Azure Machine Learning
ハンズオン
畠山 大有 | Daiyu Hatakeyama | @dahatake
Architect && Software Engineer && Applied Data Scientist (目指している)
Microsoft Japan
Cognitive Services Knowledge mining Machine Learning
未定
https://notebooks.azure.com/
DATA SCIENTIST
DEVELOPER
DATA ENGINEER
Azure Cloud Services
Compute (Container) / Storage
Python & R SDK
データの加工
モデルの学習
モデルの管理
モデルの展開
GUI SDK for Code
初学者からエキスパートまで
My Computer Data Store
Azure ML
Workspace
Compute Target
Experiment
Docker Image
この車の妥当な価格は?
Mileage
Condition
Car brand
Year of make
Regulations
…
Parameter 1
Parameter 2
Parameter 3
Parameter 4
…
Gradient Boosted
Nearest Neighbors
SVM
Bayesian Regression
LGBM
…
Mileage Gradient Boosted Criterion
Loss
Min Samples Split
Min Samples Leaf
Others Model
Which algorithm? Which parameters?Which features?
Car brand
Year of make
試行錯誤
Criterion
Loss
Min Samples Split
Min Samples Leaf
Others
N Neighbors
Weights
Metric
P
Others
Which algorithm? Which parameters?Which features?
Mileage
Condition
Car brand
Year of make
Regulations
…
Gradient Boosted
Nearest Neighbors
SVM
Bayesian Regression
LGBM
…
Nearest Neighbors
Model
繰り返し
Gradient BoostedMileage
Car brand
Year of make
Car brand
Year of make
Condition
Mileage
Condition
Car brand
Year of make
Regulations
…
Gradient Boosted
Nearest Neighbors
SVM
Bayesian Regression
LGBM
…
Gradient Boosted
SVM
Bayesian Regression
LGBM
Nearest Neighbors
Which algorithm? Which parameters?Which features?
繰り返し
Regulations
Condition
Mileage
Car brand
Year of make
データセット
目標設定
学習の一貫性
出力入力
アンサンブル モデル
仮想マシンの自動起動・オートスケール
モデルの説明性 (解釈性)
ベストなモデルの選択
Optimized model
分類、回帰、時系列予測 ONNX サポート
User inputs
Feature
engineering
Algorithm
selection
Hyperparameter
tuning
Model Leaderboard
Dataset
Configuration
& Constraints
76% 34% 82%
41%
88%
72%
81% 54% 73%
88% 90% 91%
95% 68%
56%
89% 89% 79%
Rank Model Score
1 95%
2 76%
3 53%
…
Data
Clearing
Model Explanation
GPU GPU
Job
Management
Container
Packaging
VM Auto scale
Ensemble Learning
“HyperDrive”
Logging for
Visualize
User inputs
Feature
engineering
Algorithm
selection
Hyperparameter
tuning
Model Leaderboard
Dataset
Configuration
& Constraints
76% 34% 82%
41%
88%
72%
81% 54% 73%
88% 90% 91%
95% 68%
56%
89% 89% 79%
Rank Model Score
1 95%
2 76%
3 53%
…
Data
Clearing
Model Explanation
GPU GPU
Job
Management
Container
Packaging
VM Auto scale
Ensemble Learning
“HyperDrive”
Logging for
Visualize
深層学習
User inputs
Feature
engineering
Algorithm
selection
Hyperparameter
tuning
Model Leaderboard
Dataset
Configuration
& Constraints
76% 34% 82%
41%
88%
72%
81% 54% 73%
88% 90% 91%
95% 68%
56%
89% 89% 79%
Rank Model Score
1 95%
2 76%
3 53%
…
Data
Clearing
Model Explanation
GPU GPU
Job
Management
Container
Packaging
VM Auto scale
Ensemble Learning
“HyperDrive”
Logging for
Visualize
トレーニング ターゲット AutoML Hyperparameter Turning
ローカル Yes
リモート VM Yes Yes
Azure Machine Learning Compute Yes Yes
Azure Databricks Yes
Azure HDInsight
Azure Data Lake Analytics
Azure Batch
https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-compute-target
分散環境で並列実行することで高速化を実現
対応モデルフォーマット
sklearn pipeline
どこにでも展開可能
データ探
索
変数の重要度
各予測値に対する説明 サマ
リー
要因探索、与信管理などの業務で
はブラックボックスなモデルは使
えない...
https://docs.microsoft.com/en-
US/azure/machine-learning/service/machine-
learning-interpretability-explainability
Model interpretability with
Azure Machine Learning service
• fairlearn - 公平性のアセスメントと、調整(緩和)のための Open Source Tool
• 不公平性のアセスメント、監視、調整(緩和) と 可視化
https://github.com/fairlearn/fairlearn
Step-by-Step Learning Achievements スムーズな学習環境
 無料
 日本語対応
 ブラウザーのみ。ハンズオ
ン環境も含めて
 ダウンロード可能なサンプ
ルコード
 Product/Service, 技術レベル,
job role, などに応じたガイダ
ンス
 Videos, チュートリアル, ハン
ズオン
 スキルアップを促す
 ユーザー プロファイ
ル毎に
カスタマイズ
www.microsoft.com/learn
• AI や 機械学習の最新の
トレーニング
• 概要・基礎・チュートリアル
• 自分に適した、トレーニングコースの作成
• AI Business School
• Conversational AI
• AI Services
• Machine Learning
• Autonomous System
• Responsible AI
aischool.microsoft.com
会員数 4,150 名
全国 6 都市で
36 回イベント開催
福岡
大阪
広島
名古屋
東京
札幌
オンライン・オフライン含めた
機械学習教育講座の全国での推進
機械学習 SI エコシステム日本最大の AI コミュニティ
https://dllab.connpass.com/
Open Source Repo Link
Azure ML Notebook Examples
Azure Machine Learning 公式サンプル
コード
https://aka.ms/ml-notebooks
BERT Large 自然言語モデル BERT のサンプルコード http://aka.ms/azure-bert
Microsoft Recommenders レコメンデーション サンプルコード http://aka.ms/recommenders
LightGBM LightGBM トップページ https://aka.ms/lightgbm
Natural Language Recipies 自然言語 サンプルコード https://aka.ms/nlp-recipes
ONNX ONNX トップページ https://aka.ms/onnx
ONNX RT ONNX Runtimeトップページ https://aka.ms/onnx-rt
Kubeflow & MLOps
Kubeflow + Azure ML + DevOps サンプル
コード
https://aka.ms/kubeflow-and-mlops
Azure Open Datasets Azure Open Datasets Webページ https://aka.ms/azure-open-datasets
Azure ML Free Trial Azure フリートライアル https://aka.ms/amlfree
Azure ML Docs Azure Machine Learning ドキュメント https://aka.ms/azureml-ja-docs
© 2019 Microsoft Corporation. All rights reserved.
本情報の内容(添付文書、リンク先などを含む)は、作成日時点でのものであり、予告なく変更される場合があります。

Azure Machine Learning Hands-on - AutoML編 - 2020年1月