t r o s c o p i c I n f o r m a t i o n T H zR a d i o w a v e s M i c r o w a v e s X - r a y s G a m m a 1 M H z 1 Z H z1 E H z1 P H z1 T H z1 G H z F r e q u e n c y / H z 1 n m1 µm1 m m1 m1 k m W a v e l e n g t h / m 0 . 0 1 0 . 1 1 1 0 1 0 0 F r e q u e n c y / T H z 1 . 0 1 0 . 0 1 0 0 . 0 1 0 0 0 . 0 H y d r o g e n - b o n d i n g s t r e t c h e s a n d t o r s i o n s ( l i q u i d s ) S e c o n d a r y d i e l e c t r i c r e l a x a t i o n s ( s o l i d ) I n t r a m o l e c u l a r v i b r a t i o n a l m o d e s C r y s t a l l i n e p h o n o n v i b r a t i o n s ( s o l i d ) W a v e n u m b e r / c m - 1 M o l e c u l a r r o t a t i o n s ( g a s ) 6 of 31
  • 10. Introduction Terahertz Radiation Vibrational Spectroscopy Mid-infrared Intramolecular Modes Information about the structure of a single molecule, identification of molecules Terahertz Intermolecular Modes Information about the structure and dynamics of molecular interaction 7 of 31
  • 11. Introduction Terahertz Radiation Terahertz Time-Domain Spectroscopy 0 1 0 2 0 3 0 4 0 5 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0 1 2 THzelectricfield/a.u. t i m e / p s 1 2 3 4 5 0 . 1 1 1 0 1 0 0 power/a.u. f r e q u e n c y / T H z Typical terahertz pulse in time-domain (left) and frequency components of the pulse (right). Coherent sub-picosecond pulses, bandwidth of 0.1 to 4.0 THz, excellent signal-to-noise detection 8 of 31
  • 12. Introduction Terahertz Radiation Terahertz Time-Domain Technology In THz-TDS both amplitude and phase of the electric field is measured and not just its intensity This means that the complex refractive index can be extracted directly without resorting to Kramer-Kronig relations: ˆEsam(ω) ˆEref(ω) = T(ω)eiφ(ω) In terms of absorption coefficient and refractive index: α(ω) = − 2 d ln (nm + n)2 4nmn T(ω) n(ω) = 1 + φ(ω)c ωd This can also directly be expressed in terms of dielectric losses: ˆn = n + iκ = √ ˆε = √ ε + iε 9 of 31
  • 13. Outline Introduction Amorphous Materials What Can be Measured at THz Frequencies? Model System: Polyalcohols Crystallisation Stability Prediction Summary
  • 14. Amorphous Materials What Can be Measured at THz Frequencies? Amorphous Materials http://www.ndt-ed.org/EducationResources/CommunityCollege/ Materials/Structure/solidstate.htm J. Bicerano, D. Adler, Pure & Appl. Chem., 59, 101 (1987) 10 of 31
  • 15. Amorphous Materials What Can be Measured at THz Frequencies? Disordered Materials – Losses at THz Frequencies Amorphous Solids and Supercooled Liquids Mid-IR: Bond vibrations, slight shift and broadening compared to crystalline materials THz: No phonon vibrations occur as there is no long range order At lower frequencies molecular rotations and translations take place These molecular motions can be described by the first order decay of macroscopic polarisation as proposed by Debye in his dielectric relaxation theory 11 of 31
  • 16. Outline Introduction Amorphous Materials What Can be Measured at THz Frequencies? Model System: Polyalcohols Crystallisation Stability Prediction Summary
  • 17. Amorphous Materials Model System: Polyalcohols Dielectric Response of Amorphous Materials S. Kastner et al., J. Non-Cryst. Sol. 357, 510 (2011). 12 of 31
  • 18. Amorphous Materials Model System: Polyalcohols Dielectric Response of Amorphous Materials S. Kastner et al., J. Non-Cryst. Sol. 357, 510 (2011). 12 of 31
