BEAM DEFLECTION FORMULAE
BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM DEFLECTION
1. Cantilever Beam – Concentrated load P at the free end
2
2
Pl
EI
θ = ( )
2
3
6
Px
y l x
EI
= −
3
max
3
Pl
EI
δ =
2. Cantilever Beam – Concentrated load P at any point
2
2
Pa
EI
θ =
( )
2
3 for 0
6
Px
y a x x a
EI
= − < <
( )
2
3 for
6
Pa
y x a a x l
EI
= − < <
( )
2
max 3
6
Pa
l a
EI
δ = −
3. Cantilever Beam – Uniformly distributed load ω (N/m)
3
6
l
EI
ω
θ = ( )
2
2 2
6 4
24
x
y x l lx
EI
ω
= + −
4
max
8
l
EI
ω
δ =
4. Cantilever Beam – Uniformly varying load: Maximum intensity ωo (N/m)
3
o
24
l
EI
ω
θ = ( )
2
3 2 2 3o
10 10 5
120
x
y l l x lx x
lEI
ω
= − + −
4
o
max
30
l
EI
ω
δ =
5. Cantilever Beam – Couple moment M at the free end
Ml
EI
θ =
2
2
Mx
y
EI
=
2
max
2
Ml
EI
δ =
BEAM DEFLECTION FORMULAS
BEAM TYPE SLOPE AT ENDS DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER
DEFLECTION
6. Beam Simply Supported at Ends – Concentrated load P at the center
2
1 2
16
Pl
EI
θ = θ =
2
23
for 0
12 4 2
Px l l
y x x
EI
⎛ ⎞
= − < <⎜ ⎟
⎝ ⎠
3
max
48
Pl
EI
δ =
7. Beam Simply Supported at Ends – Concentrated load P at any point
2 2
1
( )
6
Pb l b
lEI
−
θ =
2
(2 )
6
Pab l b
lEI
−
θ =
( )2 2 2
for 0
6
Pbx
y l x b x a
lEI
= − − < <
( ) ( )3 2 2 3
6
for
Pb l
y x a l b x x
lEI b
a x l
⎡ ⎤
= − + − −⎢ ⎥⎣ ⎦
< <
( )
3 22 2
max
9 3
Pb l b
lEI
−
δ = at ( )2 2
3x l b= −
( )2 2
at the center, if3 4
48
Pb
l b
EI
δ = − a b>
8. Beam Simply Supported at Ends – Uniformly distributed load ω (N/m)
3
1 2
24
l
EI
ω
θ = θ = ( )3 2 3
2
24
x
y l lx x
EI
ω
= − +
4
max
5
384
l
EI
ω
δ =
9. Beam Simply Supported at Ends – Couple moment M at the right end
1
6
Ml
EI
θ =
2
3
Ml
EI
θ =
2
2
1
6
Mlx x
y
EI l
⎛ ⎞
= −⎜ ⎟
⎝ ⎠
2
max
9 3
Ml
EI
δ = at
3
l
x =
2
16
Ml
EI
δ = at the center
10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ωo (N/m)
3
o
1
7
360
l
EI
ω
θ =
3
o
2
45
l
EI
ω
θ =
( )4 2 2 4o
7 10 3
360
x
y l l x x
lEI
ω
= − +
4
o
max 0.00652
l
EI
ω
δ = at 0.519x l=
4
o
0.00651
l
EI
ω
δ = at the center
file:///G|/BACKUP/Courses_and_seminars/0MAE4770S12/url%20for%20beam%20formulas.txt[1/23/2012 12:15:35 PM]
http://www.advancepipeliner.com/Resources/Others/Beams/Beam_Deflection_Formulae.pdf
Beam formulas
Beam formulas

Beam formulas

  • 1.
    BEAM DEFLECTION FORMULAE BEAMTYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM DEFLECTION 1. Cantilever Beam – Concentrated load P at the free end 2 2 Pl EI θ = ( ) 2 3 6 Px y l x EI = − 3 max 3 Pl EI δ = 2. Cantilever Beam – Concentrated load P at any point 2 2 Pa EI θ = ( ) 2 3 for 0 6 Px y a x x a EI = − < < ( ) 2 3 for 6 Pa y x a a x l EI = − < < ( ) 2 max 3 6 Pa l a EI δ = − 3. Cantilever Beam – Uniformly distributed load ω (N/m) 3 6 l EI ω θ = ( ) 2 2 2 6 4 24 x y x l lx EI ω = + − 4 max 8 l EI ω δ = 4. Cantilever Beam – Uniformly varying load: Maximum intensity ωo (N/m) 3 o 24 l EI ω θ = ( ) 2 3 2 2 3o 10 10 5 120 x y l l x lx x lEI ω = − + − 4 o max 30 l EI ω δ = 5. Cantilever Beam – Couple moment M at the free end Ml EI θ = 2 2 Mx y EI = 2 max 2 Ml EI δ =
  • 2.
    BEAM DEFLECTION FORMULAS BEAMTYPE SLOPE AT ENDS DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER DEFLECTION 6. Beam Simply Supported at Ends – Concentrated load P at the center 2 1 2 16 Pl EI θ = θ = 2 23 for 0 12 4 2 Px l l y x x EI ⎛ ⎞ = − < <⎜ ⎟ ⎝ ⎠ 3 max 48 Pl EI δ = 7. Beam Simply Supported at Ends – Concentrated load P at any point 2 2 1 ( ) 6 Pb l b lEI − θ = 2 (2 ) 6 Pab l b lEI − θ = ( )2 2 2 for 0 6 Pbx y l x b x a lEI = − − < < ( ) ( )3 2 2 3 6 for Pb l y x a l b x x lEI b a x l ⎡ ⎤ = − + − −⎢ ⎥⎣ ⎦ < < ( ) 3 22 2 max 9 3 Pb l b lEI − δ = at ( )2 2 3x l b= − ( )2 2 at the center, if3 4 48 Pb l b EI δ = − a b> 8. Beam Simply Supported at Ends – Uniformly distributed load ω (N/m) 3 1 2 24 l EI ω θ = θ = ( )3 2 3 2 24 x y l lx x EI ω = − + 4 max 5 384 l EI ω δ = 9. Beam Simply Supported at Ends – Couple moment M at the right end 1 6 Ml EI θ = 2 3 Ml EI θ = 2 2 1 6 Mlx x y EI l ⎛ ⎞ = −⎜ ⎟ ⎝ ⎠ 2 max 9 3 Ml EI δ = at 3 l x = 2 16 Ml EI δ = at the center 10. Beam Simply Supported at Ends – Uniformly varying load: Maximum intensity ωo (N/m) 3 o 1 7 360 l EI ω θ = 3 o 2 45 l EI ω θ = ( )4 2 2 4o 7 10 3 360 x y l l x x lEI ω = − + 4 o max 0.00652 l EI ω δ = at 0.519x l= 4 o 0.00651 l EI ω δ = at the center
  • 3.