Boolean Logic
Representing Boolean Values
Domain Values
Mathematics True False
Computer Science 1 0
Electronics
On Off
Vcc Ground
Boolean Logic Notation
Mathematical
Formal
Typed A’B’CD + AB’CD
Java/C !A&&!B&&C&&D||A&&!B&&C&&D
¬A ¬ᴧ BᴧCᴧD ᴠA ¬ᴧ BᴧCᴧD
A.B.C.D + A.B.C.D
Truth Tables
A B C D X
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
Truth Tables
A B C D X
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
Binary Boolean Logic Operators
A B
0
NOR
NOTA
B
XOR
NAND
AND
XNOR
NOTB
A
OR
1
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
NOT(B→A)
NOT(A→B)
A→B
B→A
Boolean Implication
A B
0
NOR
NOTA
B
XOR
NAND
AND
XNOR
NOTB
A
OR
1
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
NOT(B→A)
NOT(A→B)
A→B
B→A
Sum of Products
ANDANDANDANDAND
OR
BADCB DCBAD ACAA DC
ABCD + ABD + ABCD + AC + ACD
Minterm Form
A B C D X Y
0 0 0 0 1 1
0 0 0 1 0 1
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 1
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 1
X = ABCD + ABCD + ABCD + ABCD
Y = ABCD + ABCD + ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD + ABCD + ABCD
Reduction
X = ABCD + ABC + ABCD
X = ABCD + ABC(D + D) + ABCD
X = ABCD + ABCD + ABCD + ABCD
X = ABCD + ABC.1 + ABCD
Mathematics
f:B0
×B1
…×Bn
→B
f:Bn
→B
f:Bn
→Bm
B = {true, false}
Conclusion

Boolean Logic