SlideShare a Scribd company logo
flip . ta nedo 66uci . ed u@ ON SHELL MEDIATORS
Flip Tanedo
1
O N - S H E L L
M E D I A T O R S
16 May 2015
arXiv:1404.6528 (PRD), 1503.05919
& W o r k i n P r o g r e s s w i t h C o l l a b o r a t o r s
I N D I R E C T D E T E C T I O N O F D A R K M A T T E R
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
2
ANNIHIL
ATION
COLLIDER
DI
RECT DETECTIO
N
Outline0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
UV Models
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
3
Conventional View of DM Interactions
Exceptions: SIMP Miracle (1402.5143), DMdm (1312.2618), Boosted Dark Matter (1405.7370), …
How Dark Matter talks to the Standard Model
..
χ
.
χ
.
sm
.
sm
..
χ
.
sm
.
χ
.
sm
..
sm
.
sm
.
χ
.
χ
ANNIHIL
ATION
DI
RECT DETECTIO
N
COLLIDER
Ωχh2
Exceptions: e.g. SIMP Miracle (1402.5143); DMdm (1312.2618);
Agashe, Cui, et al. (1405.7370). See talk by Yanou Cui.
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 4/47
4/47
How Dark Matter talks to the Standard Model
..
χ
.
χ
.
sm
.
sm
..
χ
.
sm
.
χ
.
sm
..
sm
.
sm
.
χ
.
χ
ANNIHIL
ATION
DI
RECT DETECTIO
N
COLLIDER
Ωχh2
DirectIndirect Collider
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
4
Conventional View of DM Interactions
How Dark Matter talks to the Standard Model
..
χ
.
χ
.
sm
.
sm
..
χ
.
sm
.
χ
.
sm
..
sm
.
sm
.
χ
.
χ
ANNIHIL
ATION
DI
RECT DETECTIO
N
COLLIDER
Ωχh2
Exceptions: e.g. SIMP Miracle (1402.5143); DMdm (1312.2618);
Agashe, Cui, et al. (1405.7370). See talk by Yanou Cui.
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 4/47
4/47
DirectIndirect Collider
CMS HEFTL
XENON100
Ic gm
g5
cM Iq gm g5
qM
L2
1 10 100 1000
10-41
10-40
10-39
10-38
10-37
10-36
10-35
mDM @GeVD
DM-neutroncrosssection@cm2
D
XENON100 limit
stronger
CMS limit
stronger
Region I
Region II
Region III
10 100 1000
10
100
1000
mDM @GeVD
mmed@GeVD
SSO
10-36
10-35
on@cm2
D
CMS limit
Region IBuchmueller et al. 1308.6799; see also Shepherd 1111.2359, etc…
Mono-SM
Mediators
Important
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
5
Simplified Models
How Dark Matter talks to the Standard Model
..
χ
.
χ
.
sm
.
sm
..
χ
.
sm
.
χ
.
sm
..
sm
.
sm
.
χ
.
χ
ANNIHIL
ATION
DI
RECT DETECTION COLLIDER
Ωχh2
1 Work inA
ThisiscollectionofusefulsampleFeynman
1WorkinProgress
rather than this… … use this
See, for example: Shepherd et al. (1111.2359), Busoni et al. (1402.1275, 1405.3101),
Buchmueller et al (1308.6799, 1407.8257), Harris et al. (1411.0535), Abdullah et al. (1409.2893), …
sm
smmediator
g
gSM
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
6
Case Study: Fermi 𝝲-ray excess
• Possible indirect detection signal
• There are reasons to be skeptical

We’ll address these soon.
• Framework to play with new ideas

… that can be applied more broadly than any specific signal
Fermi-LAT Collaboration, S. Murgia; 2014 Fermi Symposium
Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006),
Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarsky et al. (1012.5839);
Gordon & Macias (1306.5725); Daylan et al. (1402.6703); Calore et al. (1411.4647,
1502.02805); Agrawal et al. (1411.2592); Fermi-LAT collaboration (2014 Symposium)
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
7
COLLIDER
DI
RECT DETECTIO
N
Outline0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
ANNIHIL
ATION
UV Models
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
8
Light from Dark Matter
Adapted from D. Zeppenfeld PITP05
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
9
Light from Dark Matter
Extracted from Pythia via PPPC4DMID, Cirelli et al. 1012.4515
0.5 1.0 5.0 10.0
10-2
10-1
10-0
Eg @GeVD
µEg
2
dNgêdEg
b
t
m
W
g
40 GeV DM annihilating into SM pairs
spectrum
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
10
Where to look
NASA/JPL-Caltech/ESO/R.Hurt
FERM
I
Lots of DM
~ 8.5 kpc
Also: dwarfs (later); Third Sources (3FGL) Bertoni et al. 1504.02087
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
15º
15º
Dark Matter
Galactic Plane
J-factor (astrophysics)
Subtract
J ⇠
Z
dV
1
4⇡r
⇢2
(x)
11
The FERMI Region
FERM
I
Morphology
.
The “Hooperon”
mχ = 40 GeV ..
χ
.
¯χ
.
b
.
¯b
Eb = 40 GeV
fits γ spectrum
10 GeV τ also fits
Overall normalization set by present annihilation rate
⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26
cm3
s−1
..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ
(1 + rα
)
γ−β
α
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
12
Galactic Center Excess, circa 2014
Daylan et al. 1402.6703; Abazajian et al. 1402.4090
Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian
et al. (1011.4275, 1207.6047, 1402.4090), Boyarsky et al. (1012.5839); Gordon & Macias
(1306.5725); Daylan et al. (1402.6703) …
FERMI Diffuse BG
FERM
I-m
oleculargasm
ap
(1402.6703) (1402.4090)
All based on Fermi Pass-7 point source background
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
13
Galactic Center Excess today
Fermi-LAT Collaboration, S. Murgia; 2015 Fermi Symposium
Integrated flux in 15ox15o ROI, NFW component
Peaked profiles with long tails (NFW, NFW contracted) yield the most significant improvements in the data-
model agreement for the four variants of the foreground/background models. IC ring 1 contribution ~2-3x
smaller than without additional component and HI ring 1 contribution is ~2-5x larger
➡ The predicted spectrum depends on the foreground/background models.
Calore et al. (1411.4647, 1502.02805); Agrawal et al. (1411.2592); Fermi-LAT
Collaboration (in progress, see Fermi Symposium 2015)
more quantification of systematic uncertainties
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
14
Other Fits
Agrawal et al. 1411.2592 w/ uncertainties from Calore et al. 1409.0042.
hh
W+
W-
tt
bb
ZZ
Xsv=2.2¥10-26
cm3
ês
0 50 100 150 200 250
0
2
4
6
8
10
mc@GeVD
XsvJ@10-26
cm3
êsD
c2 p-val.
hh 28.2 0.17
14
srLD
mc@GeVD
c2 p-val.
hh 28.2 0.17
WW 38.3 0.017
tt 43.5 0.0041
bb 24.2 0.34
ZZ 35.6 0.033
1 10 100
0
2
4
6
8
10
12
14
Eg @GeVD
Eg
2
dNêdEg@10-7
GeVêHcm2
ssrLD
Figure 3: Top: We show the 2 contours, corresponding to 1,2 and 3 , o
hypotheses ! XX for X = {h, W±, Z, t, b}. Vertical dashed lines indicat
for each of these final states. The best fit point in each case is indicated. Bot
the spectra of photons obtained for the corresponding best fit values in the u
central values and the error bars are extracted from [13]. Note that the errors
and the plotted spectra indeed fit the data reasonably well, as indicated by
best fit.
which fits in the envelope between the 4 presented spectra, or one could fit
separately to get a feel for the systematic uncertainty. Here, we take the latt
Out of the 4 spectra Fermi (a,b,c,d) present, one (a) has a shape very di↵
of heavy DM annihilating to electroweak final states. Furthermore, fitting to (
Higgs
bottoms
DM can be heavier
Uncertainties give wiggle
room in final states.
tops
Estimated systematics from
60 diff. emission models
(but smaller than Fermi preliminary)
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
15
Millisecond Pulsars
NASA/CXC/M.Weiss
Accretion
Partner
Star
LMXB to MSP
MSP
Hooper et al. 1010.2752, 1110.0006; Abazajian et al. 1011.4275, 1207.6047 1402.4090
Wharton et al. 1111.4216, Yuan et al. 1404.2318, Mirabal 1309.3248 n.b.: Hooper et al. 1305.0830
MSP Morphology
Degenerate with the
dark matter profile
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
16
The “Hooperon” Goodenough & Hooper (0910.2998, 1010.2752),
Hooper & Linden (1110.0006), Abazajian et al.
(1011.4275, 1207.6047, 1402.4090), Boyarsky et al.
(1012.5839); Gordon & Macias (1306.5725); Daylan et
al. (1402.6703) … .
Hooperon”
= 40 GeV ..
χ
.
¯χ
.
b
.
¯b
Eb = 40 GeV
fits γ spectrum
10 GeV τ also fits
ll normalization set by present annihilation rate
⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26
cm3
s−1
...12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ
(1 + rα
)
γ−β
α
ballpark as thermal relic σ (if s-wave)
ugh & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et
4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725);
al. (1402.6703). + more recent model building papers
The “Hooperon”
mχ = 40 GeV ..
χ
.
¯χ
.
b
.
¯b
Eb = 40 G
fits γ spect
10 GeV τ als
Overall normalization set by present annihilation rate
⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26
cm3
s−
..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ
(1 + r
Same ballpark as thermal relic σ (if s-wave)
Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abaz
al. (1011.4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias
Daylan et al. (1402.6703). + more recent model building papers
.
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528
...
.
The “Hooperon”
mχ = 40 GeV ..
χ
.
¯χ
.
b
.
¯b
Eb = 40 GeV
fits γ spectrum
10 GeV τ also fits
Overall normalization set by present annihilation rate
⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26
cm3
s−1
..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ
(1 + rα
)
γ−β
α
Same ballpark as thermal relic σ (if s-wave)
Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et
al. (1011.4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725);
Daylan et al. (1402.6703). + more recent model building papers
.
.
The “Hooperon”
mχ = 40 GeV ..
χ
.
¯χ
.
b
.
¯b
Eb = 40 GeV
fits γ spectrum
10 GeV τ also fits
Overall normalization set by present annihilation rate
⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26
cm3
s−1
..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ
(1 + rα
)
γ−β
α
Same ballpark as thermal relic σ (if s-wave)
Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et
.
ron”
V ..
χ
.
¯χ
.
b
.
¯b
Eb = 40 GeV
fits γ spectrum
10 GeV τ also fits
zation set by present annihilation rate
= ..5 ..(1.5) × 10−26
cm3
s−1
0) ..γ =1.26 (1402.6703) ρ ∼ r−γ
(1 + rα
)
γ−β
α
thermal relic σ (if s-wave)
(0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et
7, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725);
). + more recent model building papers
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
17
Contact Interactions
Parameterization: UCI 1008.1783; Fit: UCSC 1403.5027
.
Contact Interactions
..Dark Matter . Heavy. sm.
Dirac fermion χ
.
b quark
..
χ
.
¯χ
.
b
.
¯b
. =.
χ
.
¯χ
.
b
.
¯b
DM–SM interaction parameterized by a single coupling Λ−2
.
O =
1
Λ2
(¯χΓχχ) ¯bΓbb
Parameterization in Goodman et al. 1008.1783; see Alves et al. 1403.5027 for Hooperon fit
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 15/47
...
15/47
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
18
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
10 1005020 3015 7010-33
10-31
10-29
10-27
10-25
image adapted from Alex Wijangco
LUX SI (D5) bound
thermal relic
XENON100 SD (D8) bound
CMS D5 bound
CMS D8 bound
ruled out
DI
RECT DETECTIO
N
COLLIDER
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
CMS 1206.5663, LUX 1310.8214
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
19
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
COLLIDER
DI
RECT DETECTIO
N
COLLIDER
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
ANNIHIL
ATION
COLLIDER
via D12 & D14
& SM chirality
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
20
Suggests non-decoupled mediator
mmed < heavy
act O Exceptions:
orana DM: ¯χγµ
χ = 0
ning of chiral couplings (e.g. Zℓ+
ℓ−
)
n-decoupled mediator: mmed < heavy
..
χ
.
¯χ
.
b
.
¯b
.
Λ−2
. ⇒.
χ
.
χ
.
b
.
¯b
.
λDM
.
λSM
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
21
Simplified ModelsSimplified Models
Renormalizable, capture physics of mediator (1105.2838)
..Dark Matter . Mediator. sm.
Dirac fermion χ
.
b quark
.
λSM
.
λDM
.
sm neutral
..
χ
.
χ
.
λDM
.
λSM
Simplest example: Coy Dark Matter
Dolan et al. 1401.6458
Systematic studies:
Chicago 1404.0022
Perimeter 1404.2018
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 18/47
18/47
Simplified Models
Renormalizable, capture physics of mediator (1105.2838)
..Dark Matter . Mediator. sm.
Dirac fermion χ
.
b quark
.
λSM
.
λDM
.
sm neutral
..
χ
.
χ
.
λDM
.
λSM
Simplest example: Coy Dark Matter
Dolan et al. 1401.6458
Systematic studies:
Chicago 1404.0022
Perimeter 1404.2018
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 18/47
18/47
Renormalizable, capture physics of mediator (1105.2838)
Systematic studies:
Chicago:
Perimeter:
1404.0022
1404.2018
Explicit examples
Coy Dark Matter 1401.6458

