SlideShare a Scribd company logo
1 of 23
Download to read offline
Andreas Hess1 and Nuri Aksel2
1 TU Bergakademie Freiberg, 2 Universität Bayreuth
Evaluation of Strain-Rate
Frequency Superposition (SRFS) Data by
Stress Decomposition Method (SDM)
August 6, 2012
The XVIth International Congress on Rheology
August 5-10, 2012 – Lisbon, Portugal
Outline
Basics of stress decomposition method (SDM)
Basics of strain-rate frequency superposition (SRFS)
Combining stress decomposition method (SDM) with strain-rate
frequency superposition (SRFS) to characterize the mechanical and
relaxation behavior of a nonlinear viscoelastic material
Comparing the new approach with Fourier-transform (FT) rheology
TU Bergakademie Freiberg 1
Nonlinear Viscoelasticity
Viscoelastic model material:
Carbopol microgel
Yield stress
Network microstructure1
1
Cryo-TEM image from J.-Y. Kim et al., Colloid
Polym. Sci. 128, 614 (2003)
Visualization of rheological behavior:
Strainamplitudeγ0
Deborah number λω
Pipkin diagram
Newtonianfluid
?
Linear viscoelasticity
Nonlinear viscoelasticity
Linearelasticity
Rheometric test: oscillatory shear!
TU Bergakademie Freiberg 2
Nonlinear Viscoelasticity
Viscoelastic model material:
Carbopol microgel
Yield stress
Network microstructure1
1
Cryo-TEM image from J.-Y. Kim et al., Colloid
Polym. Sci. 128, 614 (2003)
Visualization of rheological behavior:
Strainamplitudeγ0
Deborah number λω
Pipkin diagram
Newtonianfluid
?
Linear viscoelasticity
Nonlinear viscoelasticity
Linearelasticity
Rheometric test: oscillatory shear!
TU Bergakademie Freiberg 2
Waveform Analysis
Time domain:
time
γ(t)
σ(t)
δ
Deformation domain:
-1
0
1
-1 0 1
σ(t)/σ0
γ(t)/γ0
-1
0
1
-1 0 1
σ(t)/σ0
˙γ(t)/˙γ0
Storage, G′, and loss, G′′,
modulus
Fourier-transform (FT)
rheology
Stress decomposition in elastic, σ′(γ), and
viscous, σ′′( ˙γ), stress
We follow this route!
TU Bergakademie Freiberg 3
Waveform Analysis
Time domain:
time
γ(t)
σ(t)
δ
Deformation domain:
-1
0
1
-1 0 1
σ(t)/σ0
γ(t)/γ0
-1
0
1
-1 0 1
σ(t)/σ0
˙γ(t)/˙γ0
Storage, G′, and loss, G′′,
modulus
Fourier-transform (FT)
rheology
Stress decomposition in elastic, σ′(γ), and
viscous, σ′′( ˙γ), stress
We follow this route!
TU Bergakademie Freiberg 3
Stress Decomposition Method (SDM)
Approximating σ′ and σ′′ by Chebyshev polynomials, Tn (1th kind)1:
σ′(γ(t)/γ0) = γ0 ∑
n:odd
enTn(γ(t)/γ0), σ′′( ˙γ(t)/ ˙γ0) = ˙γ0 ∑
n:odd
vnTn( ˙γ(t)/ ˙γ0)
-1
0
1
-1 0 1
σ(t)/σ0
γ(t)/γ0
Elastic stress σ′
-1
0
1
-1 0 1
σ(t)/σ0
˙γ(t)/˙γ0
Viscous stress σ′′
Changing the closed-loop Lissajous representation to the single valued functions
σ′ and σ′′!
1
R. H. Ewoldt et al., J. Rheol. 52, 1427 (2008)
TU Bergakademie Freiberg 4
Stress Decomposition Method (SDM)
Approximating σ′ and σ′′ by Chebyshev polynomials, Tn (1th kind)1:
σ′(γ(t)/γ0) = γ0 ∑
n:odd
enTn(γ(t)/γ0), σ′′( ˙γ(t)/ ˙γ0) = ˙γ0 ∑
n:odd
vnTn( ˙γ(t)/ ˙γ0)
-1
0
1
-1 0 1
σ(t)/σ0
γ(t)/γ0
Elastic stress σ′
-1
0
1
-1 0 1
σ(t)/σ0
˙γ(t)/˙γ0
Viscous stress σ′′
Changing the closed-loop Lissajous representation to the single valued functions
σ′ and σ′′!
1
R. H. Ewoldt et al., J. Rheol. 52, 1427 (2008)
TU Bergakademie Freiberg 4
Viscoelastic Measures
Sign of curvature of σ′ or σ′′ characterizes type of response, e.g.
d2
σ′
dx2 = γ0 (e3 ·24x+...)σ′
γ
Elastic stress
strain hardening
strain softening
G
σ′′
˙γ
Viscous stress
shear thickening
shear thinning
η
Elastic Chebyshev intensity
E =
n:odd
∑
3
en
e1