  • 19. Amorphous Materials Model System: Polyalcohols Amorphous Sorbitol 100 150 200 250 300 0 50 100 150 200 1.5 THz 1.0 THz 0.5 THz α[cm -1 ] 100wt% sorbitol T [K] Tg Glass transition Structural relaxation at Tg leads to increase in absorption J. Sibik et al., Phys. Chem. Chem. Phys. 15, 11931 (2013). 13 of 31
  • 20. Amorphous Materials Model System: Polyalcohols Amorphous Sorbitol 100 150 200 250 300 0 50 100 150 200 1.5 THz 1.0 THz 0.5 THz α[cm -1 ] 100wt% sorbitol T [K] Tg Glass transition Subtle but noticeable change in absorption below Tg – origin? J. Sibik et al., Phys. Chem. Chem. Phys. 15, 11931 (2013). 13 of 31
  • 21. Amorphous Materials Model System: Polyalcohols Secondary Relaxation in Polyalcohols A. Döss et al., Phys. Rev. Lett. 88 (2002), doi:10.1103/PhysRevLett.88.095701. 14 of 31
  • 22. Amorphous Materials Model System: Polyalcohols Terahertz Spectroscopy of Polyalcohols 10 0 10 -1 10 0 300 K 80 K 120 K 190 K ''() (THz) (a) glycerol 10 0 150 K 230 K 240 K 90 K (THz) (b) threitol 10 0 310 K 80 K 180 K 250 K (THz) (c) xylitol 10 0 310 K (THz) 180 K 260 K (d) sorbitol 90 K 10 1 10 2 (cm -1 ) 10 1 10 2 (cm -1 ) 10 1 10 2 (cm -1 ) 10 1 10 2 (cm -1 ) The blue and red circles highlight the losses in the proximity of 0.65 Tg and Tg respectively. The sample of threitol recrystallised above 250 K – no data above this temperature are shown. J. Sibik et al., J. Phys. Chem. Lett. 5, 1968 (2014). 15 of 31
  • 23. Amorphous Materials Model System: Polyalcohols Terahertz Spectroscopy of Polyalcohols 0.5 1.0 1.5 0.1 0.3 0.5 0.7 T T (iii)(ii) 1.00 T g sorbitol(+0.1) xylitol threitol(+0.1) glycerol(-0.1) ''(=1THz) T/Tg 0.65 T g (i) The sample of threitol recrystallised above 250 K – no data above this temperature are shown. J. Sibik et al., J. Phys. Chem. Lett. 5, 1968 (2014). 15 of 31
  • 24. Amorphous Materials Model System: Polyalcohols Terahertz Spectroscopy of Polyalcohols At temperatures well below Tg, a temperature-independent microscopic peak is observed, which persists into the liquid phase and which is identified as being due to librational/torsional modes. For 0.65 Tg < T < Tg, additional thermally dependent contributions are observed, and we found strong evidence for its relation to the Johari-Goldstein secondary relaxation process. Clear spectroscopic evidence is found for a secondary glass transition at 0.65 Tg, which is not related to the fragility of the glasses. At temperatures above Tg, the losses become dominated by primary α-relaxation processes. Our results show that the thermal changes in the losses seem to be underpinned by a universal change in the hydrogen bonding structure of the samples. 0.5 1.0 Molecular relaxations 0.67 T g '' THz T/T g T g VDOS JG- Libration-vibration motions Decoupling (independent of m) J. Sibik et al., J. Phys. Chem. Lett. 5, 1968 (2014). 16 of 31
  • 25. Outline Introduction Amorphous Materials What Can be Measured at THz Frequencies? Model System: Polyalcohols Crystallisation Stability Prediction Summary
  • 26. Amorphous Materials Crystallisation Phase Transitions – in situ Spectroscopy 0 . 7 5 0 . 9 0 1 . 0 5 1 . 2 0 1 . 3 5 1 . 5 0 1 . 6 5 1 . 8 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 w a v e n u m b e r / c m - 1 absorbance/a.u. f r e q u e n c y / T H z f o r m I I I f o r m I Conversion of carbamazepine form III to I at 433 K Terahertz spectroscopy is very sensitive to changes in supramolecular structure J.A. Zeitler et al., Thermochimica Acta. 436, 71 (2005). 17 of 31