Boehm, Dolan, et al.
Z’ portal 1501.03490

Alves, Berlin, Profumo, Queiroz
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
22
Simplest Simplified Models (off shell)
14
Model
DM Mediator Interactions
Elastic Near Future Reach?
Number Scattering Direct LHC
1 Dirac Fermion Spin-0 ¯ 5
, ¯ff SI ⇠ (q/2m )2
(scalar) No Maybe
1 Majorana Fermion Spin-0 ¯ 5
, ¯ff SI ⇠ (q/2m )2
(scalar) No Maybe
2 Dirac Fermion Spin-0 ¯ 5
, ¯f 5
f SD ⇠ (q2
/4mnm )2
Never Maybe
2 Majorana Fermion Spin-0 ¯ 5
, ¯f 5
f SD ⇠ (q2
/4mnm )2
Never Maybe
3 Dirac Fermion Spin-1 ¯ µ
, ¯b µb SI ⇠ loop (vector) Yes Maybe
4 Dirac Fermion Spin-1 ¯ µ
, ¯f µ
5
f SD ⇠ (q/2mn)2
or
Never Maybe
SD ⇠ (q/2m )2
5 Dirac Fermion Spin-1 ¯ µ 5
, ¯f µ
5
f SD ⇠ 1 Yes Maybe
5 Majorana Fermion Spin-1 ¯ µ 5
, ¯f µ
5
f SD ⇠ 1 Yes Maybe
6 Complex Scalar Spin-0 †
, ¯f 5
f SD ⇠ (q/2mn)2
No Maybe
6 Real Scalar Spin-0 2
, ¯f 5
f SD ⇠ (q/2mn)2
No Maybe
6 Complex Vector Spin-0 B†
µBµ
, ¯f 5
f SD ⇠ (q/2mn)2
No Maybe
6 Real Vector Spin-0 BµBµ
, ¯f 5
f SD ⇠ (q/2mn)2
No Maybe
7 Dirac Fermion Spin-0 (t-ch.) ¯(1 ± 5
)b SI ⇠ loop (vector) Yes Yes
7 Dirac Fermion Spin-1 (t-ch.) ¯ µ
(1 ± 5
)b SI ⇠ loop (vector) Yes Yes
8 Complex Vector Spin-1/2 (t-ch.) X†
µ
µ
(1 ± 5
)b SI ⇠ loop (vector) Yes Yes
8 Real Vector Spin-1/2 (t-ch.) Xµ
µ
(1 ± 5
)b SI ⇠ loop (vector) Yes Yes
TABLE V. A summary of the simplified models identified in our study as capable of generating the observed gamma-
ray excess without violating the constraints from colliders or direct detection experiments. In the last two columns,
we indicate whether the model in question will be within the reach of near future direct detection experiments (LUX,
XENON1T) or of the LHC. Models with an entry of “Never” predict an elastic scattering cross section with nuclei that
Berlin et al. 1404.0022 and Izaguirre et al. 1404.2018 for a detailed survey of off-shell
simplified models. See Boehm et al. 1401.6458 for a prototype.
Berlin et al. 1404.0022
Looks like we’re all done?
Comprehensive study of
s- and t-channel diagrams.
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
23
On-Shell mediators
• Can be dominant mode
• Separates λDM from λSM
• Admits λDM ≫ λSM
Simplified Hooperons + on-shell mediators
But: the mmed < heavy regime also includes mmed < mχ
i.e. mediator is accessible as an ..on-shell annihilation mode
..
χ
.
χ
.
b
. b.
b
.
b
.
on shell
• Can be dominant mode
• Separates λDM from λSM
• Admits limit λSM ≪ λDM
• Hides indirect detection signal from
direct det. & collider bounds
Application to Hooperon: FT et al. ..1404.6528 (this talk)
See also Dolan et al. 1404.4977 and Martin et al. 1405.0272
Previously: axion portal (Nomura & Thaler, 0810.5397),
cascade annihilation (+ Mardon, Stolarski 0901.2926)
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528
2
The mmed < heavy regime also includes mmed < m 𝝌 where
the mediator is accessible as an on shell annihilation mode
Application to the Hooperon:
FT et al.
Dolan et al
Martin et al.
Elor et al.
1404.6528, 1503.05919
1404.4977
1405.0272
Previously: PAMELA
Axion Portal
Cascades
0810.5397
0901.29261503.01773
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
24
On-Shell Simplified ModelsOn-Shell Simplified Models
..Dark Matter . Mediator. sm.
Dirac fermion χ
.
ϕ, V
.
b quark
.
λSM
.
sm neutral
.
λDM
.
sm neutral
..Annihilation, ⟨σv⟩
γ-ray excess, relic abundance
..Constraints
direct detection, colliders
.
Requirements:
mV,ϕ > 2mb λDM ∼ 1 λSM ≪ 1
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 21/47
21/4
.
On-Shell Simplified Models
..Dark Matter . Mediator. sm.
Dirac fermion χ
.
ϕ, V
.
b quark
.
λSM
.
sm neutral
.
λDM
.
sm neutral
..Annihilation, ⟨σv⟩
γ-ray excess, relic abundance
..Constraints
direct detection, colliders
.
Requirements:
mV,ϕ > 2mb λDM ∼ 1 λSM ≪ 1
COLLIDER
DIRECT DETECTIO
N
ANNIHIL
ATION
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
25
On-Shell Options .
On-Shell Simplified Options
Require: s-wave annihilation:
. . . .
Med. S (P) V (A) S (P) V (A)
ℓ-Wave p (p) s (s) p (s) p (p)
mχ ≈ 80 GeV ≈ 80 GeV ≈ 120 GeV ≈ 120 GeV
Further Requirements:
2mχ >
⎧
⎪⎨
⎪⎩
2mV for a spin-1 mediator
3mϕ for a spin-0 mediator
.
On-Shell Simplified Options
Require: s-wave annihilation:
. . . .
Med. S (P) V (A) S (P) V (A)
ℓ-Wave p (p) s (s) p (s) p (p)
mχ ≈ 80 GeV ≈ 80 GeV ≈ 120 GeV ≈ 120 GeV
Further Requirements:
2mχ >
⎧
⎪⎨
⎪⎩
2mV for a spin-1 mediator
3mϕ for a spin-0 mediator
22
Require s-wave annihilation
New
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
26
Back of the Envelope
m ⇡ n (40 GeV)⇥
h vi ⇡ n ⇥ h vibb
i.e. mediator is accessibl
..
χ
.
χ
.
b
. b.
b
.
b
.
on shell
Application to Hoopero
See also Dolan et al. 1404.49
Previously: axion portal (Nomura &
cascade annihilation (+ Mardon, Stol
Using bb final state as a reference fit
k-of-the-Envelope
dΦ(b, ℓ)
dEγ
=
⟨σv⟩ann
16π
dNγ
dEγ los
dx
ρ
mχ
2
dΦ(b, ℓ)
dEγ
= ..n
⟨σv⟩b¯b
8πm2
χ
..
dNγ
dEγ
..
los
dx ρ2
(rgal (b, ℓ, x))
..Particle Physics
mDM ≈ n×(40 GeV) n=2(3) for spin-1(0)
λDM ≈ 0.35 (1.25) for spin-1(0)
final states requires smaller ⟨σv⟩ann for signal flux
ets injection energy, larger for more final states
flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 24/47
24/47
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
27
mc= 80 GeV
mV=15 GeV mV=30 GeV
mV=55 GeV mV=60 GeV
0 20 40 60 80
b Energy @GeVD
mc= 120 GeV
mj=15 GeV
mj=45 GeV
mj=55 GeV
mj=60 GeV
20 40 60 80 100
b Energy @GeVD
mc= 120 GeV
mj=15 GeV
mj=45 GeV
mj=55 GeV
mj=60 GeV
20 40 60 80 100
f Energy @GeVD
Boosted Mediators
change spectrum
of SM primaries,
change spectrum
of secondary γ’s
ominance over off-shell
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ . ∼ λdmλsm
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ . ∼ λdmλsm
edo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 23/47
23/47
.
ominance over off-shell
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ . ∼ λdmλsm
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ . ∼ λdmλsm
23/47
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
28
Spectral Shape
Simona Murgia
Fermi Collaboration
Fermi Symposium ‘14
��� � � �� ��
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
������ ������ [���]
����[���/���
/�]
¯ ! V V ! 4b
Factor of 2 on envelope size
= 81 GeV mVm = 39 GeV
FT, Smolinsky
& Rajaraman
arXiv:1503.05919
Plots using FT, “PPPC Machine” tools based on PPPC4DMID by M. Cirelli 1012.4515
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
29
Spectral Shape
FT, Smolinsky & Rajaraman arXiv:1503.05919
��� � � �� ��
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
������ ������ [���]
����[���/���
/�]
��� � � �� ��
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
������ ������ [���]����[���/���
/�]
= 150 GeV mVm = 15 GeV = 150 GeV mVm = 141 GeV
• Boost factor can bend shape! 

