SlideShare a Scribd company logo
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 1	
ω
ε =
Ω
3
m
Q = εφω 2gH ,
s
Q = μω 2gH
μ = ε × φ =0.6 0.62
ε
φ
ω
H
A
ω
emKuNénrnæEdlRtUvbeB©jTwk
0.8eTA 0.9 kkitedayel,ÓnTwk
0.8eTA 0.9 muxkat;rnæbeBa©jTwk
0.8eTA 0.9 muxkMBs;Twk ;rn
0.8eTA 0.9 muxCaTUeTAeKyktMélrbs; µ = 0.6 eTA 0.9
ɛ = 0.62 eTA0.64
φ = 0.97
2
αν
2g
1
Z 2
rMhUrqøgkat;rnæ nigeRkamTVaTwk
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 2	
a kMBs;TVaTwkebIk ,m
cth kMBs;Twks,Wt ,m
cth'' kMBs;Twks¶b;xageRkay ,m
cth =ε'×a
1
ct
j
a x
=
+å
emKuNel,Ón
0.95 0.97j = 
a
H
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
ε' 0.615 0.618 0.620 0.625 0.628 0.628 0.638 0.638 0.645 0.650 0.650 0.650 0.690 0.705
2
0
α2J
H = H + , m
2g
rUbTI1
cth cth''
H
0H
0J
cth
TVVVVVVVVVaTwk
xagmux
H
rUbTI2
taragbgðajGMBIε'
cth
H
0H
0J
a 2h
2J
2
2 g
a J
rlkTwkxageRkay
h av
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 3	
B rgVHTwk ,m rUbmnþ
b )atRbLay ,m
m eCIget
H kMBs;Twk , m
N PaBeRKImrbs;TMr ,mm
DkMBs;bMrug ,m
rUbmnþTUeTA
edIm,IeGaymuxkat;RbLaymanlk<N³smRsbeKeRbIrUbmnþ
3
0 ct
mQ = φ × ε' × a × b × 2g(H -h ) ,
s
a kMBs;TVaTwkEdlebIk , m
b TTwgTVaTwk , m
ε' emKuNénpleFobkarebIkTVaTwk
H0 kMBs;Twkxagmux ,m
Hct kMBs;TwkxageRkayTVa
x Gab;sIuelanPaBkkit
n n
B
b
H
m h a´ ´ D
2
2
2
1 21
6 32
2 1
3
3 2
ω = bh + mh = (b+mh)h
P = b + 2h 1+m
ω ( b + mh )
R = =
P b+2h 1+m
1
tgθ =
m
a
m = Cotg =
h
Q = ω × J = ω × c R
1 1
= R × R × = × R × × ω
n n
1 mQ = × R × ,
sn
i
i i
i
b
β =
h
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 4	
cMNaM
J > 0.5 eTA 0.6 m/s rt;kñúgRbLaykñúgkrNIEdlel,Ónrt;kñúgmanbBaðaBIrKW
J eRcaHdac; = KQ0.1
kkpk;
mmA = 0.33 , ω < 1.5
mmA = 0.44 , ω = 1.5 35
s
mmA = 0.55 , ω > 3.5
s
s

K emKuNeRcaHdac;
Q brimaNFaTwkkúñgRbLay m3
/s
W el,ÓnFøak;cuHRKab;dI mm/s
lkçx½NÐ
rMhUrqøgkat;rgVHragRtIekaN
J = AQ0.2
J kkPk < J < J eRcaHdac; ( el,Ónrt;kñúgRbLay)
Q h
P
B
b
z
32.5 mQ = 1.14h ,
s
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 5	
sMKal;
H kMBs;Twk , m
D Ggát;p©itrbs;rnæ ,mm
ctω RkLaépÞrbs;vtßúravkkit ,m2
ωRkLaépÞ rnæ
EdlehAfarMhUrqøgkat;rnæ KWCaclnaTwkEdlrt;ecjtam RbehagRbeLaHhUrecjeTAeRkA edayb:HCamYy
briyakas; rWb:HCamYynwgvtßúravxøÜnÉg . ]TahrN_ GagsþúkTwk TVaTwk .l.
Hydrolic
CMBUkTI1
rMhUrrbs;vtßúravqøgkat;rnæ
c
c
atmP
H
A A
o
d
ctω
ωbriyakas;
(NUey)
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 6	
eRbIsMrabépÞFM eRbIsMrabépÞtUc
3
mQ =
s
m emKuNbrimaNFaTwk
ωmuxkat;épÞTwk m2
H0 kMBs;TwklMeHogedayEpñk ,m
g = 9.81m/s2
rUbmnþ
1 rMhUrvtßúravqøgkCBa¢aMgesþIgEdlmankMBs;Twkefr
tamsmIkar Bernoulli BI AA eTA CC
2 2
o 0 0 c
P.C
P α J αJ tP
H + + = 0 + + + h
g 2g 2g 2gr
P0 sm<aFxageRkARtg; AA
P sm<aFxagkñúgRtg; CC
0J el,ÓnTwkrt;BIépÞb:HxagelImkrnrnæ ,m/s
ctJ el,Ónecjrnæ m/s
P.Ch kMhatbg; ,m
e m.p
e
R 100 0.6
R > 100000 μ = 0.60 0.62
ε = 0.62 0.64
φ = 0.97
x£  =
 

2
0 0 0
0H H + +
2
P P
g g
a J
r
-
=
2
ct
0H ( )
2g
J
a x= +S
0
3
Ω
H H Ω 4ω < 15%
ω
= 1% 5ω
mQ = μω 2gh ,
s
 ³ 
W  W ³

snμt; 1
=j
a x+S
ct 0= 2gHJ j
0Q = μω 2gH Q = μω 2gH
c
c
atm 0P = P
H
A A
o
0H ctω
ctJ
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 7	
kñúgkrNIEdl
0 atm
2
0 0
0
0
0
P = P = P
α
H = H+
2g
H = H
Q
=
J
J
W
W muxkat;rbs;épÞTwkénGag
2
0
2 2
2
0
μω 2ghα Q
Q = μω 2g(H+ ) or Q =
2gΩ ω
1-μ α
Ω
cMeBaH
0
3
Ω
H H Ω 4ω < 15%
ω
= 1% 5ω
mQ = μω 2gh ,
s
 ³ 
W  W ³

eKdwgfaemKuNénkarkkitRtg;Rckecj
ε , φ Gnuvtþn_tamlkçN³
e
2gh
R , = 2ghJ
n
=
dUcenH
e m.p
e
R 100 0.6
R > 100000 μ = 0.60 0.62
ε = 0.62 0.64
x£  =
 

(emKuNrbs;el,ÓnTwk )
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 8	
rUbmnþ
cth = ε' × a
a kMBs;ebIkTVaTwk ,m
ε' emKuNkkitrvagTwkCamYyTVaTwk
cth kMBs;TwkEdles,WtRtg;cMnucEdlTabCageK ,m
rMhUrqøgkat;TVaTwk
H
haJ
a
0J
a
cth
2
0
2g
aJatmP
ah J
Up Down
haJ kMBs;Twks¶b;xageRkayTVaTwk , m
a kMBs;ebIkTVaTwk , m
0J el,ÓnTwkxagmuxTVaTwk ,m
H kMBs;TwkxagmuxTVaTwk ,m
0H kMBs;TwklMeGogedayEPñk ,m
cth kMBs;TwkkkitenARtg;Rckecj,m
hz
kMBs;TwkenAEk,rTVaTwk ,m
2J el,ÓnTwkenAeRkayTVaTwk m/s
H 0H
a
ctJ
zh
2J
0J
zh haJ=
2
21
1
b
cth
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 9	
cMeBaHel,ÓnTwkrt;xageRkamTVaTwk
ct 0 ctφ 2g(H -h )J =
nigbrimaNFaTwk
ct ct 0 ctQ = ω = ε'×a×b×φ 2g(H -h )ctJ´
sMKal;
b TTwgTVaTwk , m
dUcenH
3
ct 0 ct
mQ = φ × ε' × a × b 2g(H -h ) ,
s
2
0
0
ct
1
H = H ,m , φ =
2 α +Σξg
aJ
+ emKuNrbs;el,Ón
cMeBaH φ = 0.95 eTA 0.97 bRgYmmkvijeKGacsresr
ε' × φ = μ emKuNrbs;brimaNFarTwkhUreRkamTVaTwk
3
ct 0 ct
mQ = μ × a × b × 2h(H -h ) ,
s lkçN³edNUey (mincal;)
3
ct 0 ct
mQ = μ × a × b × 2h(H -h ) ,
s lkçN³NUey (mincal;eRkay)
a
H
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
ε' 0.615 0.618 0.620 0.622 0.625 0.628 0.630 0.638 0.645 0.650 0.660 0.675 0.690 0.705
ctha
rUbPaBebIkTVaTwk
kñúgkarGnuvtþn_ε' = 0.64
taragbgðajGMBItMél
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 10	
CMBUkTI 2
rMhUrÉksNæanenAkñúgépÞTwkcMh
α
a
2
1α
2g
J
1P
gr
1Z i 
h = const
2
2α
2g
J
2P
gr
2Z
pc lh = h
L
'L
sMKal;
p lI = I CMralrbs;épÞTwk
i CMral)atRbLay
2
α
2g
J
famBlsIuenTic ,m
1 2P P
,
g gr r
famBlsMBaF ,m
1 2Z , Z famBlbU:tgEsül ,m
h kMBs;Twkefr,m
'a mMulMgak
L RbevgbeNþayRbLay
L' RbevgbeNþayRbLay ,m
p lh = h kMhatbg;tambeNþayRbLay,m
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 11	
1 brimaNFaTwkefr ( Q = Const )
2 kMBs;TwkesμIKñaRKb;cMNuc h = Const efr
3 TwkeLIgcuHtamlkçN³esrI
4 )atRbLaymanCMrali > 0 , i = Sinα = Const
5 CBa¢aMRbLaymanPaBeRKImefr n = Const
6 bBaðaepSg²EdlmanGMeBIvaRtUvmin)anKit
rUbmnþGnuvtþn_
2
ω = Const ,m muxkat;RbLay
X = P = Const , m brimaNRbLay
R kaMrsμIGIuRdUlik ω
R = ,m
P
IP = IL //i CMralépÞTwkRsbCamYyCMral)atRbLay
h kMBs;TwkkñúgRbLayefrCanic© ,m
= c RiJ el,ÓnmFüm m/s
eday i = I
3
Q = ωc Ri or
mQ = k i ,
s
rUnmnþrbs;elak CHEZY
k = ωc R
C emKuNrbs;el,Ón
R kaMGIuRdUlik , m
ωmuxkat;RbLay
k emKuNbrimaNFaTwk
i = I = 1
I lkç½NÐ rMhUrÉksNæan
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 12	
D
B
b
m=1.5
H
0H
BMnuHkat;AA
sMKal;
b )atRbLay ,m
B rgVHmat;RbLay ,m
D kMBs;suvtßiPaB , m (0.2 eTA 2m )
GaRs½yFaTwk 3
mQ =
s
m= 1.5 nig m=1 CaCMraleCIgeTrkñúgnigeRkAénRbLay
h kMBs;TwkkñúgRbLayRtg;muxkat;NamYy ,m
H = h + Δ ,m
A
A
m=1
m=1.5
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 13	
II rUbmnþsMrab;KNnaemKuN Chezy nigemKuNénPaBeRKImrbs;RbLay
0.5y1 mC = R , (Pavlovski)
sn
n PaBeRKImrbs;RbLay
R kaMGIuRdUlik,m
y s½VyKuN
y = 2.5 n - 0.13 - 0.75 R( n-0.10)
y = 1.5 n cMeBaH R < 1m
y = 1.3 n cMeBaH R > 1m
kúñgkrNI n = 0.009 eTA 0.040  R=0.1 eTA 3m
c = 4 2g (k+lgR)
0.51 mc = + 17.72lgR ,
sn
0.51/61 m** c = R , Manning
sn
(enAelITIpSareKniymeRbICaCnCatiGg;eKøs)
2/3 1/21 m= R × i ,
sn
J
emKuNénPaBeRKImeRcInRbePT
( )
1/2N
2
i i
1
equiralent 1/2
x n
n =
x
é ù
ê ú
ê úë û
å
sMKal;
xi kMras;énPaBeRKImnimYy ,m
ni RKab;dInimYYy² ,m
rUbmnþenHbgðajGMBImuxkarRbLayragctuekaNBañaynig)ar:abUlik
Agroskine
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 14	
 