> 0, strain hardening
= 0, linear elastic
< 0, strain softening
Viscous Chebyshev intensity
V =
n:odd
∑
3
vn
v1



> 0, shear thickening
= 0, linear viscous
< 0, shear thinning
TU Bergakademie Freiberg 5
Strain-Rate Frequency Superposition (SRFS)
Sampling the Pipkin diagram with
constant strain-rate sweeps1,
˙γ0 = γ0ω = const..
Determining the elastic, E, (and
viscous, V) Chebyshev intensity at
each constant strain-rate sweep.
Strainamplitudeγ0
Deborah number λω
Pipkin diagram
Newtonianfluid
?
Linear viscoelasticity
Nonlinear viscoelasticity
Linearelasticity
10-2
10-1
100
101
102
103
104
10-2 10-1 100 101 102
γ0
ω (rad/s)
˙γ0=const.
−−−−−−−→
-0.2
0
0.2
0.4
0.6
0.8
1
10-2 10-1 100 101 102E
ω (rad/s)
1
H. M. Wyss et al., Phys. Rev. Lett. 98, 238303 (2007)
TU Bergakademie Freiberg 6
Strain-Rate Frequency Superposition (SRFS)
Shifting the elastic, E, (and viscous, V) Chebyshev intensity along the frequency
axes
Frequency shift factor
-0.2
0
0.2
0.4
0.6
0.8
1
10-2 10-1 100 101 102
E
ω (rad/s)
100
101
102
103
10-3
10-2
10-1
100
101
b
˙γ0 (s−1
)
1
−−−−−−−−−−−−−−−−−→ -0.2
0
0.2
0.4
0.6
0.8
1
10-4 10-3 10-2 10-1 100 101
E
ω/b( ˙γ0) (rad/s)
All data collapse onto a single curve!
TU Bergakademie Freiberg 7
Strain-Rate Frequency Superposition (SRFS)
Shifting the elastic, E, (and viscous, V) Chebyshev intensity along the frequency
axes
Frequency shift factor
100
101
102
103
10-3
10-2
10-1
100
101b
˙γ0 (s−1
)
1
-0.2
0
0.2
0.4
0.6
0.8
1
10-2 10-1 100 101 102
E
ω (rad/s)
100
101
102
103
10-3
10-2
10-1
100
101
b
˙γ0 (s−1
)
1
−−−−−−−−−−−−−−−−−→ -0.2
0
0.2
0.4
0.6
0.8
1
10-4 10-3 10-2 10-1 100 101
E
ω/b( ˙γ0) (rad/s)
All data collapse onto a single curve!
TU Bergakademie Freiberg 7
Strain-Rate Frequency Superposition (SRFS)
Shifting the elastic, E, (and viscous, V) Chebyshev intensity along the frequency
axes
Frequency shift factor
-0.2
0
0.2
0.4
0.6
0.8
1
10-2 10-1 100 101 102
E
ω (rad/s)
100
101
102
103
10-3
10-2
10-1
100
101
b
˙γ0 (s−1
)
1
−−−−−−−−−−−−−−−−−→ -0.2
0
0.2
0.4
0.6
0.8
1
10-4 10-3 10-2 10-1 100 101
E
ω/b( ˙γ0) (rad/s)
All data collapse onto a single curve!
TU Bergakademie Freiberg 7
Nonlinear Mechanical and Relaxation behavior in Terms of Stress Decomposition
Method (SDM)
-0.2
0
0.2
0.4
0.6
0.8
1
10-5 10-4 10-3 10-2 10-1 100 101 102
E,V
ω b´ ˙γ0µ ´rad/sµ
SAOSyield regimeLAOS
ω0
10-1
100
101
102
103
104
10-310-2 10-1 100 101
b´˙γ0µ
˙γ0 s 1
E : open symbols
V : closed symbols
Structural relaxation frequency: ω0
TU Bergakademie Freiberg 8
Elastic Chebyshev Intensity vs. Generalized Storage Modulus
Elastic Chebyshev intensity:
E =
9
∑
n=3
en
e1
Generalized storage modulus:
˜G′ =
9
∑
n=1
G′
n +
9
∑
n=3
G′′
n
-0.2
0
0.2
0.4
0.6
0.8
1
10-5 10-4 10-3 10-2 10-1 100 101
E
ω/b( ˙γ0) (rad/s)
10-1
100
101
102
103
10-5 10-4 10-310-2 10-1 100 101
˜G′/a(˙γ0)(Pa)
ω/b( ˙γ0) (rad/s)
Increasing strain hardening, E > 0
E diverges at ω/b ≈ 4·10−4
Loss in elastic energy, ˜G′ → 0
˜G′ diverges at ω/b ≈ 4·10−4