• Fermi analysis allows heavier DM
See also Calore et al. 1502.02805, Agrawal et al. 1411.2592
Shape is not just a function of SM primary
¯ ! V V ! q¯q ¯ ! V V ! q¯q
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
Dominance over off-shell
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ .
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ .
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528
...
30
Fit: on-shell vector mediator
Similar for annihilation into light quarks
n.b. vector mediators typically couple flavor universally
(shape fit) (normalization fit).
Dominance over off-shell
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ . ∼ λdmλsm
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ . ∼ λdmλsm
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 23/47
...
23/47
FT, Smolinsky & Rajaraman arXiv:1503.05919
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
31
On Shell Vector
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λ
√
Flip Tanedo flip.tanedo@uci.edu
...
h vitarget = 3 ⇥ 10 26
cm3
/sFT, Smolinsky & Rajaraman arXiv:1503.05919
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
32
Fit: on-shell pseudoscalar mediator
Similar for annihilation into light quarks
n.b. scalar mediators typically couple ~ mass
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ .
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ .
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.65
...
Thermal relic doesn’t
seem compatible!
cross section
(shape fit) (normalization fit)
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ . ∼ λdmλsm
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ . ∼ λdmλsm
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 23/47
...
23/47
FT, Smolinsky & Rajaraman arXiv:1503.05919
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
33
On Shell Pseudoscalar
on shell
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
Flip Tanedo flip.tanedo@uci.edu
...
h vitarget = 3 ⇥ 10 26
cm3
/sFT, Smolinsky & Rajaraman arXiv:1503.05919
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
34
Relic Abundanceρ(r) = ρ0
⎛
⎝
r
r0
⎞
⎠
γ
⎛
⎜
⎝1 +
rα
rα
0
⎞
⎟
⎠
γ−β
α
...
¯χ
.
b
.
¯b
⟨σb¯bv⟩ = ..(1.5) ..5 × 10−26
cm3
s−1
.
..γ =1.26 (1402.6703) ..γ =1.12 (1402.4090)
Ballpark of thermal relic σ
.
⟨σv⟩ann. between 3 – 10 ×10−26
cm3
s−1
Vector mediator works for Dirac χ
.
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 36/
...
36/
Works for vector mediator; back of the envelope:
Traditional “Hooperon” (𝝌𝝌 to bb)
.
elic
ballpark for thermal relic (s-wave)
3
/s
Ωχh2
obs.
= 0.12
er ⟨σv⟩:
..
Nγ
Eγ
..
los
dx ρ2
(rgal (b, ℓ, x))
⇒ ⟨σv⟩ann ≈ n⟨σb¯bv⟩
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
35
Relic Abundance
Vector mediator can accommodate thermal relic.
.
Spin-0 Mediator as Thermal Relic
Scalar mediator is more difficult,
1. ⟨σv⟩ann = 3 × ⟨σv⟩b¯b
2. p-wave irreducible contributions
..
χ
.
χ
.
on shell
∼
λdm
√
4π
xf
3
..
χ
.
χ
.
on shell
Is there any way to same thermal freeze out?
?
Spin-0 Mediator as Thermal Relic
Scalar mediator is more difficult,
1. ⟨σv⟩ann = 3 × ⟨σv⟩b¯b
2. p-wave irreducible contributions
..
χ
.
χ
.
on shell
∼
λdm
√
4π
xf
3
..
χ
.
χ
.
on shell
Is there any way to same thermal freeze out?
.
pin-0 Mediator as Thermal Relic
Scalar mediator is more difficult,
1. ⟨σv⟩ann = 3 × ⟨σv⟩b¯b
2. p-wave irreducible contributions
..
χ
.
χ
.
on shell
∼
λdm
√
4π
xf
3
..
χ
.
χ
.
on shell
Is there any way to same thermal freeze out?
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
36
ANNIHIL
ATION
COLLIDER
DI
RECT DETECTIO
N
Outline0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
UV Models
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
37
Direct Detection
Pseudoscalar mediator
Spin-dependent interaction
del Nobile et al. 1406.5542, 1307.5955, 1502.07682
dible regions, 99% CL limits
y excess + relic abundance
⇤a⌘ma/
p
gDMg
99%CLDAMAcredibleregions,99%CL
8fgf
[GeV]
roduct
ma/
p
gDMg
edible regions, 99% CL limits
gf = mf /v
By-product
Lint = i
gDM
p
2
a ¯ 5 ig
X
f
gf
p
2
a ¯f 5f
KIMS experiment
Gal. Center & Thermal Relic
del Nobile et al. 1406.5542
Based on non-rel. EFT
Fitzpatrick et al. 1203.3542, 1211.2818, 1308.6288
DI
RECT DETECTIO
N
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
38
Collider: mono-b
.
Collider: mono-b
See talk by Tongyan Lin, (1303.6638).
See Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model). Mono-object
analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240), others.
λϕ
SM 0.2 λV
SM 0.6
Conservative estimate: mq/M3
∗ → λDMλSMs−1.
Simplified model > EFT: Graesser, Shoemaker, et al. (1107.2666, 1112.5457); UCI (1111.2359);
Busoni et al. (1307.2253); Dolan, et al. (1308.6799).
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 31/47
...
31/47
Lin et al (1303.6638), Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model).
Mono-object analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240)
See talk by Tongyan Lin, (1303.6638).
See Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model). Mono-objec
analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240), others.
λϕ
SM 0.2 λV
SM 0.6
Conservative estimate: mq/M3
∗ → λDMλSMs−1.
Simplified model > EFT: Graesser, Shoemaker, et al. (1107.2666, 1112.5457); UCI (1111.235
Busoni et al. (1307.2253); Dolan, et al. (1308.6799).
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528
...
More recently, simplified model analysis: Harris et al. 1411.0535; Buckley et al. 1410.6497
Linetal.(1303.6638)
COLLIDER
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
39
Collider: multi-jet analysis
Buchmueller et al. 1505.07826 (Imperial); based on 1310.4491
(Oxford) and 1203.1662 (FNAL, Razor analysis)
Pseudoscalar mediator
multi-jet + MET
monojet + MET
production by
gluon fusion
ruled out
smallSMcouplingissafe tion terms are
Lint = igDMA¯ 5
+ igSM
X
q
mq
v
A ¯q 5
q ,
where is a Dirac fermion, the sum is over all quark
is the quark mass and v = 246 GeV is the Higgs vac
expectation value. Motivated by the Minimum Fla
Violation hypothesis [60], we assume the couplings o
pseudoscalar to quarks are proportional to mq. This
pling structure implies that the production of A is
inated by gluon fusion. This simple model can ex
the Fermi-LAT excess while remaining consistent
other constraints and is a useful proxy for the stru
found in 2HDM models and in extended 2HDM
have mixing with a singlet-like pseudoscalar (`a la
NMSSM) [61]. We consider gDM ⇠ gSM ⇠ O(1) as a
ticularly interesting benchmark case to compare di↵
tion terms are
Lint = igDMA¯ 5
+ igSM
X
where is a Dirac fermion, the sum
is the quark mass and v = 246 GeV
expectation value. Motivated by t
Violation hypothesis [60], we assum
pseudoscalar to quarks are proporti
pling structure implies that the pro
inated by gluon fusion. This simp
the Fermi-LAT excess while rema
other constraints and is a useful p
found in 2HDM models and in e
have mixing with a singlet-like p
NMSSM) [61]. We consider gDM ⇠
ticularly interesting benchmark cas
searches since couplings of this size
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
40
Alternative: search for the mediator
How Dark Matter talks to the Standard Model
..
χ
.
χ
.
sm
.
sm
..
χ
.
sm
.
χ
.
sm
..
sm
.
sm
.
χ
.
χ
ANNIHIL
ATION
DI
RECT DETECTION COLLIDER
Ωχh2
1 Work in
rather than this… … use this
See, for example: Shepherd et al. (1111.2359), Busoni et al. (1402.1275, 1405.3101),
Buchmueller et al (1308.6799, 1407.8257), Harris et al. (1411.0535), Abdullah et al. (1409.2893), …
sm
sm
g
gSM
without this
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
41
Constraints on mediator—SM coupling
Carone & Murayama, hep-ph/9411256; Dobrescu & Frugiuele, 1404.3947
hep-ph/9411256
Template:
gauged U(1)B
with O(10) GeV
gauge boson
SM . 1
not very
constrained!
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
42
Inclusive diphotons
Work in Progress with I. Galon
[GeV]φ
m
50 55 60 65 70 75 80 85 90
)[pb]γγ→φ→(ppσ95%CLupperlimit
1
1.5
2
2.5
3
3.5
4
4.5
5
γγ=8 TeV,s
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
SelectionEfficiency
courtesy of D. Whiteson
COLLIDER
CPYuanetal.RESBOS
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
43
ANNIHIL
ATION
COLLIDER
DI
RECT DETECTIO
N
Outline0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
UV Models
UV Models Part I
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
44
Model BuildingModel Building
Spin-1 Mediator
Prototype is gauged U(1)B, expect universal coupling to quarks.
Exception? ρ-like states in composite Higgs? (Contino et al. 1109.1570)
Spin-0 Mediator
Lϕ-sm =
λuyu
ij
Λ
ϕH · ¯QuR +
λdyd
ij
Λ
ϕ ˜H · ¯QdR +
λℓyℓ
ij
Λ
ϕ ˜H · ¯LℓR
Recent UV completion through ‘Higgs-portal’-portal: Ipek et al. 1404.3716
..Dark Matter .Mediator. Higgs. sm
Exception? χ¯χ → ϕ1ϕ2 is s-wave on-shell (Nomura & Thaler 0810.5397)
See also Agrawal et al. 1404.1373 for flavored DM.
Recently: many studies mapping this to (N)MSSM, 2HDM
See also singlet scalar model, Profumo et al. 1412.1105
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
45
Pseudoscalar without the scalar
Work in progress with A. Wijangco and J. Serra
G
HglobalHgauge
H
EW
EM
G
Hgauge
Hoblique
H0
⇠ =
✓
v
f
◆2
Figure 10: Pattern of symmetry breaking. (left, tree level) Strong dynamics breaks G ! Hglobal
pontaneously, while Hgauge ⇢ G is explicitly broken through gauging. The unbroken group H =
Hgauge  Hglobal contains the sm electroweak group, SU(2)L ⇥ U(1)Y. (right, loop level) Vacuum
misalignment from sm interactions shifts the unbroken group H ! H0
and breaks the electroweak
group to U(1)EM. The degree of misalignment is parametrized by ⇠, the squared ratio of the ewsb
vev to the G ! H vev. Adapted from [152].
We assume that the sm electroweak group is a subgroup of H = Hgauge [ Hglobal so that it is
gauged and preserved by the strong dynamics. This is shown on the left of Fig. 10. This results
n dim Hgauge transverse gauge bosons and (dim G dim Hglobal) Goldstone bosons. The breaking
G ! Hglobal also breaks some of the gauge group so that there are a total of (dim Hgauge H)
massive gauge bosons and (dim G dim H) ‘uneaten’ massless Goldstones.
Now we address the white elephant of the Higgs interactions—can we bequeath to our Goldstone
bosons the necessary non-derivative interactions to make one of them a realistic Higgs candidate?
This is indeed possible through vacuum misalignment, which we illustrate on the right of Fig. 10.
EM
G
Hgauge
Hoblique
H0
⇠ =
✓
v
f
◆2
(left, tree level) Strong dynamics breaks G ! Hglobal
ly broken through gauging. The unbroken group H =
k group, SU(2)L ⇥ U(1)Y. (right, loop level) Vacuum
Higgs as a pNGB (composite Higgs)
with non-minimal coset
analogy: π0 vs π±
FT, adapted from Nature Physics 7, 23 (2011)
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
46
Composite Mediators
Work in progress with A. Wijangco and J. Serra
Higgs as a pNGB (composite Higgs)
with non-minimal coset
Λ Λ Λ
Recent UV completion through ‘Higgs-portal’-portal: Ipek et al. 1404.3716
..Dark Matter .Mediator. Higgs. sm
Exception? χ¯χ → ϕ1ϕ2 is s-wave on-shell (Nomura & Thaler 0810.5397)
See also Agrawal et al. 1404.1373 for flavored DM.
ip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 40/47
40/47
SM singlet
“extra” Goldstone
These interactions are given
by nonlinear sigma model and
are distinct from 2HDM
New Matter
incomplete rep. adds to
global symmetry breaking Connects:
• Dark Matter
• Mediators
• EWSB
No 2HDM required!
different phenomenology
and constraints
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
47
Composite Mediators
In Progress; J. Serra, FT, A. Wijangco
���� ��� ����
��-��
���-��
��-��
���� ������� �χ
σ
�
[���
/�]
hvi[cm
3
/s]
preliminary
Fermi Excess
h vi =
3m2
b
2⇡f2
y2
m2
(4m2 m2
⌘)2 + m2
⌘
2
⌘
s
1
m2
b
m2
m⌘ ⇡ y f
m = 50 GeV
f = 500 GeV
partial SO(5)
multiplet
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
48
ANNIHIL
ATION
COLLIDER
DI
RECT DETECTIO
N
Outline0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
UV Models
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
49
Dwarf Bounds from FERMI
1503.02632 (Fermi + DES candidates)
only a sketch
ANNIHIL
ATION
possibly a problem
model building?
Reticulum II?

Hooper & Linden (1503.06209)
Agrawal
et al. (2014)
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
50
Anti-protons
See also Park et al. 1404.3741; Bringmann et al. 1406.6027
Einasto MIN
Einasto MAX
AMS-02 sensitivity
10
-22
10
-23
10
-24
10
-25
10
-26
10
-27
10 50 100 500
thermal relic
PAMELA bounds
Einasto MED[cm3
/ s]
adapted from 1301.7079
Antiproton Flux Constraints
PAMELA p+ bounds:
currently not constraining.
Maybe AMS-02...
... but large propagation
uncertainty, still lots of
wiggle room.
ANNIHIL
ATION
Cirelli & Giesen
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
51
Anti-protons
See also Park et al. 1404.3741; Bringmann et al. 1406.6027
Einasto MIN
Einasto MAX
AMS-02 sensitivity
10
-22
10
-23
10
-24
10
-25
10
-26
10
-27
10 50 100 500
thermal relic
PAMELA bounds
Einasto MED[cm3
/ s]
adapted from 1301.7079
Antiproton Flux Constraints
AMS-02: b quark mode
more constrained
... but large propagation
uncertainty, still lots of
wiggle room.
ANNIHIL
ATION
Model our way out of this?
Giesen et al.
1504.04276
“eyeballed” uncertainty
stronger at low masses:
accounted for solar
modulation effects
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
52
ANNIHIL
ATION
COLLIDER
DI
RECT DETECTIO
N
Outline0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
UV Models
UV Models Part II
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
53
Avoiding the Dwarf Bounds
Kaplinghat, Linden, Yu, 1501.03507
Dwarf Spheroidals: mostly DM, little stellar matter
… so should to see same GeV excess as Gal. Center if it’s DM annihilation
Usual assumption:
Dark Matter Annihilation 𝛾-ray photons
Instead, revise the relation:
Dark Matter Annihilation 𝛾-ray photons
+ ambient starlight
But: requires annihilation into electrons … spectrum doesn’t fit?
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
54
Avoiding Dwarf Bounds
Kaplinghat, Linden, Yu, 1501.03507
Photon spectrum from
FSR doesn’t fit
(Weiszacker-Williams)
2
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Inverse Compton+FSR
FSR HpromptL
0.3 0.5 1 3 5 10 30 50
0
2
4
6
8
E HGeVL
E2
dNêdEH10-6
GeV2
êcm2
êsêsrêGeVL
FIG. 1. -ray spectrum from Inverse Compton emission and
final state radiation produced by annihilation of a 50 GeV
dark matter particle through a light mediator into e+
e fi-
nal state. The spectrum is compared to the Galactic Center
excess [10].
of the dark matter mass, as it absent for masses closer to
But: this leaves an imprint on positron fraction (AMS-02)
and can be constrained by mono-photon searches at LEP
Inverse Compton can
upscatter starlight into a
diffuse GeV spectrum
2 Upscatter
e
e
star
(GeV)
Bonus: self-interacting dark matter
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
55
Flavor Violating Modes
Work in Progress with I. Galon; FT, Smolinsky & Rajaraman arXiv:1503.05919
¯ ! ¯tc
m
Consider: lepton-flavor-violating decay of 𝜑
• 𝜑 into eμ smears out e+ spectrum, avoids bumps?
• Also helps avoid collider, (g-2), etc. bounds
• Achieve: SIDM, Galactic Center, avoid Dwarfs
• Froggat-Nielsen mechanism
• No direct detection
Also: quark flavor decays
• top — charm mode is

accessible
COLLIDER
ANNIHIL
ATION
DI
RECT DETECTIO
N
Agrawal et al. 1405.6709, 1404.1373, 1402.7369
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
56
Flavor Violating Modes
Work in Progress with I. Galon and A. Kwa
Preliminary: thermal relic cross sections
¯ ! ⌧ ¯⌧
¯ ! b¯b
¯ ! (' ! ⌧µ)2
⌧
µ
⌧
µ
'
'
3 Mediator Decays
'
e
⌫µ
⌫e
e
µ
CPV
in dark
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
100
101
102
E [GeV]
100
101
102
E3
J(E)[GeV2
m2
s1
sr1
]
AMS e bound
AMS e+
bound
PAMELA e+
bound
! 3 ! 3(µe), m =2 GeV
! ee, m =50 GeV
m =20 GeV
m =30 GeV
m =40 GeV
m =50 GeV
m =60 GeV
m =70 GeV
m =80 GeV
m =90 GeV
m =100 GeV
! ⌧µ, Benchmark 1
! ⌧µ, Benchmark 2
57
LFV mediators vs. positrons
Work in Progress with I. Galon and A. Kwa (UCI)
preliminary
1501.03507
Kaplinghat et al.
m = 50 GeV
mV = 50 MeV
V ! e+
e
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
58
Avoiding anti-protons
1. Upscattered starlight (c.f. avoiding dwarf bounds)
2. Mediator decays to light mesons, not protons
Liu, Weiner, Xue (1412.1485)
quark couplings, but mmed < ΛQCD