h H
D
B
a
θ
b
sMKal;
b TTwg)atRbLay ,m
m. eCIgeTxagkñúgRbLay,m
h kMBs;TwkkñúgRbLay,m
D kMBs;suvtßiPaB,m
w RkLaépÞRbLay,m
2
ω = bh + mh = (b+mh)h
P brimaRtrbs;RbLay,m
B rgVHTwkxagelI,m
H = h´DkMBs;Twksurb,m
θ mMulMgak;rbs;RbLay a
m = cotgθ = ,m=0
h
2
2
P = b+2h 1+m or P=b+m'h
m' = 2 1+m
R kaMGIuRdUlik ,m
2
ω bh+mh
R = =
P b+m'h
edUm,IeGayrUbragRbLayctuekaNBañaymanlkçN³l¥RbesIrKWeKRtUvGnuvtþrUbm
nþ
0
2
0
m hb
β = and δ =
h b+mh
m = m' - m = 2 1+m - m
B = b + 2mh
rUbmnþ)ar:abUlik
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 15	
muxkat;
Q = k i
RbEvgbrimaRtesIm
x = P 2τ(1+2τ)+ln( 2τ+ 1+2τ)
ω 2Bh
R = =
x 2PN
é ù
ê úë û
EdltMél N man
N = 2τ(1+2τ) + ln( 2τ+ 1+2τ)
kúñgkrNI
B h³
eK)an
x B
rUbmnþbgðajmuxkat;RbLayragctuekaNBñay nig)ar:abUlik
  B
D
H
b
 
P
2 θ
h
H
A
B
x
y
rUbmnþ
x2
=2Py
P)ar:Em:Rtrbs;)ar:abUlik
H CMerATwk ,m
H = h+D ,m
B rgVHmat;elI ,m
D kMBs;bMrug ,m
h
τ-
P
CMerATwkR)akd
1
m-
2τ
CMerArbs;épÞTwk
2
ω = B×h ,m B = b ,m
P = B ,m
ω B×h
R = = = h ,m
P B
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 16	
taragbgðajGMBIemKuNeCIgeTr
RbePTdI ,m m
dIdæ 1 eTA 1.25
dIl,aydIdæ 1.25 eTA 1.50
dIl,ayxSac; 1.50 eTA 1.75
dIxSac;suTæ 1.70 eTA 2.25
cMNaM
muxkat;)atRbLay b = 0.4m CatMélGb,brima ( Minivaum ) eKGacKNnatamviFImü:ageTot rbs;
RbLayeRsacRsBtamlkçx½NÐrbs;elak Ghirshkan
cMeBaHtMélDvijKWRtUvGnuvtþtamsþg;darUsSI
3
mQ
s ,mD
<1 0.25
1 eTA 10 0.4
10 eTA 30 0.5
>30 0.6
sikSaGMBIlkçx½NÐénel,ÓnTwk m,
s
J mankrNI2y:agKW J eRcaHdac; nig J kkPk; .
rUbmnþtamlkçx½NÐ
afJ J£ el,ÓneRcaHdac;
J el,ÓnFmμtarbs;TwkkñúgRbLay ,m/s
0.1
af = kQJ
K emKuNénel,ÓneRcaHdac;
3
4
h = (0.7 1.0) Q
β = 3 Q - m
B = ( 3 5 ) Q


sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 17	
rUbmnþbgðajGMBImuxkat;RbLayragctuekaNBñay nig)ar:abUlik
RbePTdI K
dIdæ 0.75
dIdæsuTæ 0.85
dIl,ayxSac; 0.53
dImemak 0.57 eTA 0.68
rUbmnþrbs;el,ÓnkkPk;
0.2
an = AQ ,m sJJ
A emKuNénel,ÓnmFümRKab;dIEdlFøak;cuHeTAkñúg)atRbLay
mmA = 0.33 w < 1.5
s
mmA = 0.44 w = 3.5
s
mmA = 0.55 w >3.5
s



WrYm = ( Σw tamEpñkP)/100
Q
× k = = α
τ
´k
wS el,ÓnRKab;dIepSg²Føak;cuHmm/s
Pi PaKryénRKab;epSg²
Q = k i
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 18	
V < gh
1rF <
r
V > gh
F 1>
cariklkçN³rbs;RbLaycMhman 4FM²
1 Stationary
V = 0
Fr ( froud ) = 0
2 Subcritical
3 Studding ware flout
4 Super critical
Critical Flow
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 19	
- Vc Velocity critical ,m/s
- H Hydraulic depth ,m
- G 9.81 m/s2
- Fr Froude umber
rMhUrminÉksNæan
eKGacniyayfarMhUrclnavtßúravkñúgRbLaycMhminÉksNæanKW
- CMral)at I i¹ CMralrbs;épÞTwk
- H CakMlBs;TwkERbRbYlenAkñúgRbLay
- CMerAekIneLIgtamTisedAénclnavtßúrav
- CMerAfycuHtamTisedApÞúyénclnavtßúrav
Vc
Fr = = 1
gh
begÁa
h
0i >
ExSekagrWm:U (l,akTwkekInrYcFøakcuH)
ExSekagedRKuy ( l,ak;TwkFøak )
a
0i > 
a) TwsedATwkRsktamCMral)at