  • 27. Amorphous Materials Crystallisation Phase Transitions – Kinetics Kinetics of the solid state transition. Mechanism occurs as solid-gas-solid transition and can be resolved using THz-TDS. J.A. Zeitler et al., ChemPhysChem. 8, 1924 (2007). 18 of 31
  • 28. Amorphous Materials Crystallisation Amorphous vs. Crystalline Organic Solids 1 0 2 0 3 0 4 0 5 0 6 0 7 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 a m o r p h o u s c r y s t a l l i n e Absorbance(decadic) W a v e n u m b e r [ c m - 1 ] Crystalline vs. amorphous indomethacine. C.J. Strachan et al., Chem. Phys. Lett. 390, 20 (2004). 19 of 31
  • 29. Amorphous Materials Crystallisation Relaxation and Crystallisation 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 0 2 4 6 8 1 0 1 2 1 4 Absorbance(decadic) W a v e n u m b e r [ c m - 1 ] 654321 330-340 K 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 0 2 4 6 8 1 0 1 2 1 4 65432 Absorbance(decadic) W a v e n u m b e r [ c m - 1 ] 1 340-356 K 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 0 2 4 6 8 1 0 1 2 1 4 65432 Absorbance(decadic) W a v e n u m b e r [ c m - 1 ] 1 357-368 K 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 0 2 4 6 8 1 0 1 2 1 4 Absorbance(decadic) W a v e n u m b e r [ c m - 1 ] 654321 410-440 K J.A. Zeitler et al., J. Pharm. Sci. 96, 2703 (2007). 20 of 31
  • 30. Amorphous Materials Crystallisation Change in Absorbance 2 9 0 3 0 0 3 1 0 3 2 0 3 3 0 3 4 0 3 5 0 3 6 0 3 7 0 3 8 0 3 9 0 4 0 0 4 1 0 4 2 0 4 3 0 4 4 0 4 5 0 0 . 5 1 . 0 1 . 5 2 . 0 3 0 0 3 1 0 3 2 0 3 3 0 3 4 0 3 5 0 0 . 9 0 0 . 9 5 1 . 0 0 1 . 0 5 f o r m IT g f o r m I I Ig l a s s y s t a t e Normalisedabsorbance(decadic) T e m p e r a t u r e [ K ] f e a t u r e 1 f e a t u r e 2 f e a t u r e 3 f e a t u r e 4 f e a t u r e 5 f e a t u r e 6 r u b b e r y s t a t e c r y s t a l l - i s a t i o n p h a s e t r a n s i t i o n At Tg sample relaxes and crystallises subsequently at higher temperature. J.A. Zeitler et al., J. Pharm. Sci. 96, 2703 (2007). 21 of 31
  • 31. Amorphous Materials Crystallisation Crystallisation Kinetics 0 1 2 0 40 80 120 160 200 240 a ) α(cm -1 ) Frequency (THz) 320 325 330 335 340 345 0.0 0.2 0.4 0.6 0.8 1.0 r a , amorphous fraction r c , crystalline fraction Avrami-Erofeev fit Temperature (K) ra ,rc b ) a) Terahertz spectra of paracetamol crystallising form the amorphous phase. As the crystallisation progresses distinct vibrational modes emerge from the VDOS. b) Kinetics of the crystallisation process and corresponding fit using the Avrami-Erofeev model. J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 22 of 31
  • 32. Amorphous Materials Crystallisation Crystallisation of Amorphous Paracetamol Spectra of the three observed polymorphs J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
  • 33. Amorphous Materials Crystallisation Crystallisation of Amorphous Paracetamol 0 1 2 3 0 100 200 300 400 300 350 400 450 T e m p e ra tu re (K ) Frequency (THz) (cm -1 ) Crystallisation and subsequent phase transitions J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
  • 34. Amorphous Materials Crystallisation Crystallisation of Amorphous Paracetamol 10 30 50 300 350 400 450 10 30 50 70 50 70 90 110 300 350 400 450 180 240 300 360 T (K) (cm -1 ) (a) 0.7 THz 1.0 THz LIIIIII (b) (cm -1 ) A 1.5 THz (c) (cm -1 ) 2.5 THz (d) T (K) (cm -1 ) J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