Simplified model + chiral Lagrangian.
4 Loop Diagrams
g
g
5 Pion heuristic
⇡
⇡
'
Analogous to very light Higgs
in Higgs Hunter’s Guide
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
59
Summary⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ . ∼ λdmλ
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ . ∼ λdmλ
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528
...
Dominance over off-shell
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼ λdm
2
≫ . ∼ λdm
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
..
on shell
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
∼
λdm
3
√
4π
≫ . ∼ λdm
Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528
...
This is collection of useful sample Feynman diagrams and pieces ty
1 Work in Progress
Thisi
1Wo
mediator
g
gSM
ANNIHIL
ATION
COLLIDERDI
RECT DETECTIO
N
Department o
This is collection of
1 Work in Pr
µ
e
��� � � �� ��
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
�� × ��-�
������ ������ [���]
����[���/���
/�]
Sample Feynm
Vol. I: Simple
Department of Physics & Ast
This is collection of useful sample
1 Work in Progress
LFV
χral
spectrum
𝛾𝛾+j
Not
2HDM
4 Loop Diagrams
g
g
5 Pion heuristic
⇡
⇡
'
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
60
ANNIHIL
ATION
COLLIDER
DI
RECT DETECTIO
N
0
B
B
B
B
B
B
B
B
@
on shell
1
C
C
C
C
C
C
C
C
A
⇠
3
dm
p
4⇡
0
B
B
B
B
B
@
ave also inserted an explicit factor of
p
4⇡ for the additional phase sp
section of a three- versus two-body final state.
oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel
fixed (for given masses) to give the correct galactic center photon yi
s addressed in Sec. 4. The limit of a very small coupling to the Sta
vated by the dearth of observational evidence for dark matter intera
t detection experiments. This limit also occurs naturally in models
ng or compositeness. In our scenario, parametrically suppressing this
me of the mediator. This has little phenomenological consequence
UV Models
Experiments
Simplified Models
Nature
Michelangelo Buonarroti,
“Creation of Adam” (1510)
Thanks!
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
61
CCW v. FERMI
mc@GeVD
c2 p-val.
hh 28.2 0.17
WW 38.3 0.017
tt 43.5 0.0041
bb 24.2 0.34
ZZ 35.6 0.033
1 10 100
0
2
4
6
8
10
12
14
Eg @GeVD
Eg
2
dNêdEg@10-7
GeVêHcm2
ssrLD
Figure 3: Top: We show the 2 contours, corresponding to 1,2 and 3 , ob
hypotheses ! XX for X = {h, W±, Z, t, b}. Vertical dashed lines indicate
for each of these final states. The best fit point in each case is indicated. Bot
the spectra of photons obtained for the corresponding best fit values in the up
central values and the error bars are extracted from [13]. Note that the errors
and the plotted spectra indeed fit the data reasonably well, as indicated by
best fit.
which fits in the envelope between the 4 presented spectra, or one could fit
separately to get a feel for the systematic uncertainty. Here, we take the latte
Out of the 4 spectra Fermi (a,b,c,d) present, one (a) has a shape very di↵e
of heavy DM annihilating to electroweak final states. Furthermore, fitting to (a
Agrawal et al. 1411.2592
w/ uncertainties from
Calore et al. 1409.0042.
Simona Murgia
Fermi Collaboration
Fermi Symposium ‘14
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
62
Self-Interacting Dark Matter
Tulin et al. 1302.3898
This framework contains all the pieces for SIDM
See talk by Ian Shoemaker.
Ê
Ê
Ê Ê
Ê
Ê Ê
Ê
Ê
Ê
Ê
4q, mc=2
2b
GCE
4g, mc=2
0.5 1
10-8
10-7
Eg HGeVL
E2
dNgêdEgHGeVcm-2
s-1
L
mV = 1 GeV, preliminary only
Non-trivial fit: small scale structure sets mV light and m
dNγ/dEγ is more subtle near mV ∼ ΛQCD. ✭✭✭✭✭✭✭✭✭
Work in progress with Hai-Bo Yu.
Free feature: e final state allows
very light mediator, natural for
self-interactions.
Long range self-interactions can
address small scale structure
anomalies (e.g. core vs. cusp).
Open question: SIDM target
space for pseudoscalars, which
generate a singular potential.
Bellazzini, Cliche, FT 1307.1129
This is collection of useful sample Feynman diagrams and pieces typeset in Tik
1 Work in Progress
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
63
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
CMS 1206.5663, LUX 1310.8214
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
64
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
Ignore spin-2 mediators
… even heavy ones
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
65
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
10 1005020 3015 7010-33
10-31
10-29
10-27
10-25
image adapted from Alex Wijangco
LUX SI (D5) bound
thermal relic
XENON100 SD (D8) bound
CMS D5 bound
CMS D8 bound
ruled out
DI
RECT DETECTIO
N
COLLIDER
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
CMS 1206.5663, LUX 1310.8214
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
66
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
Chiral SM Couplings
e.g. we expect D5 & D7 to
have same order couplings
¯q µ 5q ⇢ ¯q µ
PL,Rq
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
67
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
doesn’t seem to fit
gluon spectrum
¯ ! gg
Alves, Profumo, Quieroz, Shepherd, “The Effective Hooperon” (1403.5027)
ANNIHIL
ATION
COLLIDER
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
68
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
Alves, Profumo, Quieroz, Shepherd, “The Effective Hooperon” (1403.5027)
looks okay?
flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS
69
Decoupled Mediators Disfavored
Requirement: s-wave annihilation
`1 q2
3 Loop Diagrams
g
g
D2
D4
D5
D6
D7
D8
D9
D10
D12
D14
¯ 5
· ¯qq
¯ 5
· ¯q 5
q
¯ µ
· ¯q µq
¯ µ
5 · ¯q µq
¯ µ
· ¯q µ 5q
¯ µ
5 · ¯q µ 5q
¯ µ⌫
· ¯q µ⌫q
¯ µ⌫
· ¯q µ⌫ 5q
¯ 5 · Gµ⌫Gµ⌫
¯ 5 · Gµ⌫
˜Gµ⌫
Alves, Profumo, Quieroz, Shepherd, “The Effective Hooperon” (1403.5027)

More Related Content

Viewers also liked

The choral director's cookbook
The choral director's cookbookThe choral director's cookbook
The choral director's cookbook
Melissa King
 
PIIS2210909915000661
PIIS2210909915000661PIIS2210909915000661
PIIS2210909915000661Mohsen Tabasi
 
Doc2
Doc2Doc2
Epic UGM 2014 presentation
Epic UGM 2014 presentationEpic UGM 2014 presentation
Epic UGM 2014 presentation
Larissa Davids
 
Biodata
BiodataBiodata
Biodata
ayi_zuyyin
 
Powerpoint presentation
Powerpoint presentationPowerpoint presentation
Powerpoint presentation
priyavipanchika
 
“Slideshare”
“Slideshare”“Slideshare”
“Slideshare”
Alejandra Atiaja
 
Presentation21
Presentation21Presentation21
Presentation21
Joseph Incandela
 
Biodata
BiodataBiodata
Biodata
ayi_zuyyin
 
DIY JOINT STONE DETAIL
DIY JOINT STONE DETAILDIY JOINT STONE DETAIL
DIY JOINT STONE DETAILVicky Fan
 

Viewers also liked (12)

The choral director's cookbook
The choral director's cookbookThe choral director's cookbook
The choral director's cookbook
 
PIIS2210909915000661
PIIS2210909915000661PIIS2210909915000661
PIIS2210909915000661
 
Doc2
Doc2Doc2
Doc2
 
Epic UGM 2014 presentation
Epic UGM 2014 presentationEpic UGM 2014 presentation
Epic UGM 2014 presentation
 
Biodata
BiodataBiodata
Biodata
 
DSAEU
DSAEUDSAEU
DSAEU
 
Powerpoint presentation
Powerpoint presentationPowerpoint presentation
Powerpoint presentation
 
JMC/Y&R
JMC/Y&RJMC/Y&R
JMC/Y&R
 
“Slideshare”
“Slideshare”“Slideshare”
“Slideshare”
 
Presentation21
Presentation21Presentation21
Presentation21
 
Biodata
BiodataBiodata
Biodata
 
DIY JOINT STONE DETAIL
DIY JOINT STONE DETAILDIY JOINT STONE DETAIL
DIY JOINT STONE DETAIL
 

Similar to On-Shell Mediators

electron positron production of dark sector particles
electron positron production of dark sector particleselectron positron production of dark sector particles
electron positron production of dark sector particles
Flip Tanedo
 
Strong Higgs Pair Production at the LHC with jet substructure
Strong Higgs Pair Production at the LHC with jet substructureStrong Higgs Pair Production at the LHC with jet substructure
Strong Higgs Pair Production at the LHC with jet substructure
juanrojochacon
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
Software for Chemistry & Materials
 
Light Mediators to Dark Sectors
Light Mediators to Dark SectorsLight Mediators to Dark Sectors
Light Mediators to Dark Sectors
Flip Tanedo
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
University of Michigan
 
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous SystemsTerahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
jaz22_tag
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
Toshihiro FUJII
 
Dark Earthshine
Dark EarthshineDark Earthshine
Dark Earthshine
Flip Tanedo
 
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Leonid Abdurakhimov
 
Design and Implementation of Low Ripple Low Power Digital Phase-Locked Loop
Design and Implementation of Low Ripple Low Power Digital Phase-Locked LoopDesign and Implementation of Low Ripple Low Power Digital Phase-Locked Loop
Design and Implementation of Low Ripple Low Power Digital Phase-Locked Loop
CSCJournals
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag
NanoFrontMag-cm
 
Dielectrics in a time-dependent electric field: density-polarization functi...
Dielectrics in a time-dependent electric field:   density-polarization functi...Dielectrics in a time-dependent electric field:   density-polarization functi...
Dielectrics in a time-dependent electric field: density-polarization functi...
Claudio Attaccalite
 
Transparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PV
cdtpv
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
University of Liverpool
 
Parton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron ColliderParton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron Collider
juanrojochacon
 
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
MOHAMMED FAZIL
 
ML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under PressureML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under Pressure
Philippe Smet
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
ssusere58e49
 

Similar to On-Shell Mediators (20)

electron positron production of dark sector particles
electron positron production of dark sector particleselectron positron production of dark sector particles
electron positron production of dark sector particles
 
FINAL ORAL
FINAL ORALFINAL ORAL
FINAL ORAL
 
Strong Higgs Pair Production at the LHC with jet substructure
Strong Higgs Pair Production at the LHC with jet substructureStrong Higgs Pair Production at the LHC with jet substructure
Strong Higgs Pair Production at the LHC with jet substructure
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
 
Light Mediators to Dark Sectors
Light Mediators to Dark SectorsLight Mediators to Dark Sectors
Light Mediators to Dark Sectors
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous SystemsTerahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
Terahertz Spectroscopy for the Solid State Characterisation of Amorphous Systems
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
Dark Earthshine
Dark EarthshineDark Earthshine
Dark Earthshine
 
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D CavityLong Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
Long Relaxation Times of a C-shunt Flux Qubit Coupled to a 3D Cavity
 
Design and Implementation of Low Ripple Low Power Digital Phase-Locked Loop
Design and Implementation of Low Ripple Low Power Digital Phase-Locked LoopDesign and Implementation of Low Ripple Low Power Digital Phase-Locked Loop
Design and Implementation of Low Ripple Low Power Digital Phase-Locked Loop
 
2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag2018.06.12 paolo perna imdea NanoFrontMag
2018.06.12 paolo perna imdea NanoFrontMag
 
Dielectrics in a time-dependent electric field: density-polarization functi...
Dielectrics in a time-dependent electric field:   density-polarization functi...Dielectrics in a time-dependent electric field:   density-polarization functi...
Dielectrics in a time-dependent electric field: density-polarization functi...
 
Transparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PVTransparent Conducting Oxides for Thin Film PV
Transparent Conducting Oxides for Thin Film PV
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
 
Parton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron ColliderParton Distributions at a 100 TeV Hadron Collider
Parton Distributions at a 100 TeV Hadron Collider
 
S5.2_Buitrago
S5.2_BuitragoS5.2_Buitrago
S5.2_Buitrago
 
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
Dynamics of Unsteady Supercavitation Impacted by Pressure Wave and Acoustic W...
 