b) i=0 TwsedATwkRsbtamCMral)at
a
0i <
c) TwsedATwkpÞúyBICMral
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 20	
rUbmnþEdlRtUveRbIKW
0 0 0 0 0 0Q = ω c R i = k i
sMKal;
0 0 0 0ω , c , i , R CatMélEdlRtUv h = h0
sMrab;
1) i0 = i TisedARsb
2) i0 = i TisedARsbtMélviC¢man
3) i0 < i TisedApÞúy( KitkñúgtMéldac;xat)
eKeRbIkMNt;brimaNFaTwkQ’ tamclnaTisedATwki0 > 0 .
bB¢ak; ³ Q’CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;beNþayRbLayeQñaH ( edb‘IhVicTis ) .
KMnUsbMRBYjrbs;épÞdIeRsacRsB
* muxkat; ED = F1 ,ha
* muxkat; DC = F1+F2 ,ha
* muxkat; CB = F1+F2 + F3 ,ha
* muxkat; BA = F1+F2 + F3+ F4 ,ha
RbPBTwk
4F
3F
2F
1F
D
B
C
E
2h
2h
3h
BMnuHkat;beNþaysMng;Farasa®sþ
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 21	
rUbmnþEdlbB¢ak;GMBIclnaTwkKW
2
cin3
αQ B
= P = 1
gω
sMKal;
cinP )ar:aEm:RtsIueNTic
α emKuNkUrIyUlIs 1.0 eTA 1.01
Q brimaNFaTwkrt;kñúgRbLay m3
/s
bB¢ak;
Q’ CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;tambeNþayRbLayeQμaH ( edb‘ÍhVicTis )
B rgVHxagelIrbs;RbLay ,m
ω RkLaépÞRtg;muxkat;tamcMnucnimYy²
snμt;cMeBaHrbbrMhUr
cinP > 1 rMhUrtUr:g;Esül ( rMhUr Turbulence ) Twktic
cinP = 1 Downtream rMhURRKITic
cinP < 1 rMhUrPøúyvIy:al ( rMhUr Laminar )TwkCn
b
B
rUbCamYyKña nigrUbelIsþaMEdrenHemIlkat;TTwg .
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 22	
P CMerArbs;r)aMgxageRkay ,m
haJ kMBs;Twks¶b;xageRkaysMNg;begðór ,m
Z kMBs;eFobrvagnIvUTwkxageRkaysMNg;,m
b rgVHTwkhUr ,m
B muxkat;RbLayxagelI ,m
CMBUkTI3
rMhUrqøgkat;sMNg;begðór
sMKal;
P1 kMBs;r)aMgrbs;sMNg;begðór ,m
l’ 3 eTA 5 dgén H
0J el,ÓnTwkhUrxagmuxsMNg;begðór , m/s
S kMBs;rbs;r)aMg,m
1 cMNat;fñak;rbs;sMNgbegðór
sMNg;begðórmanEckCaeRcIny:agKW
a. sMNg;begðórmanCBa¢aMgesþIg
P
Z
h a J
1P
0J
 H
Q
V H S
l
D ow ntream
BMnuHkat;beNþaysMNg;begðór
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 23	
H0H e
1P
0V
S
xül; P
avh
2
0
2
v
g
a
l = 3 5m for H
lkçx½NÐ
-S < 0.5H
-
2
0
0
αr
H = H + ,
2g
m
b. sMNg;begðórr)aMgRkas;
C. sMNg;begðórsßitkñúglkçN³Fmμta
0H H 0J
J
P
h
haJ
her
l S
2H < S < 10H
haJ
P
1P
H0H
l S
2
0
2g
aJ
2
0
2g
aJ
P
0H H
haJ
1P
Sl
0.5H < S < 2H
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 24	
ctuekaNEkg ctuekaNBñay
RtIekaN rgVg;
H
P
0J
0J
d. rgVHrMHUrrbs;sMNg;begðór
e. sMNg;begðórragekag
f. rgVHsMNg;begðórRtg;
g. rgVHsMng;begðórbBaäit
H
P
P
H
H
P
0J
0H 1P
P
r
0
2g
aJ
cthl S
rlkTwkxμÜlsμaj;
r kaMrgVg;
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 25	
h. rgVHsMNg;begðórLaetral;
i. rgVHsMNg;begðórxusFmμta
sMNg;begðórBhuekaN
sMNg;begðórragekag
sMNg;begðórmat;ragmUl
0J 0J
0J 0J
0J
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 26	
mankarkkittic
B=b
mankarkkitxøaMg
B > b
2 cMNat;fñak; énsMNg;begðór
EdlrMhUrmanlkçN³ceg¥ót niglkçN³TUlay
3 RbePTrMhUrrbs;Twk
rUbmnþ
3/2
0Q = mb 2gH sMrab;rMhUredNUey
m emKuNbrimaNFaTwk
b rgVHsMng;begðór ,m
2
0
0
α
H = H + ,m
2g
J
TwkxagmuxsMNg;begðór ,m
33/2
n
mQ = σ mb 2gH ,
s
( sMrab;NUey )
nσ < 1
0J B b
0J
B
b
P1P
H0H
haJ
rMhUredNUey
2
0
2g
aJ
P1P
H0H
haJ
rMhUrNUey
2
0
2g
aJ
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 27	
4.sMNg;begðórragctuekaNEkgRtg;lkçN³edNUeyEdlmanCBa¢aMesIþg
5. sMNg;begðórEdlmanCBa¢aMgesþIgedayragctuekaNEkg
a
b
xül;
c
0.27H
3H 0.67H
0.112H
0.22H0.15H0.003H
H
a
a
H
P
h
A
θ 1θ
b
P
H
a
B
sMrab;RtIekaN
2 3
5 mQ = 1.14H
s
sMrab;ctuekaNBañy
3 3
5 mQ = 1.86bH
s
eday b> 3H
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 28	
0H H
1P
P
erh h
Sl
b
b
Bil
TVaTwk
6. sMNg;begðórEdlmanCBa¢aMgRkas;
3
0
mQ = ω × = φ × b × h 2g(H -h) ,
s
J
0
2
h= H
3
or
3
3
2 mQ = mb 2gH ,
s
( edNUey )
m = 0.35 eTA0.36
cMeBaHsMNg;begðórkñúglkçN³NUey
3
2 3
n 0
n
mQ = σ mb 2gH ,
s
b <1
7. sMNg;begðórEdlmanragCaekagCaExSekag
3
2
0Q = mb 2gH
m = 0.48 0.49
8. sMNg;BIlEdlfitenAsMNg;begðór
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 29	
P
2h
2h
1Q
2Q
2h
rUbmnþ
3
2 3
0
0
0
mQ = ε m b 2gH ,
s
H
ε =1 - a
b+H
a emKuNrbs;rUbragBil
9 sMNg;begðórLaetral;
QLaetral; = mLaetral; x b x
3
2
02gH
3
m,
s
mLaetral; = 0.25 + 0.167( 2
1
2
H
-
H
cinP )
2
2
2
cin
2
P
gh
J
=
10>sMNg;begðóreFμjrNa
A=0.20
r=0.5t
A=0.11 A=0.11 A=0.06
t t t
1b
2b
b
B
n n n
B
h
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 30	
3 3
2
0
3
2
0
max
mQ = mb 2gH ,
s
Q
b =
m 2gH
h
n =
(0.25 1.50)h
h kMBs;TwkFmμta ,m
maxh kMBs;TwkGtibrima ,m
n cMnYnrgVH
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 31	
CMBUkTI 4
rlkTwkeRkaysMNg;begðór
I rUbPaBénsMNg;Farasa®sþ
rMhUrmanBIry:ag
- cr cinh < h and P > 1
rUr:gEsül ( Twktic )
- cr cinh > h and P < 1
PøúyrIy:al; ( TwkCn )
0J
0H H
cth
haJ
1P P
Upstream Down stream
0J0H H
cth
haJ
1P
P
Q
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 32	
a
h
cth
2 3
1 2 3
ah J
resL a eL J
II TRmg;rMhUrrbs;TwkeRkaysMng;Fara®sþ
Q rlkTwkbkeRkay
Q rlkTwkrt;eTAmux
resL RbEvgrlkkeRBa¢akxøaMg ,m
a eL J RbEvgrlkmanlkçN³s¶b;bnþicmþg² ,m
RbePTénrMhUrrbs;rlkeRkaysMNg;begðór
manEckCaeRcIny:agKW
1 rMhUrrlkl¥tex©aHkrNI
'
cta = (h" - h ) or a>h'
2 rMhUrrlkTwkCn;krNI
a<h
a
cth'
h"
h'
h'
a
crh critich ahJ
eday
crh kMBs;rlkragdUcbUkstVeKa
critich kMBs;Twkrlksmrmü ,m
haJ kMBs;rlks¶b;enAeRkaysMNg; ,m
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 33	
cth
haJ
clnavtßúrav
3 rMhUrrbs;rlkcal;mkeRkay ( rWm:U )
4 rMhUrCnlicenAxageRkayTVaTwk ( NUey )
5. rMhUrrbs;rlkCnlicxøaMehIyman]bsKÁ
P2 kMllaMgbukb®Ba©asTisrbs;vtßúrav
P1 kMlaMgbukRsbTisedArbs;clnavtßúrav
G TMnajrbs;vtßúravEdlmanlkçN³Ekgbøg;)atEtmantMéltUc G=0
P2 = P1 = 0 eday i = o
cth
h'' haJ
Kμan]bsKÁ
H
a=h''-h'
1P
h'' G
2P
ah J
1
1 Pr
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 34	
6. rMhUrrlkCnlicxøaMgEtKμan]sKÁkñúglkçN³)atmanragCal,ak;
rUbmnþRKwHrMhUrrbs;rlkeRkaysMNg;begðóreKRtUvsÁal;smμtikmμ