TU Bergakademie Freiberg 9
Viscous Chebyshev Intensity vs. First-Order Loss Modulus
Viscous Chebyshev intensity:
V =
9
∑
n=3
vn
v1
First-order loss modulus:
G′′
1
-0.2
-0.1
0
0.1
0.2
10-5 10-4 10-3 10-2 10-1 100 101
V
ω/b( ˙γ0) (rad/s)
100
101
102
10-5 10-4 10-3 10-2 10-1 100 101
G′′
1/a(˙γ0)(Pa)
ω/b( ˙γ0) (rad/s)
ν′′
Constant shear thinning,
V = const. < 0
Relaxation peak at ω/b ≈ 10−2
Constant energy dissipation,
G′′
1 = const., ν′′ = 1
Relaxation peak at ω/b ≈ 10−2
TU Bergakademie Freiberg 10
Conclusion
The stress decomposition method (SDM) works well in combination with
the strain rate frequency superposition principle (SRFS).
The combination of SDM with SRFS is a promising approach to
characterize nonlinear viscoelastic materials with respect to their mechanical
and relaxation behavior.
The proposed procedure is also applicable to local nonlinear viscoelastic
measures1.
1
A. Hess and N. Aksel, Phys. Rev. E 84, 01502 (2011)
TU Bergakademie Freiberg 11
Fourier Transform Rheology
0
0.1
0.2
0.3
0.4
0.5
10-2 10-1 100 101 102
I3/I1
ω ( ˙γ0) (rad/s)
˙γ0
γ0
0
0.1
0.2
0.3
0.4
0.5
10-2 10-1 100 101 102
9
∑
n=3
(In/I1)
ω ( ˙γ0) (rad/s)
I3/I1 contains about 25% of the signal
9
∑
n=3
In/I1 contains about 50% of the
signal
TU Bergakademie Freiberg 12
Extending the Frequency Range
Limited ω-range of the rheometer
device
Idea: shifting the data along the
ω-axis by factor b( ˙γ0)
0
0.1
0.2
0.3
0.4
0.5
10-2 10-1 100 101 102
9
∑
n=3
(In/I1)
ω (rad/s)
˙γ0
γ0
0
0.1
0.2
0.3
0.4
0.5
10-5 10-4 10-3 10-2 10-1 100 101
9
∑
n=3
(In/I1)
ω/b( ˙γ0) (rad/s)
10-1
100
101
102
103
104
10-3
10-2
10-1
100
101
b(˙γ0)
˙γ0 / s−1
1
TU Bergakademie Freiberg 13
Nonlinear mechanical and relaxation behavior in Terms of FT Rheology
10-1
100
101
102
103
10-5 10-4 10-3 10-2 10-1 100 101
(˜G′,G′′
1)/a(˙γ0)(Pa)
ω/b( ˙γ0) (rad/s)
SAOSyield regimeLAOS
1
ω0
˜G′
G′′
1
Loss modulus1: G′′
1
Generalized storage modulus:
˜G′ =
9
∑
n=1
G′
n +
9
∑
n=3
G′′
n
100
101
102
103
10-3
10-2
10-1
100
101
a,b
˙γ0 (s−1
)
1
Relaxation time:
1/τ = 1/τ0 + ˙γ0; τ0 ≈ 1
1 TU Bergakademie Freiberg 14
Q-Criterium
10-4
10-3
10-2
10-1
100
10-1 100 101 102 103 104
I3/I1
γ0
1.35
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-2 10-1 100 101 102 103 104
Q
γ0
Q - Criterium:
Q = ()I3/I1)·(1/γ2
0 )TU Bergakademie Freiberg 15
Local (Intracycle) Measures
Minimum-strain elastic modulus
G′
M =
dσ
dγ γ=0
Large-strain elastic modulus
G′
L =
σ
γ γ=±γ0
Minimum-rate dynamic viscosity
η′
M =
dσ
d ˙γ ˙γ=0
Large-rate dynamic viscosity
η′
L =
σ
˙γ ˙γ=± ˙γ0
-1
0
1
-1 0 1
σ(t)/σ0
γ(t)/γ0
G′
L
G′
M
-1
0
1
-1 0 1
σ(t)/σ0
˙γ(t)/˙γ0
η′
L
η′
M
TU Bergakademie Freiberg 16
SRFS - Local (Intracycle) Measures
10-1
100
101
102
103
10-5
10-4
10-3
10-2
10-1
100
101
(G′
M,G′
L)(Pa)
ω/b( ˙γ0) (rad/s)
101
102
103
104
105
10-5
10-4
10-3
10-2
10-1
100
101
(η′
M,η′
L)/a(˙γ0)(Pas)
ω/b( ˙γ0) (rad/s)
Minimum-strain or -strain-rate measures are more sensitive to structural changes
TU Bergakademie Freiberg 17