ML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under PressureML-3 - Persistent Phosphors under Pressure
ML-3 - Persistent Phosphors under Pressure
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 

More from Flip Tanedo

Why Haven't We Discovered Dark Matter?
Why Haven't We Discovered Dark Matter?Why Haven't We Discovered Dark Matter?
Why Haven't We Discovered Dark Matter?
Flip Tanedo
 
Communicating Science Effectively
Communicating Science EffectivelyCommunicating Science Effectively
Communicating Science Effectively
Flip Tanedo
 
Sustainable HEP
Sustainable HEPSustainable HEP
Sustainable HEP
Flip Tanedo
 
Explainer Videos
Explainer VideosExplainer Videos
Explainer Videos
Flip Tanedo
 
Equity as an Early Career Academic
Equity as an Early Career AcademicEquity as an Early Career Academic
Equity as an Early Career Academic
Flip Tanedo
 
Diversity, Equity, and Inclusion: Perspectives and Unsolicited Opinions
Diversity, Equity, and Inclusion: Perspectives and Unsolicited OpinionsDiversity, Equity, and Inclusion: Perspectives and Unsolicited Opinions
Diversity, Equity, and Inclusion: Perspectives and Unsolicited Opinions
Flip Tanedo
 
Snowmass: Theory and the Cosmic Frontier
Snowmass: Theory and the Cosmic FrontierSnowmass: Theory and the Cosmic Frontier
Snowmass: Theory and the Cosmic Frontier
Flip Tanedo
 
Popular Book Discussions: a platform for equity in physics
Popular Book Discussions: a platform for equity in physicsPopular Book Discussions: a platform for equity in physics
Popular Book Discussions: a platform for equity in physics
Flip Tanedo
 
Little Particles in a Big Universe
Little Particles in a Big UniverseLittle Particles in a Big Universe
Little Particles in a Big Universe
Flip Tanedo
 
Non-Traditional Assessment and Inclusivity in Physics Teaching
Non-Traditional Assessment and Inclusivity in Physics TeachingNon-Traditional Assessment and Inclusivity in Physics Teaching
Non-Traditional Assessment and Inclusivity in Physics Teaching
Flip Tanedo
 
How to hep-ph
How to hep-phHow to hep-ph
How to hep-ph
Flip Tanedo
 
Attending to Diversity in the Physics Classroom
Attending to Diversity in the Physics ClassroomAttending to Diversity in the Physics Classroom
Attending to Diversity in the Physics Classroom
Flip Tanedo
 
The Invisible Universe and You
The Invisible Universe and YouThe Invisible Universe and You
The Invisible Universe and You
Flip Tanedo
 
Whatever happened to the WIMP of tomorrow?
Whatever happened to the WIMP of tomorrow?Whatever happened to the WIMP of tomorrow?
Whatever happened to the WIMP of tomorrow?
Flip Tanedo
 
the ñ in my name
the ñ in my namethe ñ in my name
the ñ in my name
Flip Tanedo
 
Figuring It Out
Figuring It OutFiguring It Out
Figuring It Out
Flip Tanedo
 
P39: the secret syllabus
P39: the secret syllabusP39: the secret syllabus
P39: the secret syllabus
Flip Tanedo
 
P39: How to Fail as a Physics Major
P39: How to Fail as a Physics MajorP39: How to Fail as a Physics Major
P39: How to Fail as a Physics Major
Flip Tanedo
 
P39: How To F Up Your Academic Career
P39: How To F Up Your Academic CareerP39: How To F Up Your Academic Career
P39: How To F Up Your Academic Career
Flip Tanedo
 
P39: I have no idea
P39: I have no ideaP39: I have no idea
P39: I have no idea
Flip Tanedo
 

More from Flip Tanedo (20)

Why Haven't We Discovered Dark Matter?
Why Haven't We Discovered Dark Matter?Why Haven't We Discovered Dark Matter?
Why Haven't We Discovered Dark Matter?
 
Communicating Science Effectively
Communicating Science EffectivelyCommunicating Science Effectively
Communicating Science Effectively
 
Sustainable HEP
Sustainable HEPSustainable HEP
Sustainable HEP
 
Explainer Videos
Explainer VideosExplainer Videos
Explainer Videos
 
Equity as an Early Career Academic
Equity as an Early Career AcademicEquity as an Early Career Academic
Equity as an Early Career Academic
 
Diversity, Equity, and Inclusion: Perspectives and Unsolicited Opinions
Diversity, Equity, and Inclusion: Perspectives and Unsolicited OpinionsDiversity, Equity, and Inclusion: Perspectives and Unsolicited Opinions
Diversity, Equity, and Inclusion: Perspectives and Unsolicited Opinions
 
Snowmass: Theory and the Cosmic Frontier
Snowmass: Theory and the Cosmic FrontierSnowmass: Theory and the Cosmic Frontier
Snowmass: Theory and the Cosmic Frontier
 
Popular Book Discussions: a platform for equity in physics
Popular Book Discussions: a platform for equity in physicsPopular Book Discussions: a platform for equity in physics
Popular Book Discussions: a platform for equity in physics
 
Little Particles in a Big Universe
Little Particles in a Big UniverseLittle Particles in a Big Universe
Little Particles in a Big Universe
 
Non-Traditional Assessment and Inclusivity in Physics Teaching
Non-Traditional Assessment and Inclusivity in Physics TeachingNon-Traditional Assessment and Inclusivity in Physics Teaching
Non-Traditional Assessment and Inclusivity in Physics Teaching
 
How to hep-ph
How to hep-phHow to hep-ph
How to hep-ph
 
Attending to Diversity in the Physics Classroom
Attending to Diversity in the Physics ClassroomAttending to Diversity in the Physics Classroom
Attending to Diversity in the Physics Classroom
 
The Invisible Universe and You
The Invisible Universe and YouThe Invisible Universe and You
The Invisible Universe and You
 
Whatever happened to the WIMP of tomorrow?
Whatever happened to the WIMP of tomorrow?Whatever happened to the WIMP of tomorrow?
Whatever happened to the WIMP of tomorrow?
 
the ñ in my name
the ñ in my namethe ñ in my name
the ñ in my name
 
Figuring It Out
Figuring It OutFiguring It Out
Figuring It Out
 
P39: the secret syllabus
P39: the secret syllabusP39: the secret syllabus
P39: the secret syllabus
 
P39: How to Fail as a Physics Major
P39: How to Fail as a Physics MajorP39: How to Fail as a Physics Major
P39: How to Fail as a Physics Major
 
P39: How To F Up Your Academic Career
P39: How To F Up Your Academic CareerP39: How To F Up Your Academic Career
P39: How To F Up Your Academic Career
 
P39: I have no idea
P39: I have no ideaP39: I have no idea
P39: I have no idea
 

Recently uploaded

DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
alishadewangan1
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 

Recently uploaded (20)

DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 

On-Shell Mediators

  • 1. flip . ta nedo 66uci . ed u@ ON SHELL MEDIATORS Flip Tanedo 1 O N - S H E L L M E D I A T O R S 16 May 2015 arXiv:1404.6528 (PRD), 1503.05919 & W o r k i n P r o g r e s s w i t h C o l l a b o r a t o r s I N D I R E C T D E T E C T I O N O F D A R K M A T T E R
  • 2. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 2 ANNIHIL ATION COLLIDER DI RECT DETECTIO N Outline0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) UV Models
  • 3. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 3 Conventional View of DM Interactions Exceptions: SIMP Miracle (1402.5143), DMdm (1312.2618), Boosted Dark Matter (1405.7370), … How Dark Matter talks to the Standard Model .. χ . χ . sm . sm .. χ . sm . χ . sm .. sm . sm . χ . χ ANNIHIL ATION DI RECT DETECTIO N COLLIDER Ωχh2 Exceptions: e.g. SIMP Miracle (1402.5143); DMdm (1312.2618); Agashe, Cui, et al. (1405.7370). See talk by Yanou Cui. Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 4/47 4/47 How Dark Matter talks to the Standard Model .. χ . χ . sm . sm .. χ . sm . χ . sm .. sm . sm . χ . χ ANNIHIL ATION DI RECT DETECTIO N COLLIDER Ωχh2 DirectIndirect Collider
  • 4. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 4 Conventional View of DM Interactions How Dark Matter talks to the Standard Model .. χ . χ . sm . sm .. χ . sm . χ . sm .. sm . sm . χ . χ ANNIHIL ATION DI RECT DETECTIO N COLLIDER Ωχh2 Exceptions: e.g. SIMP Miracle (1402.5143); DMdm (1312.2618); Agashe, Cui, et al. (1405.7370). See talk by Yanou Cui. Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 4/47 4/47 DirectIndirect Collider CMS HEFTL XENON100 Ic gm g5 cM Iq gm g5 qM L2 1 10 100 1000 10-41 10-40 10-39 10-38 10-37 10-36 10-35 mDM @GeVD DM-neutroncrosssection@cm2 D XENON100 limit stronger CMS limit stronger Region I Region II Region III 10 100 1000 10 100 1000 mDM @GeVD mmed@GeVD SSO 10-36 10-35 on@cm2 D CMS limit Region IBuchmueller et al. 1308.6799; see also Shepherd 1111.2359, etc… Mono-SM Mediators Important
  • 5. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 5 Simplified Models How Dark Matter talks to the Standard Model .. χ . χ . sm . sm .. χ . sm . χ . sm .. sm . sm . χ . χ ANNIHIL ATION DI RECT DETECTION COLLIDER Ωχh2 1 Work inA ThisiscollectionofusefulsampleFeynman 1WorkinProgress rather than this… … use this See, for example: Shepherd et al. (1111.2359), Busoni et al. (1402.1275, 1405.3101), Buchmueller et al (1308.6799, 1407.8257), Harris et al. (1411.0535), Abdullah et al. (1409.2893), … sm smmediator g gSM
  • 6. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 6 Case Study: Fermi 𝝲-ray excess • Possible indirect detection signal • There are reasons to be skeptical
 We’ll address these soon. • Framework to play with new ideas
 … that can be applied more broadly than any specific signal Fermi-LAT Collaboration, S. Murgia; 2014 Fermi Symposium Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarsky et al. (1012.5839); Gordon & Macias (1306.5725); Daylan et al. (1402.6703); Calore et al. (1411.4647, 1502.02805); Agrawal et al. (1411.2592); Fermi-LAT collaboration (2014 Symposium)
  • 7. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 7 COLLIDER DI RECT DETECTIO N Outline0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) ANNIHIL ATION UV Models
  • 8. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 8 Light from Dark Matter Adapted from D. Zeppenfeld PITP05
  • 9. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 9 Light from Dark Matter Extracted from Pythia via PPPC4DMID, Cirelli et al. 1012.4515 0.5 1.0 5.0 10.0 10-2 10-1 10-0 Eg @GeVD µEg 2 dNgêdEg b t m W g 40 GeV DM annihilating into SM pairs spectrum
  • 10. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 10 Where to look NASA/JPL-Caltech/ESO/R.Hurt FERM I Lots of DM ~ 8.5 kpc Also: dwarfs (later); Third Sources (3FGL) Bertoni et al. 1504.02087
  • 11. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 15º 15º Dark Matter Galactic Plane J-factor (astrophysics) Subtract J ⇠ Z dV 1 4⇡r ⇢2 (x) 11 The FERMI Region FERM I Morphology . The “Hooperon” mχ = 40 GeV .. χ . ¯χ . b . ¯b Eb = 40 GeV fits γ spectrum 10 GeV τ also fits Overall normalization set by present annihilation rate ⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26 cm3 s−1 ..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ (1 + rα ) γ−β α
  • 12. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 12 Galactic Center Excess, circa 2014 Daylan et al. 1402.6703; Abazajian et al. 1402.4090 Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarsky et al. (1012.5839); Gordon & Macias (1306.5725); Daylan et al. (1402.6703) … FERMI Diffuse BG FERM I-m oleculargasm ap (1402.6703) (1402.4090) All based on Fermi Pass-7 point source background
  • 13. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 13 Galactic Center Excess today Fermi-LAT Collaboration, S. Murgia; 2015 Fermi Symposium Integrated flux in 15ox15o ROI, NFW component Peaked profiles with long tails (NFW, NFW contracted) yield the most significant improvements in the data- model agreement for the four variants of the foreground/background models. IC ring 1 contribution ~2-3x smaller than without additional component and HI ring 1 contribution is ~2-5x larger ➡ The predicted spectrum depends on the foreground/background models. Calore et al. (1411.4647, 1502.02805); Agrawal et al. (1411.2592); Fermi-LAT Collaboration (in progress, see Fermi Symposium 2015) more quantification of systematic uncertainties
  • 14. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 14 Other Fits Agrawal et al. 1411.2592 w/ uncertainties from Calore et al. 1409.0042. hh W+ W- tt bb ZZ Xsv=2.2¥10-26 cm3 ês 0 50 100 150 200 250 0 2 4 6 8 10 mc@GeVD XsvJ@10-26 cm3 êsD c2 p-val. hh 28.2 0.17 14 srLD mc@GeVD c2 p-val. hh 28.2 0.17 WW 38.3 0.017 tt 43.5 0.0041 bb 24.2 0.34 ZZ 35.6 0.033 1 10 100 0 2 4 6 8 10 12 14 Eg @GeVD Eg 2 dNêdEg@10-7 GeVêHcm2 ssrLD Figure 3: Top: We show the 2 contours, corresponding to 1,2 and 3 , o hypotheses ! XX for X = {h, W±, Z, t, b}. Vertical dashed lines indicat for each of these final states. The best fit point in each case is indicated. Bot the spectra of photons obtained for the corresponding best fit values in the u central values and the error bars are extracted from [13]. Note that the errors and the plotted spectra indeed fit the data reasonably well, as indicated by best fit. which fits in the envelope between the 4 presented spectra, or one could fit separately to get a feel for the systematic uncertainty. Here, we take the latt Out of the 4 spectra Fermi (a,b,c,d) present, one (a) has a shape very di↵ of heavy DM annihilating to electroweak final states. Furthermore, fitting to ( Higgs bottoms DM can be heavier Uncertainties give wiggle room in final states. tops Estimated systematics from 60 diff. emission models (but smaller than Fermi preliminary)
  • 15. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 15 Millisecond Pulsars NASA/CXC/M.Weiss Accretion Partner Star LMXB to MSP MSP Hooper et al. 1010.2752, 1110.0006; Abazajian et al. 1011.4275, 1207.6047 1402.4090 Wharton et al. 1111.4216, Yuan et al. 1404.2318, Mirabal 1309.3248 n.b.: Hooper et al. 1305.0830 MSP Morphology Degenerate with the dark matter profile
  • 16. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 16 The “Hooperon” Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarsky et al. (1012.5839); Gordon & Macias (1306.5725); Daylan et al. (1402.6703) … . Hooperon” = 40 GeV .. χ . ¯χ . b . ¯b Eb = 40 GeV fits γ spectrum 10 GeV τ also fits ll normalization set by present annihilation rate ⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26 cm3 s−1 ...12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ (1 + rα ) γ−β α ballpark as thermal relic σ (if s-wave) ugh & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et 4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725); al. (1402.6703). + more recent model building papers The “Hooperon” mχ = 40 GeV .. χ . ¯χ . b . ¯b Eb = 40 G fits γ spect 10 GeV τ als Overall normalization set by present annihilation rate ⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26 cm3 s− ..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ (1 + r Same ballpark as thermal relic σ (if s-wave) Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abaz al. (1011.4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias Daylan et al. (1402.6703). + more recent model building papers . Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 ... . The “Hooperon” mχ = 40 GeV .. χ . ¯χ . b . ¯b Eb = 40 GeV fits γ spectrum 10 GeV τ also fits Overall normalization set by present annihilation rate ⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26 cm3 s−1 ..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ (1 + rα ) γ−β α Same ballpark as thermal relic σ (if s-wave) Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et al. (1011.4275, 1207.6047, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725); Daylan et al. (1402.6703). + more recent model building papers . . The “Hooperon” mχ = 40 GeV .. χ . ¯χ . b . ¯b Eb = 40 GeV fits γ spectrum 10 GeV τ also fits Overall normalization set by present annihilation rate ⟨σb¯bv⟩ = ..5 ..(1.5) × 10−26 cm3 s−1 ..γ =1.12 (1402.4090) ..γ =1.26 (1402.6703) ρ ∼ r−γ (1 + rα ) γ−β α Same ballpark as thermal relic σ (if s-wave) Goodenough & Hooper (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et . ron” V .. χ . ¯χ . b . ¯b Eb = 40 GeV fits γ spectrum 10 GeV τ also fits zation set by present annihilation rate = ..5 ..(1.5) × 10−26 cm3 s−1 0) ..γ =1.26 (1402.6703) ρ ∼ r−γ (1 + rα ) γ−β α thermal relic σ (if s-wave) (0910.2998, 1010.2752), Hooper & Linden (1110.0006), Abazajian et 7, 1402.4090), Boyarskiy et al. (1012:5839); Gordon & Macias (1306.5725); ). + more recent model building papers
  • 17. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 17 Contact Interactions Parameterization: UCI 1008.1783; Fit: UCSC 1403.5027 . Contact Interactions ..Dark Matter . Heavy. sm. Dirac fermion χ . b quark .. χ . ¯χ . b . ¯b . =. χ . ¯χ . b . ¯b DM–SM interaction parameterized by a single coupling Λ−2 . O = 1 Λ2 (¯χΓχχ) ¯bΓbb Parameterization in Goodman et al. 1008.1783; see Alves et al. 1403.5027 for Hooperon fit Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 15/47 ... 15/47
  • 18. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 18 Decoupled Mediators Disfavored Requirement: s-wave annihilation 10 1005020 3015 7010-33 10-31 10-29 10-27 10-25 image adapted from Alex Wijangco LUX SI (D5) bound thermal relic XENON100 SD (D8) bound CMS D5 bound CMS D8 bound ruled out DI RECT DETECTIO N COLLIDER D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ CMS 1206.5663, LUX 1310.8214
  • 19. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 19 Decoupled Mediators Disfavored Requirement: s-wave annihilation COLLIDER DI RECT DETECTIO N COLLIDER D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ ANNIHIL ATION COLLIDER via D12 & D14 & SM chirality
  • 20. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 20 Suggests non-decoupled mediator mmed < heavy act O Exceptions: orana DM: ¯χγµ χ = 0 ning of chiral couplings (e.g. Zℓ+ ℓ− ) n-decoupled mediator: mmed < heavy .. χ . ¯χ . b . ¯b . Λ−2 . ⇒. χ . χ . b . ¯b . λDM . λSM
  • 21. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 21 Simplified ModelsSimplified Models Renormalizable, capture physics of mediator (1105.2838) ..Dark Matter . Mediator. sm. Dirac fermion χ . b quark . λSM . λDM . sm neutral .. χ . χ . λDM . λSM Simplest example: Coy Dark Matter Dolan et al. 1401.6458 Systematic studies: Chicago 1404.0022 Perimeter 1404.2018 Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 18/47 18/47 Simplified Models Renormalizable, capture physics of mediator (1105.2838) ..Dark Matter . Mediator. sm. Dirac fermion χ . b quark . λSM . λDM . sm neutral .. χ . χ . λDM . λSM Simplest example: Coy Dark Matter Dolan et al. 1401.6458 Systematic studies: Chicago 1404.0022 Perimeter 1404.2018 Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 18/47 18/47 Renormalizable, capture physics of mediator (1105.2838) Systematic studies: Chicago: Perimeter: 1404.0022 1404.2018 Explicit examples Coy Dark Matter 1401.6458
 Boehm, Dolan, et al. Z’ portal 1501.03490
 Alves, Berlin, Profumo, Queiroz
  • 22. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 22 Simplest Simplified Models (off shell) 14 Model DM Mediator Interactions Elastic Near Future Reach? Number Scattering Direct LHC 1 Dirac Fermion Spin-0 ¯ 5 , ¯ff SI ⇠ (q/2m )2 (scalar) No Maybe 1 Majorana Fermion Spin-0 ¯ 5 , ¯ff SI ⇠ (q/2m )2 (scalar) No Maybe 2 Dirac Fermion Spin-0 ¯ 5 , ¯f 5 f SD ⇠ (q2 /4mnm )2 Never Maybe 2 Majorana Fermion Spin-0 ¯ 5 , ¯f 5 f SD ⇠ (q2 /4mnm )2 Never Maybe 3 Dirac Fermion Spin-1 ¯ µ , ¯b µb SI ⇠ loop (vector) Yes Maybe 4 Dirac Fermion Spin-1 ¯ µ , ¯f µ 5 f SD ⇠ (q/2mn)2 or Never Maybe SD ⇠ (q/2m )2 5 Dirac Fermion Spin-1 ¯ µ 5 , ¯f µ 5 f SD ⇠ 1 Yes Maybe 5 Majorana Fermion Spin-1 ¯ µ 5 , ¯f µ 5 f SD ⇠ 1 Yes Maybe 6 Complex Scalar Spin-0 † , ¯f 5 f SD ⇠ (q/2mn)2 No Maybe 6 Real Scalar Spin-0 2 , ¯f 5 f SD ⇠ (q/2mn)2 No Maybe 6 Complex Vector Spin-0 B† µBµ , ¯f 5 f SD ⇠ (q/2mn)2 No Maybe 6 Real Vector Spin-0 BµBµ , ¯f 5 f SD ⇠ (q/2mn)2 No Maybe 7 Dirac Fermion Spin-0 (t-ch.) ¯(1 ± 5 )b SI ⇠ loop (vector) Yes Yes 7 Dirac Fermion Spin-1 (t-ch.) ¯ µ (1 ± 5 )b SI ⇠ loop (vector) Yes Yes 8 Complex Vector Spin-1/2 (t-ch.) X† µ µ (1 ± 5 )b SI ⇠ loop (vector) Yes Yes 8 Real Vector Spin-1/2 (t-ch.) Xµ µ (1 ± 5 )b SI ⇠ loop (vector) Yes Yes TABLE V. A summary of the simplified models identified in our study as capable of generating the observed gamma- ray excess without violating the constraints from colliders or direct detection experiments. In the last two columns, we indicate whether the model in question will be within the reach of near future direct detection experiments (LUX, XENON1T) or of the LHC. Models with an entry of “Never” predict an elastic scattering cross section with nuclei that Berlin et al. 1404.0022 and Izaguirre et al. 1404.2018 for a detailed survey of off-shell simplified models. See Boehm et al. 1401.6458 for a prototype. Berlin et al. 1404.0022 Looks like we’re all done? Comprehensive study of s- and t-channel diagrams.