  • 35. Amorphous Materials Crystallisation Crystallisation of Amorphous Paracetamol 0 1 2 3 0 100 200 300 0.6 0.9 20 40 (cm -1 ) Frequency (THz) 325 K 330 K 335 K 0 25 50 75 100 Wavenumber (cm -1 ) 1 2 0 100 200 300 300 K 330 K 335 K 470 K fit n(cm -1 ) Frequency (THz) 20 40 60 Wavenumber (cm -1 ) Deviation from power law: onset of crystallisation n (ν) α (ν) = A + C (ν − ν0)q J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 23 of 31
  • 36. Amorphous Materials Crystallisation Crystallisation of Amorphous Paracetamol 0 10 20 30 40 290 300 310 320 330 460 470 120 130 140 290 300 310 320 330 460 470 1.0 1.1 1.2 1.3 1.4 1.5 T (K) A(cm -1 ) (a) (b) C(cm -1 THz -q ) (c) T (K) q In paracetamol the crystallisation from the amorphous phase is observed to form III Subsequent phase transitions occur to forms II and I before the sample melts This observation is in agreement with a previous study of paracetamol by low frequency Raman scattering The featureless spectra of the supercooled liquid and liquid melt can be fitted using a power law model The melt spectrum is dominated by the dielectric relaxation as well as the VDOS, while in the supercooled liquid the contribution due to the dielectric relaxation vanishes close to Tg (q changes from 2 in the glassy state to 1 in the liquid melt state) Using the simple power law model introduced previously, the onset of crystallisation can be determined precisely J. Sibik et al., Molecular Pharmaceutics. 11, 1326 (2014). 24 of 31
  • 37. Amorphous Materials Crystallisation Crystallisation Below Tg 0.5 1.0 1.5 2.0 0 100 200 (b)(a) 310 K Naproxen ()(cm -1 ) (THz) 100 K 0.4 0.6 0.8 1.0 1.2 50 100 150 200 250 1.2 THz 1.5 THz 1.8 THz (T/T g )(cm -1 ) T/T g 0.67 Tg ~4x faster Seeded crystallisation: rate increases at ≈ 0.67 Tg! Role of molecular mobility below Tg J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330 (2015). 25 of 31
  • 38. Outline Introduction Amorphous Materials What Can be Measured at THz Frequencies? Model System: Polyalcohols Crystallisation Stability Prediction Summary
  • 39. Amorphous Materials Stability Prediction Amorphous Drug Stability J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330 (2015). 26 of 31
  • 40. Amorphous Materials Stability Prediction Amorphous Drug Stability 0.2 0.4 0.6 0.8 1.0 1.2 20 25 30 35 40 45 50 0.5 1.0 1.5 2.0 2.5 0 50 100 150 320 K Indomethacin Paracetamol (cm -1 ) Frequency (THz) 80 K 0.67 Tg Paracetamol Indomethacin 1.0THz (cm -1 ) T/Tg J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330 (2015). 26 of 31
  • 41. Amorphous Materials Stability Prediction Amorphous Drug Stability 0.2 0.4 0.6 0.8 1.0 1.2 1.0 1.1 1.2 1.3 paracetamol indomethacin flufenamic acid simvastatin linear fit 0 T/T g J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330 (2015). 26 of 31
  • 42. Amorphous Materials Stability Prediction Prediction of Amorphous Stability J. Sibik et al., Molecular Pharmaceutics, doi:10.1021/acs.molpharmaceut.5b00330 (2015). 27 of 31
  • 43. Summary Terahertz Spectroscopy The terahertz molecular dynamics is strongly related to the molecular mobility governing the stability of amorphous drugs. While molecular relaxations are often extracted by dielectric spectroscopy or DSC and used to predict the stability of the amorphous drugs, concerns have been raised about the robustness of these methods. DSC is useful mainly for measurements of molecular mobility around and above Tg, but cannot be easily used to measure molecular mobility at lower temperatures. Measurements by dielectric spectroscopy are very useful to measure the local mobility in terms of JG-β relaxation, except for cases where this relaxation is submerged in the α-relaxation. In contrast, terahertz spectroscopy does not suffer from this limitation as it measures fast motions and only indirectly resolves the effect of the JG-β relaxation, which may in principle be observed even when no clear JG-β peak is present (such as in the case of indomethacin). 28 of 31