More Related Content

Similar to ICR_2012

Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...
Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...
Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...Victor Solntsev
 
Directional Spreading Effect on a Wave Energy Converter
Directional Spreading Effect on a Wave Energy ConverterDirectional Spreading Effect on a Wave Energy Converter
Directional Spreading Effect on a Wave Energy ConverterElliot Song
 
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronElectrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronAleksey Beletskii
 
DHR_Rheology_Theory.pdf
DHR_Rheology_Theory.pdfDHR_Rheology_Theory.pdf
DHR_Rheology_Theory.pdffarsiya
 
Goodness Dispersion Curves for Ultrasonic Guided Wave based SHM
Goodness Dispersion Curves for Ultrasonic Guided Wave based SHMGoodness Dispersion Curves for Ultrasonic Guided Wave based SHM
Goodness Dispersion Curves for Ultrasonic Guided Wave based SHMInnerspec Technologies
 
Synthesis and analysis of pzt using impedance method of reactance estimation
Synthesis and analysis of pzt using impedance method of reactance estimationSynthesis and analysis of pzt using impedance method of reactance estimation
Synthesis and analysis of pzt using impedance method of reactance estimationWilliam Garcia
 
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLeonid Abdurakhimov
 
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous SystemsTerahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systemsjaz22_tag
 
Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...
Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...
Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...ijsc
 
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...MOHAMMED FAZIL
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning ruleshirokazutanaka
 
NUMERICAL SIMULATION OF WAVES AND FRONTS
NUMERICAL SIMULATION OF WAVES AND FRONTSNUMERICAL SIMULATION OF WAVES AND FRONTS
NUMERICAL SIMULATION OF WAVES AND FRONTSberezovski
 
Eh3 analysis of nonlinear energy harvesters
Eh3   analysis of nonlinear energy harvestersEh3   analysis of nonlinear energy harvesters
Eh3 analysis of nonlinear energy harvestersUniversity of Glasgow
 
15.30 o4 c aguergaray
15.30 o4 c aguergaray15.30 o4 c aguergaray
15.30 o4 c aguergarayNZIP
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaPFHub PFHub
 

Similar to ICR_2012 (20)

Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...
Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...
Simulation of Nonstationary Processes in Backward-Wave Tube with the Self-Mod...
 