  • 23. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 23 On-Shell mediators • Can be dominant mode • Separates λDM from λSM • Admits λDM ≫ λSM Simplified Hooperons + on-shell mediators But: the mmed < heavy regime also includes mmed < mχ i.e. mediator is accessible as an ..on-shell annihilation mode .. χ . χ . b . b. b . b . on shell • Can be dominant mode • Separates λDM from λSM • Admits limit λSM ≪ λDM • Hides indirect detection signal from direct det. & collider bounds Application to Hooperon: FT et al. ..1404.6528 (this talk) See also Dolan et al. 1404.4977 and Martin et al. 1405.0272 Previously: axion portal (Nomura & Thaler, 0810.5397), cascade annihilation (+ Mardon, Stolarski 0901.2926) Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 2 The mmed < heavy regime also includes mmed < m 𝝌 where the mediator is accessible as an on shell annihilation mode Application to the Hooperon: FT et al. Dolan et al Martin et al. Elor et al. 1404.6528, 1503.05919 1404.4977 1405.0272 Previously: PAMELA Axion Portal Cascades 0810.5397 0901.29261503.01773
  • 24. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 24 On-Shell Simplified ModelsOn-Shell Simplified Models ..Dark Matter . Mediator. sm. Dirac fermion χ . ϕ, V . b quark . λSM . sm neutral . λDM . sm neutral ..Annihilation, ⟨σv⟩ γ-ray excess, relic abundance ..Constraints direct detection, colliders . Requirements: mV,ϕ > 2mb λDM ∼ 1 λSM ≪ 1 Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 21/47 21/4 . On-Shell Simplified Models ..Dark Matter . Mediator. sm. Dirac fermion χ . ϕ, V . b quark . λSM . sm neutral . λDM . sm neutral ..Annihilation, ⟨σv⟩ γ-ray excess, relic abundance ..Constraints direct detection, colliders . Requirements: mV,ϕ > 2mb λDM ∼ 1 λSM ≪ 1 COLLIDER DIRECT DETECTIO N ANNIHIL ATION
  • 25. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 25 On-Shell Options . On-Shell Simplified Options Require: s-wave annihilation: . . . . Med. S (P) V (A) S (P) V (A) ℓ-Wave p (p) s (s) p (s) p (p) mχ ≈ 80 GeV ≈ 80 GeV ≈ 120 GeV ≈ 120 GeV Further Requirements: 2mχ > ⎧ ⎪⎨ ⎪⎩ 2mV for a spin-1 mediator 3mϕ for a spin-0 mediator . On-Shell Simplified Options Require: s-wave annihilation: . . . . Med. S (P) V (A) S (P) V (A) ℓ-Wave p (p) s (s) p (s) p (p) mχ ≈ 80 GeV ≈ 80 GeV ≈ 120 GeV ≈ 120 GeV Further Requirements: 2mχ > ⎧ ⎪⎨ ⎪⎩ 2mV for a spin-1 mediator 3mϕ for a spin-0 mediator 22 Require s-wave annihilation New
  • 26. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 26 Back of the Envelope m ⇡ n (40 GeV)⇥ h vi ⇡ n ⇥ h vibb i.e. mediator is accessibl .. χ . χ . b . b. b . b . on shell Application to Hoopero See also Dolan et al. 1404.49 Previously: axion portal (Nomura & cascade annihilation (+ Mardon, Stol Using bb final state as a reference fit k-of-the-Envelope dΦ(b, ℓ) dEγ = ⟨σv⟩ann 16π dNγ dEγ los dx ρ mχ 2 dΦ(b, ℓ) dEγ = ..n ⟨σv⟩b¯b 8πm2 χ .. dNγ dEγ .. los dx ρ2 (rgal (b, ℓ, x)) ..Particle Physics mDM ≈ n×(40 GeV) n=2(3) for spin-1(0) λDM ≈ 0.35 (1.25) for spin-1(0) final states requires smaller ⟨σv⟩ann for signal flux ets injection energy, larger for more final states flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 24/47 24/47
  • 27. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 27 mc= 80 GeV mV=15 GeV mV=30 GeV mV=55 GeV mV=60 GeV 0 20 40 60 80 b Energy @GeVD mc= 120 GeV mj=15 GeV mj=45 GeV mj=55 GeV mj=60 GeV 20 40 60 80 100 b Energy @GeVD mc= 120 GeV mj=15 GeV mj=45 GeV mj=55 GeV mj=60 GeV 20 40 60 80 100 f Energy @GeVD Boosted Mediators change spectrum of SM primaries, change spectrum of secondary γ’s ominance over off-shell ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ∼ λdmλsm ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . ∼ λdmλsm edo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 23/47 23/47 . ominance over off-shell ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ∼ λdmλsm ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . ∼ λdmλsm 23/47
  • 28. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 28 Spectral Shape Simona Murgia Fermi Collaboration Fermi Symposium ‘14 ��� � � �� �� �� × ��-� �� × ��-� �� × ��-� �� × ��-� �� × ��-� ������ ������ [���] ����[���/��� /�] ¯ ! V V ! 4b Factor of 2 on envelope size = 81 GeV mVm = 39 GeV FT, Smolinsky & Rajaraman arXiv:1503.05919 Plots using FT, “PPPC Machine” tools based on PPPC4DMID by M. Cirelli 1012.4515
  • 29. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 29 Spectral Shape FT, Smolinsky & Rajaraman arXiv:1503.05919 ��� � � �� �� �� × ��-� �� × ��-� �� × ��-� �� × ��-� �� × ��-� ������ ������ [���] ����[���/��� /�] ��� � � �� �� �� × ��-� �� × ��-� �� × ��-� �� × ��-� �� × ��-� ������ ������ [���]����[���/��� /�] = 150 GeV mVm = 15 GeV = 150 GeV mVm = 141 GeV • Boost factor can bend shape! 
 • Fermi analysis allows heavier DM See also Calore et al. 1502.02805, Agrawal et al. 1411.2592 Shape is not just a function of SM primary ¯ ! V V ! q¯q ¯ ! V V ! q¯q
  • 30. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS Dominance over off-shell ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 ... 30 Fit: on-shell vector mediator Similar for annihilation into light quarks n.b. vector mediators typically couple flavor universally (shape fit) (normalization fit). Dominance over off-shell ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ∼ λdmλsm ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . ∼ λdmλsm Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 23/47 ... 23/47 FT, Smolinsky & Rajaraman arXiv:1503.05919
  • 31. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 31 On Shell Vector ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λ √ Flip Tanedo flip.tanedo@uci.edu ... h vitarget = 3 ⇥ 10 26 cm3 /sFT, Smolinsky & Rajaraman arXiv:1503.05919
  • 32. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 32 Fit: on-shell pseudoscalar mediator Similar for annihilation into light quarks n.b. scalar mediators typically couple ~ mass ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.65 ... Thermal relic doesn’t seem compatible! cross section (shape fit) (normalization fit) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ∼ λdmλsm ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . ∼ λdmλsm Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 23/47 ... 23/47 FT, Smolinsky & Rajaraman arXiv:1503.05919
  • 33. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 33 On Shell Pseudoscalar on shell ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ Flip Tanedo flip.tanedo@uci.edu ... h vitarget = 3 ⇥ 10 26 cm3 /sFT, Smolinsky & Rajaraman arXiv:1503.05919
  • 34. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 34 Relic Abundanceρ(r) = ρ0 ⎛ ⎝ r r0 ⎞ ⎠ γ ⎛ ⎜ ⎝1 + rα rα 0 ⎞ ⎟ ⎠ γ−β α ... ¯χ . b . ¯b ⟨σb¯bv⟩ = ..(1.5) ..5 × 10−26 cm3 s−1 . ..γ =1.26 (1402.6703) ..γ =1.12 (1402.4090) Ballpark of thermal relic σ . ⟨σv⟩ann. between 3 – 10 ×10−26 cm3 s−1 Vector mediator works for Dirac χ . Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 36/ ... 36/ Works for vector mediator; back of the envelope: Traditional “Hooperon” (𝝌𝝌 to bb) . elic ballpark for thermal relic (s-wave) 3 /s Ωχh2 obs. = 0.12 er ⟨σv⟩: .. Nγ Eγ .. los dx ρ2 (rgal (b, ℓ, x)) ⇒ ⟨σv⟩ann ≈ n⟨σb¯bv⟩
  • 35. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 35 Relic Abundance Vector mediator can accommodate thermal relic. . Spin-0 Mediator as Thermal Relic Scalar mediator is more difficult, 1. ⟨σv⟩ann = 3 × ⟨σv⟩b¯b 2. p-wave irreducible contributions .. χ . χ . on shell ∼ λdm √ 4π xf 3 .. χ . χ . on shell Is there any way to same thermal freeze out? ? Spin-0 Mediator as Thermal Relic Scalar mediator is more difficult, 1. ⟨σv⟩ann = 3 × ⟨σv⟩b¯b 2. p-wave irreducible contributions .. χ . χ . on shell ∼ λdm √ 4π xf 3 .. χ . χ . on shell Is there any way to same thermal freeze out? . pin-0 Mediator as Thermal Relic Scalar mediator is more difficult, 1. ⟨σv⟩ann = 3 × ⟨σv⟩b¯b 2. p-wave irreducible contributions .. χ . χ . on shell ∼ λdm √ 4π xf 3 .. χ . χ . on shell Is there any way to same thermal freeze out?
  • 36. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 36 ANNIHIL ATION COLLIDER DI RECT DETECTIO N Outline0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) UV Models
  • 37. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 37 Direct Detection Pseudoscalar mediator Spin-dependent interaction del Nobile et al. 1406.5542, 1307.5955, 1502.07682 dible regions, 99% CL limits y excess + relic abundance ⇤a⌘ma/ p gDMg 99%CLDAMAcredibleregions,99%CL 8fgf [GeV] roduct ma/ p gDMg edible regions, 99% CL limits gf = mf /v By-product Lint = i gDM p 2 a ¯ 5 ig X f gf p 2 a ¯f 5f KIMS experiment Gal. Center & Thermal Relic del Nobile et al. 1406.5542 Based on non-rel. EFT Fitzpatrick et al. 1203.3542, 1211.2818, 1308.6288 DI RECT DETECTIO N
  • 38. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 38 Collider: mono-b . Collider: mono-b See talk by Tongyan Lin, (1303.6638). See Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model). Mono-object analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240), others. λϕ SM 0.2 λV SM 0.6 Conservative estimate: mq/M3 ∗ → λDMλSMs−1. Simplified model > EFT: Graesser, Shoemaker, et al. (1107.2666, 1112.5457); UCI (1111.2359); Busoni et al. (1307.2253); Dolan, et al. (1308.6799). Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 31/47 ... 31/47 Lin et al (1303.6638), Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model). Mono-object analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240) See talk by Tongyan Lin, (1303.6638). See Daylan et al. 1402.4090 (EFT), Izaguirre et al. 1404.1373 (simplified model). Mono-objec analyses: UCI (1005.1286, 1008.1783, 1108.1196), Fermilab (1005.3757, 1103.0240), others. λϕ SM 0.2 λV SM 0.6 Conservative estimate: mq/M3 ∗ → λDMλSMs−1. Simplified model > EFT: Graesser, Shoemaker, et al. (1107.2666, 1112.5457); UCI (1111.235 Busoni et al. (1307.2253); Dolan, et al. (1308.6799). Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 ... More recently, simplified model analysis: Harris et al. 1411.0535; Buckley et al. 1410.6497 Linetal.(1303.6638) COLLIDER
  • 39. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 39 Collider: multi-jet analysis Buchmueller et al. 1505.07826 (Imperial); based on 1310.4491 (Oxford) and 1203.1662 (FNAL, Razor analysis) Pseudoscalar mediator multi-jet + MET monojet + MET production by gluon fusion ruled out smallSMcouplingissafe tion terms are Lint = igDMA¯ 5 + igSM X q mq v A ¯q 5 q , where is a Dirac fermion, the sum is over all quark is the quark mass and v = 246 GeV is the Higgs vac expectation value. Motivated by the Minimum Fla Violation hypothesis [60], we assume the couplings o pseudoscalar to quarks are proportional to mq. This pling structure implies that the production of A is inated by gluon fusion. This simple model can ex the Fermi-LAT excess while remaining consistent other constraints and is a useful proxy for the stru found in 2HDM models and in extended 2HDM have mixing with a singlet-like pseudoscalar (`a la NMSSM) [61]. We consider gDM ⇠ gSM ⇠ O(1) as a ticularly interesting benchmark case to compare di↵ tion terms are Lint = igDMA¯ 5 + igSM X where is a Dirac fermion, the sum is the quark mass and v = 246 GeV expectation value. Motivated by t Violation hypothesis [60], we assum pseudoscalar to quarks are proporti pling structure implies that the pro inated by gluon fusion. This simp the Fermi-LAT excess while rema other constraints and is a useful p found in 2HDM models and in e have mixing with a singlet-like p NMSSM) [61]. We consider gDM ⇠ ticularly interesting benchmark cas searches since couplings of this size
  • 40. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 40 Alternative: search for the mediator How Dark Matter talks to the Standard Model .. χ . χ . sm . sm .. χ . sm . χ . sm .. sm . sm . χ . χ ANNIHIL ATION DI RECT DETECTION COLLIDER Ωχh2 1 Work in rather than this… … use this See, for example: Shepherd et al. (1111.2359), Busoni et al. (1402.1275, 1405.3101), Buchmueller et al (1308.6799, 1407.8257), Harris et al. (1411.0535), Abdullah et al. (1409.2893), … sm sm g gSM without this
  • 41. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 41 Constraints on mediator—SM coupling Carone & Murayama, hep-ph/9411256; Dobrescu & Frugiuele, 1404.3947 hep-ph/9411256 Template: gauged U(1)B with O(10) GeV gauge boson SM . 1 not very constrained!
  • 42. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 42 Inclusive diphotons Work in Progress with I. Galon [GeV]φ m 50 55 60 65 70 75 80 85 90 )[pb]γγ→φ→(ppσ95%CLupperlimit 1 1.5 2 2.5 3 3.5 4 4.5 5 γγ=8 TeV,s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 SelectionEfficiency courtesy of D. Whiteson COLLIDER CPYuanetal.RESBOS
  • 43. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 43 ANNIHIL ATION COLLIDER DI RECT DETECTIO N Outline0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) UV Models UV Models Part I
  • 44. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 44 Model BuildingModel Building Spin-1 Mediator Prototype is gauged U(1)B, expect universal coupling to quarks. Exception? ρ-like states in composite Higgs? (Contino et al. 1109.1570) Spin-0 Mediator Lϕ-sm = λuyu ij Λ ϕH · ¯QuR + λdyd ij Λ ϕ ˜H · ¯QdR + λℓyℓ ij Λ ϕ ˜H · ¯LℓR Recent UV completion through ‘Higgs-portal’-portal: Ipek et al. 1404.3716 ..Dark Matter .Mediator. Higgs. sm Exception? χ¯χ → ϕ1ϕ2 is s-wave on-shell (Nomura & Thaler 0810.5397) See also Agrawal et al. 1404.1373 for flavored DM. Recently: many studies mapping this to (N)MSSM, 2HDM See also singlet scalar model, Profumo et al. 1412.1105