egQ , h' , h'' , h eday Q brimaNFarTwk ,m3
/s
h kMBs;Twks<WtCitTVaTwk
h’’ kMBs;TwkenAbnÞab;BI hct ,m
hcg kMBs;TwkRtg;TIRbCMuTm¶n; ,m
tamkaGnuvtþn_KWRtUvsÁal;
2
cin 3
αQ
*** P = × B = 1
gω
eday ωmanmuxkat;TwkRtg;kMBs;s,Wt , m2
B rgVHTVaTwk ,m
*** kMBs;TwkrlkxageRkaysMNg;
'
cin
''
cin
h'
h" = ( 1+8P - 1 )
2
h''
h' = ( 1+8P - 1 )
2
'
cinP nig ''
cinP Ca)ar:asIuenTicxagmuxkat;rlkxageRkaysMNg;begðór
krNI
'
cin
''
cin
h" 2h' P > 3
P > 0.375
³ 
*karfykMlaMgrbs;TwkenAeRkaysMNg;begðór b¤ehAfakMhatbg;énkMlaMg
rUbmnþ
pc
(h'' - h')
h = ,m
4h'h''
kar)at;bg;famBlrbs;clnavtßúrav enAeRkaysMNg;begðórKW GaRs½yeTA nwgbMErbMrYlénkMBs;TwkxageRkay
fitenAkñúglkçN³tUrg;Esül ( J ekInxøaMg ) kMBs;Twktic b¤PøúyrIy:al;EdleGaymankarekIn b¤fyfamBlrbs;Twk .
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 35	
eday
pch kMhatbg;rbs;famBlTwk ,m
h' , h'' kMBs;rlkTwkeRkaysMNg; ,m
¼ CaemKuNénkarkat;bnßyrbs;famBlkMhatbg;
*vIFIrkRbEvgrkecalenAeRkaysMNg;begðór b¤TVaTwk
1 rlkrMhUrtex©aH
resa) l = 2.5 ( 1.9h"-h' ) ,Pavloski GñkR)aCJrkeXIj
' 0.81
res cinb) l = 10.3h'( P - 1 ) Teheraussov GñkR)aCJrkeXIj
'
res cinc) l = 4h' 1+2P , Pikalow GñkR)aCJrkeXIj
res ' '
cin cin
19 30
d) l = ( 3 + - ) h"-h"Aivasian
P P
GñkR)aCJrkeXIj
tamrUbmnþ a nig e eKeRbIcMeBaH cinP >10 sMrab; d eRbIcMeBaH cin3 < P < 400rIÉRbEvgrlks¶b;vij
KWGnuvtþtamrUbmnþ
lavr = ( 2.5 eTA 3 ) lres
2 rlkrMhUrCnlic cin cinP <3 or P > 0.375
h"
haJ
'
cth
resl la cJ
a h"
crh =1.116h" haJ
a< '
cth
Ptr kMlaMgkkitrbs;TwkCamYy)at
P1-P2 kMlaMgsm<aFGIuRdUsþaric KWTwkmanclna
dUcenHCaTUeTA
'
3cin
'
ct
P "
( )
h
h
h
=
'
cinh' = h" P krNIEdl '
cinP 1.5<
'
resl =10.6h' ( P - 1 )cin
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 36	
eRkaysMNg;Farasa®sþ EtgEtmanbBaðaekIteLIg nUvTæiBlrbs;rlk EdlkeRBa¢aly:agxøaMgbNþal
eGaytYsMNg;manlkçN³swkricrilehIy manlkçN³rMj½r nigenAEpñkcugxageRkaybMput éntYsMNg;manlkçN³sIueRcaH
dac; enAxag cug éntYsMNg;enaHedayclnaénvtßúravmineKarBtamlkç½NÐ ' '' ''
ct ct ct ah < h but h >> h J eTAvij .
dUcenHeyIgRtUvERbRbYlsMNg;xuslkç½NÐeTACasMNg;edayRtUvlkç½NÐeTAvijKW
''
ct ah < h J Canic© b¤ a normalh hJ £ rbs;RbLayxageRkay .
'
ct ah >> h J sMNg;manlkçN³KμanlMnwg
nwgeRcaHdac;EpñkRKwHeRkABIeRBaHkMlaMgrbs;rlkenAmanlkçN³xøaMgdUcenHRtUveFVIeGaysMNg;enHeGayman
kMralEvg rWeFIVkUnGag
4 kUnGagCYykat;bnßykMlaMgbukrbsrlkedayGnuvtþn_tameKalkarN_
''
ct a normalh < h hJ = rbs;RbLay
ah J
cth
1P
0H
H
2
0
2g
aJ
1
1 2
2 3
3
P ''
cth
''
cth
cth
P
0H H
sMNg;begðóreFVIGMBIfμlay
eCIgkarBarCMrabTwkxagmux
sMNg;eFVIGMBIebtugGaem
kMral
Gagkat;bnßykMlag
bukrlkeRkaysMNg;
kMralebtugGag bøúkfμ 4 x 6 karBareRcaHdac;
xagmuxsMNg;begðór xageRkaysMNg;begðór kMBs;Twk Normal kñúg
RbLayeRkaysMNg;begðór
normalh
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 37	
2/3
01
q
H =
2nm gs
æ ö÷ç ÷ç ÷ç ÷÷çè ø
sMKal;
arP dMubøúkebtugGaem
parL RbEvgEdlRtUvdak;dMubøúk ,m
01H kMBs;Twksrub ,m
2
01
01 1
α
h =H + ,m
2g
J
01J el,ÓnTwkeRkaysMNg; ,m/s
rUbmnþ
"
par ct 1P = σh - H
2
01
1 0
α
H = H - ,m
2g
J
2/3
01
g
H =
m 2g
æ ö÷ç ÷ç ÷ç ÷÷çè ø
ns emKuNénTwkCnliceRkaydMubøúkebtug
M emKuNbrimaNFaTwk
q brimaNFaTwkrt;tamTVarTwkmYy²
3
m
,
sm
0H H
1P
P
0E
8D
haJ
basPhaJ
basH
0J
basL
bøúkTI1 bøúkTI2
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 38	
lMhat;KMrU GMBIsMNg;Farasa®sþ
KMnUsbMRBYjGMBIsMNg;bBa¢ÚlTwk ¬ BMnUHkat; A – A ¦
H=2.24m
10.0265
h =2.04
0.2m
9.8265
10.5865
xagmux xageRkay
TVaTwk
eCIgeTxageRkaysMNg;
1.5m 1.5m
tYsMNg;
tYsMNg;
dgEdk
pøÚvLanebIkbr
bnÞÞÞÞÞHebtugGaem
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 39	
maxQ = ε × φ × B 2gZ
edIm,IsikSaGMBiMsMNg;Farsa®sþcaM)ac;RtUvsÁas;smμtikmμ ³
-sikSaGMBIemkanicdIedIm,IrkTMhMRKwHrkCMrabTwkkñúgdIrkRbePTdIRTRKwHEdlCaersIusþg;rbs;dI ¬ ÉksaremkanicdI¦
- sikSaGMBIdæanelxa ¬tUb:Ul¦edIm,IrkkUteGay)anc,as;las;mun nigeFIVkarsagsg; . ¬ ÉksartUb:Ul ¦
- BinitüemIlÉksar nigr)aykarN¾rbs;GIuRdUlItEdlTak;Tg nigbBaðaCMrabrbs;Twk eCIgeTrRbEvg)atRbEvg
kMrslx½NÐxagelImuxkat;FarTwknigeRKÓgbgÁMúepSg²rbs;sMNg; . ¬ ÉksarGIuRdUlik ¦
dMeNaHRsayGMBIlMhat;sMNg;Farasa®sþsikSakUdTwkxagmuxsMNg;eGay)anc,as;las; .
-sikSaGMBIrUbmnþEdlRtUvykeTAGnuvtþn_
- sikSaGMBITTwgrgVHpøÚvTwkEdlhUrecj
-sikSaGMBIkMhat;bg;énclnaTwkEdlkkitCamYynigCBa¢aMgCamYy nigTVaTwknigGMBIepSg²xøHdUcCaRckcUl
nigRckecjrbs;clnaTwk
-sikSaGMBIRbEvgclnaTwkEdlmanlkçN³keRBa¢alxøaMgenAEpñkxageRkaysMNg; edIm,IecosvagkMueGayman
PaBeRcaHdac;eTAelIsac;ebtugnigEpñkxageRkamrbs;sMNg;
-TaMgenHKWsikSanUvemeronGIuRdUlIt .
tamrUbmnþRtUvykeTAeRbI
sMKal;
Q brimaNFaTwkEdlRtUvhUrecjGMBIrgVHTVaTwk
ε emKuNEdlclnaTwkrt;cUleTArkrgVHTVaTwk
emKuNel,ÓnTwkEdlRtUvrt;cUlsMNg;FarTwk
ε = 1
 0.95 
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 40	
3
2
0.714
B = = 7.69m
0.4×1× 2×9.81(0.14)
7.19
7.05
5.75
5.045
5.05 5.55
P
B KWCaTTwgénrgVHpøÚvTwkhUr
g =9.81m/s
Z =Max mux– Max xageRkay
rkTTwgFarTwk B
B=8m
edayeFVIkareRbobeFobrvagbrimaNFarTwkbegðórecj
Qbegðór =0.4 x 8 x √9.81x 2 = 0.72 m3
/s
Q brimaNFarTwkbegðórcaM)ac;=- 0.714m3
/s
dUcenH
Q = 0.72m3/s > Q = 0.714m3
/s
karkMNt;sMNg;begðórrbs;eRKagsMNg;
r)aMeXOnTI2
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 41	
kMNt;rkCMerAs,WtenAeBlTwkhUrecj
q brimaNFarTwk 1Éktþam2
/s
j emKuNelÓncrnþTwkrYm φ = 0.98
kMNt;rkCMerAs,WtenAeBlTwkhUrecj
q brimaNFarTwk 1 Éktþa m2
/s
φ emKuNel,ÓncrnþTwkrYm
tamkarkMnt;kñúgtarag '
cq & h edayGnuvtþn_tamrUbmnþ ¬A¦xagelIeK)an
'
ch ,(m) 0.016 0.018 0.020 0.025
 2
q m /s 0.082 0.092 0.102 0.127
tamrUbmnþ ¬A¦eyIgGacrkhc'',(m)
2 '
cq = 0.089 m /s h = 0.071
dUcenHkMBs;énPaBke®Ba¢alman
' 2
c
' 3
c
h 8q
hc'' = ( 1 + - 1 )
2 g(h )
2
''
c 3
0.017 8×(0.089)
h = ( 1 + - 1 ) = 0.299m
2 9.81(0.017)
edayeyIgkMNt;r)aMgeXOnmankMBs; h= 0.3m EdlCar)(aMgeXOnTI2 eK)an
2
g = 9.81 m/s
2
o
α
H = H +
2g