Directional Spreading Effect on a Wave Energy Converter
Directional Spreading Effect on a Wave Energy ConverterDirectional Spreading Effect on a Wave Energy Converter
Directional Spreading Effect on a Wave Energy Converter
 
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronElectrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
 
DHR_Rheology_Theory.pdf
DHR_Rheology_Theory.pdfDHR_Rheology_Theory.pdf
DHR_Rheology_Theory.pdf
 
Goodness Dispersion Curves for Ultrasonic Guided Wave based SHM
Goodness Dispersion Curves for Ultrasonic Guided Wave based SHMGoodness Dispersion Curves for Ultrasonic Guided Wave based SHM
Goodness Dispersion Curves for Ultrasonic Guided Wave based SHM
 
Synthesis and analysis of pzt using impedance method of reactance estimation
Synthesis and analysis of pzt using impedance method of reactance estimationSynthesis and analysis of pzt using impedance method of reactance estimation
Synthesis and analysis of pzt using impedance method of reactance estimation
 
K0457278
K0457278K0457278
K0457278
 
E05731721
E05731721E05731721
E05731721
 
Lecture 3 sapienza 2017
Lecture 3 sapienza 2017Lecture 3 sapienza 2017
Lecture 3 sapienza 2017
 
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
 
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous SystemsTerahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
 
Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...
Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...
Spatio-Temporal Characterization with Wavelet Coherence: Anexus between Envir...
 
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
 
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rulesJAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
 
HexMat_Workshop_TJun_Poster_v2
HexMat_Workshop_TJun_Poster_v2HexMat_Workshop_TJun_Poster_v2
HexMat_Workshop_TJun_Poster_v2
 
NUMERICAL SIMULATION OF WAVES AND FRONTS
NUMERICAL SIMULATION OF WAVES AND FRONTSNUMERICAL SIMULATION OF WAVES AND FRONTS
NUMERICAL SIMULATION OF WAVES AND FRONTS
 
Eh3 analysis of nonlinear energy harvesters
Eh3   analysis of nonlinear energy harvestersEh3   analysis of nonlinear energy harvesters
Eh3 analysis of nonlinear energy harvesters
 
15.30 o4 c aguergaray
15.30 o4 c aguergaray15.30 o4 c aguergaray
15.30 o4 c aguergaray
 
0504006v1
0504006v10504006v1
0504006v1
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 