  • 44. Summary Acknowledgments Acknowledgments Dr Korbinian Löbmann and Professor Thomas Rades (Copenhagen) U.K. Engineering and Physical Sciences Research Council (EPSRC, EP/J007803/1) 29 of 31
  • 45. Summary Acknowledgments Literature I G. Adam and J. H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids, The Journal of Chemical Physics, 43:139, 1965. S. Bhattacharya and R. Suryanarayanan, Local Mobility in Amorphous Pharmaceuticals-Characterization and Implications on Stability, 98(9):2935–2953, January 2009, http://dx.doi.org/10.1002/jps.21728. A. Döß, M. Paluch, H. Sillescu, and G. Hinze, From Strong to Fragile Glass Formers: Secondary Relaxation in Polyalcohols, Phys. Rev. Lett., 88(9), February 2002, http://dx.doi.org/10.1103/PhysRevLett.88.095701. S. Kastner, M. Köhler, Y. Goncharov, P. Lunkenheimer, and A. Loidl, High-frequency dynamics of type B glass formers investigated by broadband dielectric spectroscopy, J. Non-Cryst. Sol., 357(2):510–514, January 2011, http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.074. J. Sibik, S. R. Elliott, and J. A. Zeitler, Thermal decoupling of molecular-relaxation processes from the vibrational density of states at terahertz frequencies in supercooled hydrogen-bonded liquids, J. Phys. Chem. Lett., 5(11): 1968–1972, 2014a, http://dx.doi.org/10.1021/jz5007302. J. Sibik, E. Y. Shalaev, and J. A. Zeitler, Glassy dynamics of sorbitol solutions at terahertz frequencies., Phys. Chem. Chem. Phys., 15(28):11931–11942, July 2013, http://dx.doi.org/10.1039/c3cp51936h. J. Sibik, M. J. Sargent, M. Franklin, and J. A. Zeitler, Crystallization and Phase Changes in Paracetamol from the Amorphous Solid to the Liquid Phase, Molecular Pharmaceutics, 11(4):1326–1334, March 2014b, http://dx.doi.org/10.1021/mp400768m. J. Sibik, K. Loebmann, T. Rades, and J. A. Zeitler, Predicting Crystallisation of Amorphous Drugs With Terahertz Spectroscopy, Molecular Pharmaceutics, page 150619135054002, June 2015, http://dx.doi.org/10.1021/acs.molpharmaceut.5b00330. 30 of 31
  • 46. Summary Acknowledgments Literature II C. J. Strachan, T. Rades, D. Newnham, K. C. Gordon, M. Pepper, and P. F. Taday, Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials, Chem. Phys. Lett., 390(1-3):20–24, May 2004, http://dx.doi.org/10.1016/j.cplett.2004.03.117. H. Wagner and R. Richert, Spatial uniformity of the β-relaxation in D-sorbitol, J. Non-Cryst. Sol., 242(1):19–24, 1998. J. A. Zeitler, P. F. Taday, K. C. Gordon, M. Pepper, and T. Rades, Solid-State Transition Mechanism in Carbamazepine Polymorphs by Time-Resolved Terahertz Spectroscopy, ChemPhysChem, 8(13):1924–1927, 2007a, http://dx.doi.org/10.1002/cphc.200700261. J. A. Zeitler, P. F. Taday, M. Pepper, and T. Rades, Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy, J. Pharm. Sci., 96(10):2703–2709, October 2007b, http://dx.doi.org/10.1002/jps.20908. J. A. Zeitler, D. A. Newnham, P. F. Taday, C. J. Strachan, M. Pepper, K. C. Gordon, and T. Rades, Temperature dependent terahertz pulsed spectroscopy of carbamazepine, Thermochimica Acta, 436(1-2):71–77, October 2005, http://dx.doi.org/10.1016/j.tca.2005.07.006. 31 of 31