2
7.19 7.05 (0.63)
0.16
2 9.81
m
x
   
7.05 5.045
P= - = 2.005m 
' '
c o c
o
2
q = φ × h × 2g(P+H -h )
φ = 0.89 , P = 0.3 m , H = 0.05m
Q 0.714
q = = = 0.1785 m /s
B 4
' '
c o cq = φ × h × 2g(P+H +h ) (A)
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 42	
 ''
c
min
k×h = 1.2×0.113=0.136
h = 0.5m
B rgVHr)aMg = 4m
TMnak;TMng '
cq & h kMNt;xageRkam
'
ch ,m 0.03 0.04 0.05 0.1 0.2
2
q ( m /s ) 0.073 0.168 0.203 0.217 0.336
tamlTæplkñúgtarageyIg)an
kMBs;ke®Ba¢al
' 2
'' c
c ' 3
c
2
3
h 8×q
h = ( 1+ - 1 ) = 0.113m
2 g×(h )
0.045 8×(0.178)
= ( 1+ - 1 ) = 0.113m
2 g×(0.045)
tamkarepÞógpÞat;
''
min ch > k × h BitCaRtwmRtUvkarkMNt;kMralx½NÐxageRkaysMNg;begðórRbEvgPaBke®Ba¢al ¬Lers ¦
'' '
c clres = 2.5 ( 1.9 h - h )
= 2.5 ( 1.9 × 0.113 - 0.045 ) = 0.424m
lres= 0.424m lres=0.5
RbEvgkUnGag ¬Lb ¦
EteyIgrk
RbEvgkMralbnþGMBIkUnGag
karkMNt;CMerAEdlsuIrUgxageRkaysMNg;
2 '
cq = 0.178 m /s h = 0.04m
bL =1.25 ×lres =1.25×0.5 =0.625m
bL =1m
'
res resL =2.5 ×L =2.5 ×0.5 =1.25m
1.2R
o
q
H =K×
V
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 43	
edaykarKNnaCMralTwkxageRkamsMNg;Farsa®sþ
sMKal;
1....8 kMNt;elxerogEdlmanenAeRkamsMNg;
 sBaØaRBYjéncrnþTwk
So b RbEvgCMerARKwHEdlRtUvmanGMBICMrabTwk ,m
Tak kMras;dIEdlCaMTwk ,m
taragsþIGMBIRbEvgskmμxagesMNg;
rkRkadüg;énCMrabtamrUbmnþ
 Rkadüg;
LAB RbEvgsrubénCMrabTwkcab;BicMnuc 1 dl;cMnuc TI 8
H kMBs;EpñkmuxsMNg;¬ m ¦
Rkadüg;EdlTwkpulecjrUbmnþ
Lo / So >5.0 5.03.4 3.41.0 1.00
T skmμ 0.5Lo 2.5 So 0.8S0 0.5So 0.5 So 0.3So
8.8m
7.4m
1.2m
0.2m
1.2oS m
2.24H m 7.7865
6.9745
7.5745
10.5865
Ta
ែខ ពីេយសូវែម៉្រត
10.0265
sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr
Hydraulic	 dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura:	 TMB½r 44	
 pul '
o
b
=
S

More Related Content

What's hot

Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
Chhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
Chhay Teng
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Chhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
Chhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
Chhay Teng
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
Chhay Teng
 
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
Open Source Consulting
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
Chhay Teng
 
15. beam analysis using the stiffness method
15. beam analysis using the stiffness method15. beam analysis using the stiffness method
15. beam analysis using the stiffness method
Chhay Teng
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdoc
Chhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
Chhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
Chhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
Chhay Teng
 
Roof preparation
Roof preparationRoof preparation
Roof preparation
Chhay Teng
 
Lab Batch Reactors
Lab Batch ReactorsLab Batch Reactors
Lab Batch Reactors
TAMUK
 

What's hot (15)

Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
[Atlassian meets dev ops and itsm] Building organization and collaboration cu...
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
 
15. beam analysis using the stiffness method
15. beam analysis using the stiffness method15. beam analysis using the stiffness method
15. beam analysis using the stiffness method
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdoc
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
Roof preparation
Roof preparationRoof preparation
Roof preparation
 
Lab Batch Reactors
Lab Batch ReactorsLab Batch Reactors
Lab Batch Reactors
 

Similar to Assignment fluid year 3

Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
Chhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
Chhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
Chhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
Chhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
Chhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
Chhay Teng
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10
Chhay Teng
 
4.compression members
4.compression members4.compression members
4.compression members
Chhay Teng
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
Chhay Teng
 
8. deflection
8. deflection8. deflection
8. deflection
Chhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
Chhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
Chhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
Chhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
Chhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
Chhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
Chhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
Chhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
Chhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
Chhay Teng
 
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលីប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
ខ្មែរមហានគរ
 

Similar to Assignment fluid year 3 (20)

Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10
 
4.compression members
4.compression members4.compression members
4.compression members
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
8. deflection
8. deflection8. deflection
8. deflection
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលីប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
ប្រវត្តិសាស្ត្រ​កម្ពុជាប្រជាធិបតេយ្យ (1975 1979) និពន្ធ​ដោយ​លោក ឌី ខាំបូលី
 

More from Thim Mengly(ម៉េងលី,孟李)

Matlab commands
Matlab commandsMatlab commands
Introduction to-matlab
Introduction to-matlabIntroduction to-matlab
Matlab by Prof.Keang Sè Pouv
Matlab by Prof.Keang Sè PouvMatlab by Prof.Keang Sè Pouv
Matlab by Prof.Keang Sè Pouv
Thim Mengly(ម៉េងលី,孟李)
 
fluid khmer-Chapter 4
fluid khmer-Chapter 4fluid khmer-Chapter 4
ក្រប់គ្រងសំណង់
ក្រប់គ្រងសំណង់ក្រប់គ្រងសំណង់
ក្រប់គ្រងសំណង់
Thim Mengly(ម៉េងលី,孟李)
 
Math cad lesson etc by Sok Raksmey
Math cad lesson etc by Sok RaksmeyMath cad lesson etc by Sok Raksmey
Math cad lesson etc by Sok Raksmey
Thim Mengly(ម៉េងលី,孟李)
 
ប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun senប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun sen
Thim Mengly(ម៉េងលី,孟李)
 
ប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun senប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun sen
Thim Mengly(ម៉េងលី,孟李)
 
ស្រីហិតោបទេស​១
ស្រីហិតោបទេស​១ស្រីហិតោបទេស​១
ស្រីហិតោបទេស​១
Thim Mengly(ម៉េងលី,孟李)
 
Report of Visit Internship
Report of Visit Internship Report of Visit Internship
Report of Visit Internship
Thim Mengly(ម៉េងលី,孟李)
 
Important Comment used in AutoCAD 2D Khmer Guide
Important Comment used in AutoCAD 2D Khmer Guide Important Comment used in AutoCAD 2D Khmer Guide
Important Comment used in AutoCAD 2D Khmer Guide
Thim Mengly(ម៉េងលី,孟李)
 
Traveaux Pratique Topographie à l'ITC-I3-GRU32
Traveaux Pratique Topographie à l'ITC-I3-GRU32Traveaux Pratique Topographie à l'ITC-I3-GRU32
Traveaux Pratique Topographie à l'ITC-I3-GRU32
Thim Mengly(ម៉េងលី,孟李)
 
Résistance des Matérieaux
Résistance des Matérieaux Résistance des Matérieaux
Résistance des Matérieaux
Thim Mengly(ម៉េងលី,孟李)
 
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Thim Mengly(ម៉េងលី,孟李)
 
Earth dam design and protection new
Earth dam design and protection newEarth dam design and protection new
Earth dam design and protection new
Thim Mengly(ម៉េងលី,孟李)
 
Hydrological modelling i5
Hydrological modelling i5Hydrological modelling i5
Hydrological modelling i5
Thim Mengly(ម៉េងលី,孟李)
 
បណ្តាយទឹកក្នុងអគារ Installation sanitaire
បណ្តាយទឹកក្នុងអគារ Installation sanitaireបណ្តាយទឹកក្នុងអគារ Installation sanitaire
បណ្តាយទឹកក្នុងអគារ Installation sanitaire
Thim Mengly(ម៉េងលី,孟李)
 
Analyse de structure i4
Analyse de structure i4Analyse de structure i4

More from Thim Mengly(ម៉េងលី,孟李) (20)

Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to-matlab
Introduction to-matlabIntroduction to-matlab
Introduction to-matlab
 
Matlab by Prof.Keang Sè Pouv
Matlab by Prof.Keang Sè PouvMatlab by Prof.Keang Sè Pouv
Matlab by Prof.Keang Sè Pouv
 
fluid khmer-Chapter6
fluid khmer-Chapter6fluid khmer-Chapter6
fluid khmer-Chapter6
 
fluid khmer-Chapter 4
fluid khmer-Chapter 4fluid khmer-Chapter 4
fluid khmer-Chapter 4
 
ក្រប់គ្រងសំណង់
ក្រប់គ្រងសំណង់ក្រប់គ្រងសំណង់
ក្រប់គ្រងសំណង់
 
Math cad lesson etc by Sok Raksmey
Math cad lesson etc by Sok RaksmeyMath cad lesson etc by Sok Raksmey
Math cad lesson etc by Sok Raksmey
 
ប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun senប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun sen
 
ប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun senប្រវត្តិសម្តេចHun sen
ប្រវត្តិសម្តេចHun sen
 
ស្រីហិតោបទេស​១
ស្រីហិតោបទេស​១ស្រីហិតោបទេស​១
ស្រីហិតោបទេស​១
 
Report of Visit Internship
Report of Visit Internship Report of Visit Internship
Report of Visit Internship
 
Important Comment used in AutoCAD 2D Khmer Guide
Important Comment used in AutoCAD 2D Khmer Guide Important Comment used in AutoCAD 2D Khmer Guide
Important Comment used in AutoCAD 2D Khmer Guide
 
Traveaux Pratique Topographie à l'ITC-I3-GRU32
Traveaux Pratique Topographie à l'ITC-I3-GRU32Traveaux Pratique Topographie à l'ITC-I3-GRU32
Traveaux Pratique Topographie à l'ITC-I3-GRU32
 
Résistance des Matérieaux
Résistance des Matérieaux Résistance des Matérieaux
Résistance des Matérieaux
 
Projet irrigation-samras
Projet irrigation-samrasProjet irrigation-samras
Projet irrigation-samras
 
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
Project Of Irrigation at Stoeung Chhinit, Kg.Thom, KHmer
 
Earth dam design and protection new
Earth dam design and protection newEarth dam design and protection new
Earth dam design and protection new
 
Hydrological modelling i5
Hydrological modelling i5Hydrological modelling i5
Hydrological modelling i5
 