ICR_2012

  • 1. Andreas Hess1 and Nuri Aksel2 1 TU Bergakademie Freiberg, 2 Universität Bayreuth Evaluation of Strain-Rate Frequency Superposition (SRFS) Data by Stress Decomposition Method (SDM) August 6, 2012 The XVIth International Congress on Rheology August 5-10, 2012 – Lisbon, Portugal
  • 2. Outline Basics of stress decomposition method (SDM) Basics of strain-rate frequency superposition (SRFS) Combining stress decomposition method (SDM) with strain-rate frequency superposition (SRFS) to characterize the mechanical and relaxation behavior of a nonlinear viscoelastic material Comparing the new approach with Fourier-transform (FT) rheology TU Bergakademie Freiberg 1
  • 3. Nonlinear Viscoelasticity Viscoelastic model material: Carbopol microgel Yield stress Network microstructure1 1 Cryo-TEM image from J.-Y. Kim et al., Colloid Polym. Sci. 128, 614 (2003) Visualization of rheological behavior: Strainamplitudeγ0 Deborah number λω Pipkin diagram Newtonianfluid ? Linear viscoelasticity Nonlinear viscoelasticity Linearelasticity Rheometric test: oscillatory shear! TU Bergakademie Freiberg 2
  • 4. Nonlinear Viscoelasticity Viscoelastic model material: Carbopol microgel Yield stress Network microstructure1 1 Cryo-TEM image from J.-Y. Kim et al., Colloid Polym. Sci. 128, 614 (2003) Visualization of rheological behavior: Strainamplitudeγ0 Deborah number λω Pipkin diagram Newtonianfluid ? Linear viscoelasticity Nonlinear viscoelasticity Linearelasticity Rheometric test: oscillatory shear! TU Bergakademie Freiberg 2
  • 5. Waveform Analysis Time domain: time γ(t) σ(t) δ Deformation domain: -1 0 1 -1 0 1 σ(t)/σ0 γ(t)/γ0 -1 0 1 -1 0 1 σ(t)/σ0 ˙γ(t)/˙γ0 Storage, G′, and loss, G′′, modulus Fourier-transform (FT) rheology Stress decomposition in elastic, σ′(γ), and viscous, σ′′( ˙γ), stress We follow this route! TU Bergakademie Freiberg 3
  • 6. Waveform Analysis Time domain: time γ(t) σ(t) δ Deformation domain: -1 0 1 -1 0 1 σ(t)/σ0 γ(t)/γ0 -1 0 1 -1 0 1 σ(t)/σ0 ˙γ(t)/˙γ0 Storage, G′, and loss, G′′, modulus Fourier-transform (FT) rheology Stress decomposition in elastic, σ′(γ), and viscous, σ′′( ˙γ), stress We follow this route! TU Bergakademie Freiberg 3
  • 7. Stress Decomposition Method (SDM) Approximating σ′ and σ′′ by Chebyshev polynomials, Tn (1th kind)1: σ′(γ(t)/γ0) = γ0 ∑ n:odd enTn(γ(t)/γ0), σ′′( ˙γ(t)/ ˙γ0) = ˙γ0 ∑ n:odd vnTn( ˙γ(t)/ ˙γ0) -1 0 1 -1 0 1 σ(t)/σ0 γ(t)/γ0 Elastic stress σ′ -1 0 1 -1 0 1 σ(t)/σ0 ˙γ(t)/˙γ0 Viscous stress σ′′ Changing the closed-loop Lissajous representation to the single valued functions σ′ and σ′′! 1 R. H. Ewoldt et al., J. Rheol. 52, 1427 (2008) TU Bergakademie Freiberg 4
  • 8. Stress Decomposition Method (SDM) Approximating σ′ and σ′′ by Chebyshev polynomials, Tn (1th kind)1: σ′(γ(t)/γ0) = γ0 ∑ n:odd enTn(γ(t)/γ0), σ′′( ˙γ(t)/ ˙γ0) = ˙γ0 ∑ n:odd vnTn( ˙γ(t)/ ˙γ0) -1 0 1 -1 0 1 σ(t)/σ0 γ(t)/γ0 Elastic stress σ′ -1 0 1 -1 0 1 σ(t)/σ0 ˙γ(t)/˙γ0 Viscous stress σ′′ Changing the closed-loop Lissajous representation to the single valued functions σ′ and σ′′! 1 R. H. Ewoldt et al., J. Rheol. 52, 1427 (2008) TU Bergakademie Freiberg 4