  • 45. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 45 Pseudoscalar without the scalar Work in progress with A. Wijangco and J. Serra G HglobalHgauge H EW EM G Hgauge Hoblique H0 ⇠ = ✓ v f ◆2 Figure 10: Pattern of symmetry breaking. (left, tree level) Strong dynamics breaks G ! Hglobal pontaneously, while Hgauge ⇢ G is explicitly broken through gauging. The unbroken group H = Hgauge Hglobal contains the sm electroweak group, SU(2)L ⇥ U(1)Y. (right, loop level) Vacuum misalignment from sm interactions shifts the unbroken group H ! H0 and breaks the electroweak group to U(1)EM. The degree of misalignment is parametrized by ⇠, the squared ratio of the ewsb vev to the G ! H vev. Adapted from [152]. We assume that the sm electroweak group is a subgroup of H = Hgauge [ Hglobal so that it is gauged and preserved by the strong dynamics. This is shown on the left of Fig. 10. This results n dim Hgauge transverse gauge bosons and (dim G dim Hglobal) Goldstone bosons. The breaking G ! Hglobal also breaks some of the gauge group so that there are a total of (dim Hgauge H) massive gauge bosons and (dim G dim H) ‘uneaten’ massless Goldstones. Now we address the white elephant of the Higgs interactions—can we bequeath to our Goldstone bosons the necessary non-derivative interactions to make one of them a realistic Higgs candidate? This is indeed possible through vacuum misalignment, which we illustrate on the right of Fig. 10. EM G Hgauge Hoblique H0 ⇠ = ✓ v f ◆2 (left, tree level) Strong dynamics breaks G ! Hglobal ly broken through gauging. The unbroken group H = k group, SU(2)L ⇥ U(1)Y. (right, loop level) Vacuum Higgs as a pNGB (composite Higgs) with non-minimal coset analogy: π0 vs π± FT, adapted from Nature Physics 7, 23 (2011)
  • 46. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 46 Composite Mediators Work in progress with A. Wijangco and J. Serra Higgs as a pNGB (composite Higgs) with non-minimal coset Λ Λ Λ Recent UV completion through ‘Higgs-portal’-portal: Ipek et al. 1404.3716 ..Dark Matter .Mediator. Higgs. sm Exception? χ¯χ → ϕ1ϕ2 is s-wave on-shell (Nomura & Thaler 0810.5397) See also Agrawal et al. 1404.1373 for flavored DM. ip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 40/47 40/47 SM singlet “extra” Goldstone These interactions are given by nonlinear sigma model and are distinct from 2HDM New Matter incomplete rep. adds to global symmetry breaking Connects: • Dark Matter • Mediators • EWSB No 2HDM required! different phenomenology and constraints
  • 47. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 47 Composite Mediators In Progress; J. Serra, FT, A. Wijangco ���� ��� ���� ��-�� �×��-�� ��-�� ���� ������� �χ σ � [��� /�] hvi[cm 3 /s] preliminary Fermi Excess h vi = 3m2 b 2⇡f2 y2 m2 (4m2 m2 ⌘)2 + m2 ⌘ 2 ⌘ s 1 m2 b m2 m⌘ ⇡ y f m = 50 GeV f = 500 GeV partial SO(5) multiplet
  • 48. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 48 ANNIHIL ATION COLLIDER DI RECT DETECTIO N Outline0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) UV Models
  • 49. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 49 Dwarf Bounds from FERMI 1503.02632 (Fermi + DES candidates) only a sketch ANNIHIL ATION possibly a problem model building? Reticulum II?
 Hooper & Linden (1503.06209) Agrawal et al. (2014)
  • 50. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 50 Anti-protons See also Park et al. 1404.3741; Bringmann et al. 1406.6027 Einasto MIN Einasto MAX AMS-02 sensitivity 10 -22 10 -23 10 -24 10 -25 10 -26 10 -27 10 50 100 500 thermal relic PAMELA bounds Einasto MED[cm3 / s] adapted from 1301.7079 Antiproton Flux Constraints PAMELA p+ bounds: currently not constraining. Maybe AMS-02... ... but large propagation uncertainty, still lots of wiggle room. ANNIHIL ATION Cirelli & Giesen
  • 51. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 51 Anti-protons See also Park et al. 1404.3741; Bringmann et al. 1406.6027 Einasto MIN Einasto MAX AMS-02 sensitivity 10 -22 10 -23 10 -24 10 -25 10 -26 10 -27 10 50 100 500 thermal relic PAMELA bounds Einasto MED[cm3 / s] adapted from 1301.7079 Antiproton Flux Constraints AMS-02: b quark mode more constrained ... but large propagation uncertainty, still lots of wiggle room. ANNIHIL ATION Model our way out of this? Giesen et al. 1504.04276 “eyeballed” uncertainty stronger at low masses: accounted for solar modulation effects
  • 52. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 52 ANNIHIL ATION COLLIDER DI RECT DETECTIO N Outline0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) UV Models UV Models Part II
  • 53. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 53 Avoiding the Dwarf Bounds Kaplinghat, Linden, Yu, 1501.03507 Dwarf Spheroidals: mostly DM, little stellar matter … so should to see same GeV excess as Gal. Center if it’s DM annihilation Usual assumption: Dark Matter Annihilation 𝛾-ray photons Instead, revise the relation: Dark Matter Annihilation 𝛾-ray photons + ambient starlight But: requires annihilation into electrons … spectrum doesn’t fit?
  • 54. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 54 Avoiding Dwarf Bounds Kaplinghat, Linden, Yu, 1501.03507 Photon spectrum from FSR doesn’t fit (Weiszacker-Williams) 2 Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Inverse Compton+FSR FSR HpromptL 0.3 0.5 1 3 5 10 30 50 0 2 4 6 8 E HGeVL E2 dNêdEH10-6 GeV2 êcm2 êsêsrêGeVL FIG. 1. -ray spectrum from Inverse Compton emission and final state radiation produced by annihilation of a 50 GeV dark matter particle through a light mediator into e+ e fi- nal state. The spectrum is compared to the Galactic Center excess [10]. of the dark matter mass, as it absent for masses closer to But: this leaves an imprint on positron fraction (AMS-02) and can be constrained by mono-photon searches at LEP Inverse Compton can upscatter starlight into a diffuse GeV spectrum 2 Upscatter e e star (GeV) Bonus: self-interacting dark matter
  • 55. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 55 Flavor Violating Modes Work in Progress with I. Galon; FT, Smolinsky & Rajaraman arXiv:1503.05919 ¯ ! ¯tc m Consider: lepton-flavor-violating decay of 𝜑 • 𝜑 into eμ smears out e+ spectrum, avoids bumps? • Also helps avoid collider, (g-2), etc. bounds • Achieve: SIDM, Galactic Center, avoid Dwarfs • Froggat-Nielsen mechanism • No direct detection Also: quark flavor decays • top — charm mode is
 accessible COLLIDER ANNIHIL ATION DI RECT DETECTIO N Agrawal et al. 1405.6709, 1404.1373, 1402.7369
  • 56. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 56 Flavor Violating Modes Work in Progress with I. Galon and A. Kwa Preliminary: thermal relic cross sections ¯ ! ⌧ ¯⌧ ¯ ! b¯b ¯ ! (' ! ⌧µ)2 ⌧ µ ⌧ µ ' ' 3 Mediator Decays ' e ⌫µ ⌫e e µ CPV in dark
  • 57. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 100 101 102 E [GeV] 100 101 102 E3 J(E)[GeV2 m2 s1 sr1 ] AMS e bound AMS e+ bound PAMELA e+ bound ! 3 ! 3(µe), m =2 GeV ! ee, m =50 GeV m =20 GeV m =30 GeV m =40 GeV m =50 GeV m =60 GeV m =70 GeV m =80 GeV m =90 GeV m =100 GeV ! ⌧µ, Benchmark 1 ! ⌧µ, Benchmark 2 57 LFV mediators vs. positrons Work in Progress with I. Galon and A. Kwa (UCI) preliminary 1501.03507 Kaplinghat et al. m = 50 GeV mV = 50 MeV V ! e+ e
  • 58. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 58 Avoiding anti-protons 1. Upscattered starlight (c.f. avoiding dwarf bounds) 2. Mediator decays to light mesons, not protons Liu, Weiner, Xue (1412.1485) quark couplings, but mmed < ΛQCD
 Simplified model + chiral Lagrangian. 4 Loop Diagrams g g 5 Pion heuristic ⇡ ⇡ ' Analogous to very light Higgs in Higgs Hunter’s Guide
  • 59. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 59 Summary⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ∼ λdmλ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . ∼ λdmλ Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 ... Dominance over off-shell ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 2 ≫ . ∼ λdm ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ .. on shell ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∼ λdm 3 √ 4π ≫ . ∼ λdm Flip Tanedo flip.tanedo@uci.edu Heavy Hidden Hooperon 1404.6528 ... This is collection of useful sample Feynman diagrams and pieces ty 1 Work in Progress Thisi 1Wo mediator g gSM ANNIHIL ATION COLLIDERDI RECT DETECTIO N Department o This is collection of 1 Work in Pr µ e ��� � � �� �� �� × ��-� �� × ��-� �� × ��-� �� × ��-� �� × ��-� ������ ������ [���] ����[���/��� /�] Sample Feynm Vol. I: Simple Department of Physics & Ast This is collection of useful sample 1 Work in Progress LFV χral spectrum 𝛾𝛾+j Not 2HDM 4 Loop Diagrams g g 5 Pion heuristic ⇡ ⇡ '
  • 60. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 60 ANNIHIL ATION COLLIDER DI RECT DETECTIO N 0 B B B B B B B B @ on shell 1 C C C C C C C C A ⇠ 3 dm p 4⇡ 0 B B B B B @ ave also inserted an explicit factor of p 4⇡ for the additional phase sp section of a three- versus two-body final state. oth (2.5) and (2.6) impose the limit sm ⌧ 1 to suppress the s-channel fixed (for given masses) to give the correct galactic center photon yi s addressed in Sec. 4. The limit of a very small coupling to the Sta vated by the dearth of observational evidence for dark matter intera t detection experiments. This limit also occurs naturally in models ng or compositeness. In our scenario, parametrically suppressing this me of the mediator. This has little phenomenological consequence UV Models Experiments Simplified Models Nature Michelangelo Buonarroti, “Creation of Adam” (1510) Thanks!
  • 61. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 61 CCW v. FERMI mc@GeVD c2 p-val. hh 28.2 0.17 WW 38.3 0.017 tt 43.5 0.0041 bb 24.2 0.34 ZZ 35.6 0.033 1 10 100 0 2 4 6 8 10 12 14 Eg @GeVD Eg 2 dNêdEg@10-7 GeVêHcm2 ssrLD Figure 3: Top: We show the 2 contours, corresponding to 1,2 and 3 , ob hypotheses ! XX for X = {h, W±, Z, t, b}. Vertical dashed lines indicate for each of these final states. The best fit point in each case is indicated. Bot the spectra of photons obtained for the corresponding best fit values in the up central values and the error bars are extracted from [13]. Note that the errors and the plotted spectra indeed fit the data reasonably well, as indicated by best fit. which fits in the envelope between the 4 presented spectra, or one could fit separately to get a feel for the systematic uncertainty. Here, we take the latte Out of the 4 spectra Fermi (a,b,c,d) present, one (a) has a shape very di↵e of heavy DM annihilating to electroweak final states. Furthermore, fitting to (a Agrawal et al. 1411.2592 w/ uncertainties from Calore et al. 1409.0042. Simona Murgia Fermi Collaboration Fermi Symposium ‘14
  • 62. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 62 Self-Interacting Dark Matter Tulin et al. 1302.3898 This framework contains all the pieces for SIDM See talk by Ian Shoemaker. Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê 4q, mc=2 2b GCE 4g, mc=2 0.5 1 10-8 10-7 Eg HGeVL E2 dNgêdEgHGeVcm-2 s-1 L mV = 1 GeV, preliminary only Non-trivial fit: small scale structure sets mV light and m dNγ/dEγ is more subtle near mV ∼ ΛQCD. ✭✭✭✭✭✭✭✭✭ Work in progress with Hai-Bo Yu. Free feature: e final state allows very light mediator, natural for self-interactions. Long range self-interactions can address small scale structure anomalies (e.g. core vs. cusp). Open question: SIDM target space for pseudoscalars, which generate a singular potential. Bellazzini, Cliche, FT 1307.1129 This is collection of useful sample Feynman diagrams and pieces typeset in Tik 1 Work in Progress
  • 63. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 63 Decoupled Mediators Disfavored Requirement: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ CMS 1206.5663, LUX 1310.8214
  • 64. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 64 Decoupled Mediators Disfavored Requirement: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ Ignore spin-2 mediators … even heavy ones
  • 65. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 65 Decoupled Mediators Disfavored Requirement: s-wave annihilation 10 1005020 3015 7010-33 10-31 10-29 10-27 10-25 image adapted from Alex Wijangco LUX SI (D5) bound thermal relic XENON100 SD (D8) bound CMS D5 bound CMS D8 bound ruled out DI RECT DETECTIO N COLLIDER D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ CMS 1206.5663, LUX 1310.8214
  • 66. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 66 Decoupled Mediators Disfavored Requirement: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ Chiral SM Couplings e.g. we expect D5 & D7 to have same order couplings ¯q µ 5q ⇢ ¯q µ PL,Rq
  • 67. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 67 Decoupled Mediators Disfavored Requirement: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ doesn’t seem to fit gluon spectrum ¯ ! gg Alves, Profumo, Quieroz, Shepherd, “The Effective Hooperon” (1403.5027) ANNIHIL ATION COLLIDER
  • 68. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 68 Decoupled Mediators Disfavored Requirement: s-wave annihilation D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ Alves, Profumo, Quieroz, Shepherd, “The Effective Hooperon” (1403.5027) looks okay?
  • 69. flip . ta nedo 60uci . ed u@ ON SHELL MEDIATORS 69 Decoupled Mediators Disfavored Requirement: s-wave annihilation `1 q2 3 Loop Diagrams g g D2 D4 D5 D6 D7 D8 D9 D10 D12 D14 ¯ 5 · ¯qq ¯ 5 · ¯q 5 q ¯ µ · ¯q µq ¯ µ 5 · ¯q µq ¯ µ · ¯q µ 5q ¯ µ 5 · ¯q µ 5q ¯ µ⌫ · ¯q µ⌫q ¯ µ⌫ · ¯q µ⌫ 5q ¯ 5 · Gµ⌫Gµ⌫ ¯ 5 · Gµ⌫ ˜Gµ⌫ Alves, Profumo, Quieroz, Shepherd, “The Effective Hooperon” (1403.5027)