បណ្តាយទឹកក្នុងអគារ Installation sanitaire
បណ្តាយទឹកក្នុងអគារ Installation sanitaireបណ្តាយទឹកក្នុងអគារ Installation sanitaire
បណ្តាយទឹកក្នុងអគារ Installation sanitaire
 
Analyse de structure i4
Analyse de structure i4Analyse de structure i4
Analyse de structure i4
 

Recently uploaded

Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
Introduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptxIntroduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptx
MiscAnnoy1
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
architagupta876
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
Mahmoud Morsy
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
Madan Karki
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 

Recently uploaded (20)

Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
Introduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptxIntroduction to AI Safety (public presentation).pptx
Introduction to AI Safety (public presentation).pptx
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
Certificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi AhmedCertificates - Mahmoud Mohamed Moursi Ahmed
Certificates - Mahmoud Mohamed Moursi Ahmed
 
Seminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptxSeminar on Distillation study-mafia.pptx
Seminar on Distillation study-mafia.pptx
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 

Assignment fluid year 3

  • 1. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 1 ω ε = Ω 3 m Q = εφω 2gH , s Q = μω 2gH μ = ε × φ =0.6 0.62 ε φ ω H A ω emKuNénrnæEdlRtUvbeB©jTwk 0.8eTA 0.9 kkitedayel,ÓnTwk 0.8eTA 0.9 muxkat;rnæbeBa©jTwk 0.8eTA 0.9 muxkMBs;Twk ;rn 0.8eTA 0.9 muxCaTUeTAeKyktMélrbs; µ = 0.6 eTA 0.9 ɛ = 0.62 eTA0.64 φ = 0.97 2 αν 2g 1 Z 2 rMhUrqøgkat;rnæ nigeRkamTVaTwk
  • 2. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 2 a kMBs;TVaTwkebIk ,m cth kMBs;Twks,Wt ,m cth'' kMBs;Twks¶b;xageRkay ,m cth =ε'×a 1 ct j a x = +å emKuNel,Ón 0.95 0.97j =  a H 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 ε' 0.615 0.618 0.620 0.625 0.628 0.628 0.638 0.638 0.645 0.650 0.650 0.650 0.690 0.705 2 0 α2J H = H + , m 2g rUbTI1 cth cth'' H 0H 0J cth TVVVVVVVVVaTwk xagmux H rUbTI2 taragbgðajGMBIε' cth H 0H 0J a 2h 2J 2 2 g a J rlkTwkxageRkay h av
  • 3. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 3 B rgVHTwk ,m rUbmnþ b )atRbLay ,m m eCIget H kMBs;Twk , m N PaBeRKImrbs;TMr ,mm DkMBs;bMrug ,m rUbmnþTUeTA edIm,IeGaymuxkat;RbLaymanlk<N³smRsbeKeRbIrUbmnþ 3 0 ct mQ = φ × ε' × a × b × 2g(H -h ) , s a kMBs;TVaTwkEdlebIk , m b TTwgTVaTwk , m ε' emKuNénpleFobkarebIkTVaTwk H0 kMBs;Twkxagmux ,m Hct kMBs;TwkxageRkayTVa x Gab;sIuelanPaBkkit n n B b H m h a´ ´ D 2 2 2 1 21 6 32 2 1 3 3 2 ω = bh + mh = (b+mh)h P = b + 2h 1+m ω ( b + mh ) R = = P b+2h 1+m 1 tgθ = m a m = Cotg = h Q = ω × J = ω × c R 1 1 = R × R × = × R × × ω n n 1 mQ = × R × , sn i i i i b β = h
  • 4. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 4 cMNaM J > 0.5 eTA 0.6 m/s rt;kñúgRbLaykñúgkrNIEdlel,Ónrt;kñúgmanbBaðaBIrKW J eRcaHdac; = KQ0.1 kkpk; mmA = 0.33 , ω < 1.5 mmA = 0.44 , ω = 1.5 35 s mmA = 0.55 , ω > 3.5 s s  K emKuNeRcaHdac; Q brimaNFaTwkkúñgRbLay m3 /s W el,ÓnFøak;cuHRKab;dI mm/s lkçx½NÐ rMhUrqøgkat;rgVHragRtIekaN J = AQ0.2 J kkPk < J < J eRcaHdac; ( el,Ónrt;kñúgRbLay) Q h P B b z 32.5 mQ = 1.14h , s
  • 5. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 5 sMKal; H kMBs;Twk , m D Ggát;p©itrbs;rnæ ,mm ctω RkLaépÞrbs;vtßúravkkit ,m2 ωRkLaépÞ rnæ EdlehAfarMhUrqøgkat;rnæ KWCaclnaTwkEdlrt;ecjtam RbehagRbeLaHhUrecjeTAeRkA edayb:HCamYy briyakas; rWb:HCamYynwgvtßúravxøÜnÉg . ]TahrN_ GagsþúkTwk TVaTwk .l. Hydrolic CMBUkTI1 rMhUrrbs;vtßúravqøgkat;rnæ c c atmP H A A o d ctω ωbriyakas; (NUey)
  • 6. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 6 eRbIsMrabépÞFM eRbIsMrabépÞtUc 3 mQ = s m emKuNbrimaNFaTwk ωmuxkat;épÞTwk m2 H0 kMBs;TwklMeHogedayEpñk ,m g = 9.81m/s2 rUbmnþ 1 rMhUrvtßúravqøgkCBa¢aMgesþIgEdlmankMBs;Twkefr tamsmIkar Bernoulli BI AA eTA CC 2 2 o 0 0 c P.C P α J αJ tP H + + = 0 + + + h g 2g 2g 2gr P0 sm<aFxageRkARtg; AA P sm<aFxagkñúgRtg; CC 0J el,ÓnTwkrt;BIépÞb:HxagelImkrnrnæ ,m/s ctJ el,Ónecjrnæ m/s P.Ch kMhatbg; ,m e m.p e R 100 0.6 R > 100000 μ = 0.60 0.62 ε = 0.62 0.64 φ = 0.97 x£  =    2 0 0 0 0H H + + 2 P P g g a J r - = 2 ct 0H ( ) 2g J a x= +S 0 3 Ω H H Ω 4ω < 15% ω = 1% 5ω mQ = μω 2gh , s  ³  W  W ³  snμt; 1 =j a x+S ct 0= 2gHJ j 0Q = μω 2gH Q = μω 2gH c c atm 0P = P H A A o 0H ctω ctJ
  • 7. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 7 kñúgkrNIEdl 0 atm 2 0 0 0 0 0 P = P = P α H = H+ 2g H = H Q = J J W W muxkat;rbs;épÞTwkénGag 2 0 2 2 2 0 μω 2ghα Q Q = μω 2g(H+ ) or Q = 2gΩ ω 1-μ α Ω cMeBaH 0 3 Ω H H Ω 4ω < 15% ω = 1% 5ω mQ = μω 2gh , s  ³  W  W ³  eKdwgfaemKuNénkarkkitRtg;Rckecj ε , φ Gnuvtþn_tamlkçN³ e 2gh R , = 2ghJ n = dUcenH e m.p e R 100 0.6 R > 100000 μ = 0.60 0.62 ε = 0.62 0.64 x£  =    (emKuNrbs;el,ÓnTwk )
  • 8. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 8 rUbmnþ cth = ε' × a a kMBs;ebIkTVaTwk ,m ε' emKuNkkitrvagTwkCamYyTVaTwk cth kMBs;TwkEdles,WtRtg;cMnucEdlTabCageK ,m rMhUrqøgkat;TVaTwk H haJ a 0J a cth 2 0 2g aJatmP ah J Up Down haJ kMBs;Twks¶b;xageRkayTVaTwk , m a kMBs;ebIkTVaTwk , m 0J el,ÓnTwkxagmuxTVaTwk ,m H kMBs;TwkxagmuxTVaTwk ,m 0H kMBs;TwklMeGogedayEPñk ,m cth kMBs;TwkkkitenARtg;Rckecj,m hz kMBs;TwkenAEk,rTVaTwk ,m 2J el,ÓnTwkenAeRkayTVaTwk m/s H 0H a ctJ zh 2J 0J zh haJ= 2 21 1 b cth
  • 9. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 9 cMeBaHel,ÓnTwkrt;xageRkamTVaTwk ct 0 ctφ 2g(H -h )J = nigbrimaNFaTwk ct ct 0 ctQ = ω = ε'×a×b×φ 2g(H -h )ctJ´ sMKal; b TTwgTVaTwk , m dUcenH 3 ct 0 ct mQ = φ × ε' × a × b 2g(H -h ) , s 2 0 0 ct 1 H = H ,m , φ = 2 α +Σξg aJ + emKuNrbs;el,Ón cMeBaH φ = 0.95 eTA 0.97 bRgYmmkvijeKGacsresr ε' × φ = μ emKuNrbs;brimaNFarTwkhUreRkamTVaTwk 3 ct 0 ct mQ = μ × a × b × 2h(H -h ) , s lkçN³edNUey (mincal;) 3 ct 0 ct mQ = μ × a × b × 2h(H -h ) , s lkçN³NUey (mincal;eRkay) a H 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 ε' 0.615 0.618 0.620 0.622 0.625 0.628 0.630 0.638 0.645 0.650 0.660 0.675 0.690 0.705 ctha rUbPaBebIkTVaTwk kñúgkarGnuvtþn_ε' = 0.64 taragbgðajGMBItMél