  • 9. Viscoelastic Measures Sign of curvature of σ′ or σ′′ characterizes type of response, e.g. d2 σ′ dx2 = γ0 (e3 ·24x+...)σ′ γ Elastic stress strain hardening strain softening G σ′′ ˙γ Viscous stress shear thickening shear thinning η Elastic Chebyshev intensity E = n:odd ∑ 3 en e1    > 0, strain hardening = 0, linear elastic < 0, strain softening Viscous Chebyshev intensity V = n:odd ∑ 3 vn v1    > 0, shear thickening = 0, linear viscous < 0, shear thinning TU Bergakademie Freiberg 5
  • 10. Strain-Rate Frequency Superposition (SRFS) Sampling the Pipkin diagram with constant strain-rate sweeps1, ˙γ0 = γ0ω = const.. Determining the elastic, E, (and viscous, V) Chebyshev intensity at each constant strain-rate sweep. Strainamplitudeγ0 Deborah number λω Pipkin diagram Newtonianfluid ? Linear viscoelasticity Nonlinear viscoelasticity Linearelasticity 10-2 10-1 100 101 102 103 104 10-2 10-1 100 101 102 γ0 ω (rad/s) ˙γ0=const. −−−−−−−→ -0.2 0 0.2 0.4 0.6 0.8 1 10-2 10-1 100 101 102E ω (rad/s) 1 H. M. Wyss et al., Phys. Rev. Lett. 98, 238303 (2007) TU Bergakademie Freiberg 6
  • 11. Strain-Rate Frequency Superposition (SRFS) Shifting the elastic, E, (and viscous, V) Chebyshev intensity along the frequency axes Frequency shift factor -0.2 0 0.2 0.4 0.6 0.8 1 10-2 10-1 100 101 102 E ω (rad/s) 100 101 102 103 10-3 10-2 10-1 100 101 b ˙γ0 (s−1 ) 1 −−−−−−−−−−−−−−−−−→ -0.2 0 0.2 0.4 0.6 0.8 1 10-4 10-3 10-2 10-1 100 101 E ω/b( ˙γ0) (rad/s) All data collapse onto a single curve! TU Bergakademie Freiberg 7
  • 12. Strain-Rate Frequency Superposition (SRFS) Shifting the elastic, E, (and viscous, V) Chebyshev intensity along the frequency axes Frequency shift factor 100 101 102 103 10-3 10-2 10-1 100 101b ˙γ0 (s−1 ) 1 -0.2 0 0.2 0.4 0.6 0.8 1 10-2 10-1 100 101 102 E ω (rad/s) 100 101 102 103 10-3 10-2 10-1 100 101 b ˙γ0 (s−1 ) 1 −−−−−−−−−−−−−−−−−→ -0.2 0 0.2 0.4 0.6 0.8 1 10-4 10-3 10-2 10-1 100 101 E ω/b( ˙γ0) (rad/s) All data collapse onto a single curve! TU Bergakademie Freiberg 7
  • 13. Strain-Rate Frequency Superposition (SRFS) Shifting the elastic, E, (and viscous, V) Chebyshev intensity along the frequency axes Frequency shift factor -0.2 0 0.2 0.4 0.6 0.8 1 10-2 10-1 100 101 102 E ω (rad/s) 100 101 102 103 10-3 10-2 10-1 100 101 b ˙γ0 (s−1 ) 1 −−−−−−−−−−−−−−−−−→ -0.2 0 0.2 0.4 0.6 0.8 1 10-4 10-3 10-2 10-1 100 101 E ω/b( ˙γ0) (rad/s) All data collapse onto a single curve! TU Bergakademie Freiberg 7
  • 14. Nonlinear Mechanical and Relaxation behavior in Terms of Stress Decomposition Method (SDM) -0.2 0 0.2 0.4 0.6 0.8 1 10-5 10-4 10-3 10-2 10-1 100 101 102 E,V ω b´ ˙γ0µ ´rad/sµ SAOSyield regimeLAOS ω0 10-1 100 101 102 103 104 10-310-2 10-1 100 101 b´˙γ0µ ˙γ0 s 1 E : open symbols V : closed symbols Structural relaxation frequency: ω0 TU Bergakademie Freiberg 8
  • 15. Elastic Chebyshev Intensity vs. Generalized Storage Modulus Elastic Chebyshev intensity: E = 9 ∑ n=3 en e1 Generalized storage modulus: ˜G′ = 9 ∑ n=1 G′ n + 9 ∑ n=3 G′′ n -0.2 0 0.2 0.4 0.6 0.8 1 10-5 10-4 10-3 10-2 10-1 100 101 E ω/b( ˙γ0) (rad/s) 10-1 100 101 102 103 10-5 10-4 10-310-2 10-1 100 101 ˜G′/a(˙γ0)(Pa) ω/b( ˙γ0) (rad/s) Increasing strain hardening, E > 0 E diverges at ω/b ≈ 4·10−4 Loss in elastic energy, ˜G′ → 0 ˜G′ diverges at ω/b ≈ 4·10−4 TU Bergakademie Freiberg 9