  • 10. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 10 CMBUkTI 2 rMhUrÉksNæanenAkñúgépÞTwkcMh α a 2 1α 2g J 1P gr 1Z i  h = const 2 2α 2g J 2P gr 2Z pc lh = h L 'L sMKal; p lI = I CMralrbs;épÞTwk i CMral)atRbLay 2 α 2g J famBlsIuenTic ,m 1 2P P , g gr r famBlsMBaF ,m 1 2Z , Z famBlbU:tgEsül ,m h kMBs;Twkefr,m 'a mMulMgak L RbevgbeNþayRbLay L' RbevgbeNþayRbLay ,m p lh = h kMhatbg;tambeNþayRbLay,m
  • 11. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 11 1 brimaNFaTwkefr ( Q = Const ) 2 kMBs;TwkesμIKñaRKb;cMNuc h = Const efr 3 TwkeLIgcuHtamlkçN³esrI 4 )atRbLaymanCMrali > 0 , i = Sinα = Const 5 CBa¢aMRbLaymanPaBeRKImefr n = Const 6 bBaðaepSg²EdlmanGMeBIvaRtUvmin)anKit rUbmnþGnuvtþn_ 2 ω = Const ,m muxkat;RbLay X = P = Const , m brimaNRbLay R kaMrsμIGIuRdUlik ω R = ,m P IP = IL //i CMralépÞTwkRsbCamYyCMral)atRbLay h kMBs;TwkkñúgRbLayefrCanic© ,m = c RiJ el,ÓnmFüm m/s eday i = I 3 Q = ωc Ri or mQ = k i , s rUnmnþrbs;elak CHEZY k = ωc R C emKuNrbs;el,Ón R kaMGIuRdUlik , m ωmuxkat;RbLay k emKuNbrimaNFaTwk i = I = 1 I lkç½NÐ rMhUrÉksNæan
  • 12. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 12 D B b m=1.5 H 0H BMnuHkat;AA sMKal; b )atRbLay ,m B rgVHmat;RbLay ,m D kMBs;suvtßiPaB , m (0.2 eTA 2m ) GaRs½yFaTwk 3 mQ = s m= 1.5 nig m=1 CaCMraleCIgeTrkñúgnigeRkAénRbLay h kMBs;TwkkñúgRbLayRtg;muxkat;NamYy ,m H = h + Δ ,m A A m=1 m=1.5
  • 13. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 13 II rUbmnþsMrab;KNnaemKuN Chezy nigemKuNénPaBeRKImrbs;RbLay 0.5y1 mC = R , (Pavlovski) sn n PaBeRKImrbs;RbLay R kaMGIuRdUlik,m y s½VyKuN y = 2.5 n - 0.13 - 0.75 R( n-0.10) y = 1.5 n cMeBaH R < 1m y = 1.3 n cMeBaH R > 1m kúñgkrNI n = 0.009 eTA 0.040  R=0.1 eTA 3m c = 4 2g (k+lgR) 0.51 mc = + 17.72lgR , sn 0.51/61 m** c = R , Manning sn (enAelITIpSareKniymeRbICaCnCatiGg;eKøs) 2/3 1/21 m= R × i , sn J emKuNénPaBeRKImeRcInRbePT ( ) 1/2N 2 i i 1 equiralent 1/2 x n n = x é ù ê ú ê úë û å sMKal; xi kMras;énPaBeRKImnimYy ,m ni RKab;dInimYYy² ,m rUbmnþenHbgðajGMBImuxkarRbLayragctuekaNBañaynig)ar:abUlik Agroskine
  • 14. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 14   h H D B a θ b sMKal; b TTwg)atRbLay ,m m. eCIgeTxagkñúgRbLay,m h kMBs;TwkkñúgRbLay,m D kMBs;suvtßiPaB,m w RkLaépÞRbLay,m 2 ω = bh + mh = (b+mh)h P brimaRtrbs;RbLay,m B rgVHTwkxagelI,m H = h´DkMBs;Twksurb,m θ mMulMgak;rbs;RbLay a m = cotgθ = ,m=0 h 2 2 P = b+2h 1+m or P=b+m'h m' = 2 1+m R kaMGIuRdUlik ,m 2 ω bh+mh R = = P b+m'h edUm,IeGayrUbragRbLayctuekaNBañaymanlkçN³l¥RbesIrKWeKRtUvGnuvtþrUbm nþ 0 2 0 m hb β = and δ = h b+mh m = m' - m = 2 1+m - m B = b + 2mh rUbmnþ)ar:abUlik
  • 15. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 15 muxkat; Q = k i RbEvgbrimaRtesIm x = P 2τ(1+2τ)+ln( 2τ+ 1+2τ) ω 2Bh R = = x 2PN é ù ê úë û EdltMél N man N = 2τ(1+2τ) + ln( 2τ+ 1+2τ) kúñgkrNI B h³ eK)an x B rUbmnþbgðajmuxkat;RbLayragctuekaNBñay nig)ar:abUlik   B D H b   P 2 θ h H A B x y rUbmnþ x2 =2Py P)ar:Em:Rtrbs;)ar:abUlik H CMerATwk ,m H = h+D ,m B rgVHmat;elI ,m D kMBs;bMrug ,m h τ- P CMerATwkR)akd 1 m- 2τ CMerArbs;épÞTwk 2 ω = B×h ,m B = b ,m P = B ,m ω B×h R = = = h ,m P B
  • 16. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 16 taragbgðajGMBIemKuNeCIgeTr RbePTdI ,m m dIdæ 1 eTA 1.25 dIl,aydIdæ 1.25 eTA 1.50 dIl,ayxSac; 1.50 eTA 1.75 dIxSac;suTæ 1.70 eTA 2.25 cMNaM muxkat;)atRbLay b = 0.4m CatMélGb,brima ( Minivaum ) eKGacKNnatamviFImü:ageTot rbs; RbLayeRsacRsBtamlkçx½NÐrbs;elak Ghirshkan cMeBaHtMélDvijKWRtUvGnuvtþtamsþg;darUsSI 3 mQ s ,mD <1 0.25 1 eTA 10 0.4 10 eTA 30 0.5 >30 0.6 sikSaGMBIlkçx½NÐénel,ÓnTwk m, s J mankrNI2y:agKW J eRcaHdac; nig J kkPk; . rUbmnþtamlkçx½NÐ afJ J£ el,ÓneRcaHdac; J el,ÓnFmμtarbs;TwkkñúgRbLay ,m/s 0.1 af = kQJ K emKuNénel,ÓneRcaHdac; 3 4 h = (0.7 1.0) Q β = 3 Q - m B = ( 3 5 ) Q  
  • 17. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 17 rUbmnþbgðajGMBImuxkat;RbLayragctuekaNBñay nig)ar:abUlik RbePTdI K dIdæ 0.75 dIdæsuTæ 0.85 dIl,ayxSac; 0.53 dImemak 0.57 eTA 0.68 rUbmnþrbs;el,ÓnkkPk; 0.2 an = AQ ,m sJJ A emKuNénel,ÓnmFümRKab;dIEdlFøak;cuHeTAkñúg)atRbLay mmA = 0.33 w < 1.5 s mmA = 0.44 w = 3.5 s mmA = 0.55 w >3.5 s    WrYm = ( Σw tamEpñkP)/100 Q × k = = α τ ´k wS el,ÓnRKab;dIepSg²Føak;cuHmm/s Pi PaKryénRKab;epSg² Q = k i
  • 18. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 18 V < gh 1rF < r V > gh F 1> cariklkçN³rbs;RbLaycMhman 4FM² 1 Stationary V = 0 Fr ( froud ) = 0 2 Subcritical 3 Studding ware flout 4 Super critical Critical Flow
  • 19. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 19 - Vc Velocity critical ,m/s - H Hydraulic depth ,m - G 9.81 m/s2 - Fr Froude umber rMhUrminÉksNæan eKGacniyayfarMhUrclnavtßúravkñúgRbLaycMhminÉksNæanKW - CMral)at I i¹ CMralrbs;épÞTwk - H CakMlBs;TwkERbRbYlenAkñúgRbLay - CMerAekIneLIgtamTisedAénclnavtßúrav - CMerAfycuHtamTisedApÞúyénclnavtßúrav Vc Fr = = 1 gh begÁa h 0i > ExSekagrWm:U (l,akTwkekInrYcFøakcuH) ExSekagedRKuy ( l,ak;TwkFøak ) a 0i >  a) TwsedATwkRsktamCMral)at  b) i=0 TwsedATwkRsbtamCMral)at a 0i < c) TwsedATwkpÞúyBICMral
  • 20. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 20 rUbmnþEdlRtUveRbIKW 0 0 0 0 0 0Q = ω c R i = k i sMKal; 0 0 0 0ω , c , i , R CatMélEdlRtUv h = h0 sMrab; 1) i0 = i TisedARsb 2) i0 = i TisedARsbtMélviC¢man 3) i0 < i TisedApÞúy( KitkñúgtMéldac;xat) eKeRbIkMNt;brimaNFaTwkQ’ tamclnaTisedATwki0 > 0 . bB¢ak; ³ Q’CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;beNþayRbLayeQñaH ( edb‘IhVicTis ) . KMnUsbMRBYjrbs;épÞdIeRsacRsB * muxkat; ED = F1 ,ha * muxkat; DC = F1+F2 ,ha * muxkat; CB = F1+F2 + F3 ,ha * muxkat; BA = F1+F2 + F3+ F4 ,ha RbPBTwk 4F 3F 2F 1F D B C E 2h 2h 3h BMnuHkat;beNþaysMng;Farasa®sþ