  • 16. Viscous Chebyshev Intensity vs. First-Order Loss Modulus Viscous Chebyshev intensity: V = 9 ∑ n=3 vn v1 First-order loss modulus: G′′ 1 -0.2 -0.1 0 0.1 0.2 10-5 10-4 10-3 10-2 10-1 100 101 V ω/b( ˙γ0) (rad/s) 100 101 102 10-5 10-4 10-3 10-2 10-1 100 101 G′′ 1/a(˙γ0)(Pa) ω/b( ˙γ0) (rad/s) ν′′ Constant shear thinning, V = const. < 0 Relaxation peak at ω/b ≈ 10−2 Constant energy dissipation, G′′ 1 = const., ν′′ = 1 Relaxation peak at ω/b ≈ 10−2 TU Bergakademie Freiberg 10
  • 17. Conclusion The stress decomposition method (SDM) works well in combination with the strain rate frequency superposition principle (SRFS). The combination of SDM with SRFS is a promising approach to characterize nonlinear viscoelastic materials with respect to their mechanical and relaxation behavior. The proposed procedure is also applicable to local nonlinear viscoelastic measures1. 1 A. Hess and N. Aksel, Phys. Rev. E 84, 01502 (2011) TU Bergakademie Freiberg 11
  • 18. Fourier Transform Rheology 0 0.1 0.2 0.3 0.4 0.5 10-2 10-1 100 101 102 I3/I1 ω ( ˙γ0) (rad/s) ˙γ0 γ0 0 0.1 0.2 0.3 0.4 0.5 10-2 10-1 100 101 102 9 ∑ n=3 (In/I1) ω ( ˙γ0) (rad/s) I3/I1 contains about 25% of the signal 9 ∑ n=3 In/I1 contains about 50% of the signal TU Bergakademie Freiberg 12
  • 19. Extending the Frequency Range Limited ω-range of the rheometer device Idea: shifting the data along the ω-axis by factor b( ˙γ0) 0 0.1 0.2 0.3 0.4 0.5 10-2 10-1 100 101 102 9 ∑ n=3 (In/I1) ω (rad/s) ˙γ0 γ0 0 0.1 0.2 0.3 0.4 0.5 10-5 10-4 10-3 10-2 10-1 100 101 9 ∑ n=3 (In/I1) ω/b( ˙γ0) (rad/s) 10-1 100 101 102 103 104 10-3 10-2 10-1 100 101 b(˙γ0) ˙γ0 / s−1 1 TU Bergakademie Freiberg 13
  • 20. Nonlinear mechanical and relaxation behavior in Terms of FT Rheology 10-1 100 101 102 103 10-5 10-4 10-3 10-2 10-1 100 101 (˜G′,G′′ 1)/a(˙γ0)(Pa) ω/b( ˙γ0) (rad/s) SAOSyield regimeLAOS 1 ω0 ˜G′ G′′ 1 Loss modulus1: G′′ 1 Generalized storage modulus: ˜G′ = 9 ∑ n=1 G′ n + 9 ∑ n=3 G′′ n 100 101 102 103 10-3 10-2 10-1 100 101 a,b ˙γ0 (s−1 ) 1 Relaxation time: 1/τ = 1/τ0 + ˙γ0; τ0 ≈ 1 1 TU Bergakademie Freiberg 14
  • 21. Q-Criterium 10-4 10-3 10-2 10-1 100 10-1 100 101 102 103 104 I3/I1 γ0 1.35 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-2 10-1 100 101 102 103 104 Q γ0 Q - Criterium: Q = ()I3/I1)·(1/γ2 0 )TU Bergakademie Freiberg 15
  • 22. Local (Intracycle) Measures Minimum-strain elastic modulus G′ M = dσ dγ γ=0 Large-strain elastic modulus G′ L = σ γ γ=±γ0 Minimum-rate dynamic viscosity η′ M = dσ d ˙γ ˙γ=0 Large-rate dynamic viscosity η′ L = σ ˙γ ˙γ=± ˙γ0 -1 0 1 -1 0 1 σ(t)/σ0 γ(t)/γ0 G′ L G′ M -1 0 1 -1 0 1 σ(t)/σ0 ˙γ(t)/˙γ0 η′ L η′ M TU Bergakademie Freiberg 16
  • 23. SRFS - Local (Intracycle) Measures 10-1 100 101 102 103 10-5 10-4 10-3 10-2 10-1 100 101 (G′ M,G′ L)(Pa) ω/b( ˙γ0) (rad/s) 101 102 103 104 105 10-5 10-4 10-3 10-2 10-1 100 101 (η′ M,η′ L)/a(˙γ0)(Pas) ω/b( ˙γ0) (rad/s) Minimum-strain or -strain-rate measures are more sensitive to structural changes TU Bergakademie Freiberg 17