  • 21. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 21 rUbmnþEdlbB¢ak;GMBIclnaTwkKW 2 cin3 αQ B = P = 1 gω sMKal; cinP )ar:aEm:RtsIueNTic α emKuNkUrIyUlIs 1.0 eTA 1.01 Q brimaNFaTwkrt;kñúgRbLay m3 /s bB¢ak; Q’ CabrimaNFaTwkRtg;cMNucNamYyEdleyIgRtUvsÁal;tambeNþayRbLayeQμaH ( edb‘ÍhVicTis ) B rgVHxagelIrbs;RbLay ,m ω RkLaépÞRtg;muxkat;tamcMnucnimYy² snμt;cMeBaHrbbrMhUr cinP > 1 rMhUrtUr:g;Esül ( rMhUr Turbulence ) Twktic cinP = 1 Downtream rMhURRKITic cinP < 1 rMhUrPøúyvIy:al ( rMhUr Laminar )TwkCn b B rUbCamYyKña nigrUbelIsþaMEdrenHemIlkat;TTwg .
  • 22. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 22 P CMerArbs;r)aMgxageRkay ,m haJ kMBs;Twks¶b;xageRkaysMNg;begðór ,m Z kMBs;eFobrvagnIvUTwkxageRkaysMNg;,m b rgVHTwkhUr ,m B muxkat;RbLayxagelI ,m CMBUkTI3 rMhUrqøgkat;sMNg;begðór sMKal; P1 kMBs;r)aMgrbs;sMNg;begðór ,m l’ 3 eTA 5 dgén H 0J el,ÓnTwkhUrxagmuxsMNg;begðór , m/s S kMBs;rbs;r)aMg,m 1 cMNat;fñak;rbs;sMNgbegðór sMNg;begðórmanEckCaeRcIny:agKW a. sMNg;begðórmanCBa¢aMgesþIg P Z h a J 1P 0J  H Q V H S l D ow ntream BMnuHkat;beNþaysMNg;begðór
  • 23. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 23 H0H e 1P 0V S xül; P avh 2 0 2 v g a l = 3 5m for H lkçx½NÐ -S < 0.5H - 2 0 0 αr H = H + , 2g m b. sMNg;begðórr)aMgRkas; C. sMNg;begðórsßitkñúglkçN³Fmμta 0H H 0J J P h haJ her l S 2H < S < 10H haJ P 1P H0H l S 2 0 2g aJ 2 0 2g aJ P 0H H haJ 1P Sl 0.5H < S < 2H
  • 24. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 24 ctuekaNEkg ctuekaNBñay RtIekaN rgVg; H P 0J 0J d. rgVHrMHUrrbs;sMNg;begðór e. sMNg;begðórragekag f. rgVHsMNg;begðórRtg; g. rgVHsMng;begðórbBaäit H P P H H P 0J 0H 1P P r 0 2g aJ cthl S rlkTwkxμÜlsμaj; r kaMrgVg;
  • 25. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 25 h. rgVHsMNg;begðórLaetral; i. rgVHsMNg;begðórxusFmμta sMNg;begðórBhuekaN sMNg;begðórragekag sMNg;begðórmat;ragmUl 0J 0J 0J 0J 0J
  • 26. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 26 mankarkkittic B=b mankarkkitxøaMg B > b 2 cMNat;fñak; énsMNg;begðór EdlrMhUrmanlkçN³ceg¥ót niglkçN³TUlay 3 RbePTrMhUrrbs;Twk rUbmnþ 3/2 0Q = mb 2gH sMrab;rMhUredNUey m emKuNbrimaNFaTwk b rgVHsMng;begðór ,m 2 0 0 α H = H + ,m 2g J TwkxagmuxsMNg;begðór ,m 33/2 n mQ = σ mb 2gH , s ( sMrab;NUey ) nσ < 1 0J B b 0J B b P1P H0H haJ rMhUredNUey 2 0 2g aJ P1P H0H haJ rMhUrNUey 2 0 2g aJ
  • 27. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 27 4.sMNg;begðórragctuekaNEkgRtg;lkçN³edNUeyEdlmanCBa¢aMesIþg 5. sMNg;begðórEdlmanCBa¢aMgesþIgedayragctuekaNEkg a b xül; c 0.27H 3H 0.67H 0.112H 0.22H0.15H0.003H H a a H P h A θ 1θ b P H a B sMrab;RtIekaN 2 3 5 mQ = 1.14H s sMrab;ctuekaNBañy 3 3 5 mQ = 1.86bH s eday b> 3H
  • 28. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 28 0H H 1P P erh h Sl b b Bil TVaTwk 6. sMNg;begðórEdlmanCBa¢aMgRkas; 3 0 mQ = ω × = φ × b × h 2g(H -h) , s J 0 2 h= H 3 or 3 3 2 mQ = mb 2gH , s ( edNUey ) m = 0.35 eTA0.36 cMeBaHsMNg;begðórkñúglkçN³NUey 3 2 3 n 0 n mQ = σ mb 2gH , s b <1 7. sMNg;begðórEdlmanragCaekagCaExSekag 3 2 0Q = mb 2gH m = 0.48 0.49 8. sMNg;BIlEdlfitenAsMNg;begðór
  • 29. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 29 P 2h 2h 1Q 2Q 2h rUbmnþ 3 2 3 0 0 0 mQ = ε m b 2gH , s H ε =1 - a b+H a emKuNrbs;rUbragBil 9 sMNg;begðórLaetral; QLaetral; = mLaetral; x b x 3 2 02gH 3 m, s mLaetral; = 0.25 + 0.167( 2 1 2 H - H cinP ) 2 2 2 cin 2 P gh J = 10>sMNg;begðóreFμjrNa A=0.20 r=0.5t A=0.11 A=0.11 A=0.06 t t t 1b 2b b B n n n B h
  • 30. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 30 3 3 2 0 3 2 0 max mQ = mb 2gH , s Q b = m 2gH h n = (0.25 1.50)h h kMBs;TwkFmμta ,m maxh kMBs;TwkGtibrima ,m n cMnYnrgVH
  • 31. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 31 CMBUkTI 4 rlkTwkeRkaysMNg;begðór I rUbPaBénsMNg;Farasa®sþ rMhUrmanBIry:ag - cr cinh < h and P > 1 rUr:gEsül ( Twktic ) - cr cinh > h and P < 1 PøúyrIy:al; ( TwkCn ) 0J 0H H cth haJ 1P P Upstream Down stream 0J0H H cth haJ 1P P Q
  • 32. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 32 a h cth 2 3 1 2 3 ah J resL a eL J II TRmg;rMhUrrbs;TwkeRkaysMng;Fara®sþ Q rlkTwkbkeRkay Q rlkTwkrt;eTAmux resL RbEvgrlkkeRBa¢akxøaMg ,m a eL J RbEvgrlkmanlkçN³s¶b;bnþicmþg² ,m RbePTénrMhUrrbs;rlkeRkaysMNg;begðór manEckCaeRcIny:agKW 1 rMhUrrlkl¥tex©aHkrNI ' cta = (h" - h ) or a>h' 2 rMhUrrlkTwkCn;krNI a<h a cth' h" h' h' a crh critich ahJ eday crh kMBs;rlkragdUcbUkstVeKa critich kMBs;Twkrlksmrmü ,m haJ kMBs;rlks¶b;enAeRkaysMNg; ,m
  • 33. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 33 cth haJ clnavtßúrav 3 rMhUrrbs;rlkcal;mkeRkay ( rWm:U ) 4 rMhUrCnlicenAxageRkayTVaTwk ( NUey ) 5. rMhUrrbs;rlkCnlicxøaMehIyman]bsKÁ P2 kMllaMgbukb®Ba©asTisrbs;vtßúrav P1 kMlaMgbukRsbTisedArbs;clnavtßúrav G TMnajrbs;vtßúravEdlmanlkçN³Ekgbøg;)atEtmantMéltUc G=0 P2 = P1 = 0 eday i = o cth h'' haJ Kμan]bsKÁ H a=h''-h' 1P h'' G 2P ah J 1 1 Pr
  • 34. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 34 6. rMhUrrlkCnlicxøaMgEtKμan]sKÁkñúglkçN³)atmanragCal,ak; rUbmnþRKwHrMhUrrbs;rlkeRkaysMNg;begðóreKRtUvsÁal;smμtikmμ egQ , h' , h'' , h eday Q brimaNFarTwk ,m3 /s h kMBs;Twks<WtCitTVaTwk h’’ kMBs;TwkenAbnÞab;BI hct ,m hcg kMBs;TwkRtg;TIRbCMuTm¶n; ,m tamkaGnuvtþn_KWRtUvsÁal; 2 cin 3 αQ *** P = × B = 1 gω eday ωmanmuxkat;TwkRtg;kMBs;s,Wt , m2 B rgVHTVaTwk ,m *** kMBs;TwkrlkxageRkaysMNg; ' cin '' cin h' h" = ( 1+8P - 1 ) 2 h'' h' = ( 1+8P - 1 ) 2 ' cinP nig '' cinP Ca)ar:asIuenTicxagmuxkat;rlkxageRkaysMNg;begðór krNI ' cin '' cin h" 2h' P > 3 P > 0.375 ³  *karfykMlaMgrbs;TwkenAeRkaysMNg;begðór b¤ehAfakMhatbg;énkMlaMg rUbmnþ pc (h'' - h') h = ,m 4h'h'' kar)at;bg;famBlrbs;clnavtßúrav enAeRkaysMNg;begðórKW GaRs½yeTA nwgbMErbMrYlénkMBs;TwkxageRkay fitenAkñúglkçN³tUrg;Esül ( J ekInxøaMg ) kMBs;Twktic b¤PøúyrIy:al;EdleGaymankarekIn b¤fyfamBlrbs;Twk .
  • 35. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 35 eday pch kMhatbg;rbs;famBlTwk ,m h' , h'' kMBs;rlkTwkeRkaysMNg; ,m ¼ CaemKuNénkarkat;bnßyrbs;famBlkMhatbg; *vIFIrkRbEvgrkecalenAeRkaysMNg;begðór b¤TVaTwk 1 rlkrMhUrtex©aH resa) l = 2.5 ( 1.9h"-h' ) ,Pavloski GñkR)aCJrkeXIj ' 0.81 res cinb) l = 10.3h'( P - 1 ) Teheraussov GñkR)aCJrkeXIj ' res cinc) l = 4h' 1+2P , Pikalow GñkR)aCJrkeXIj res ' ' cin cin 19 30 d) l = ( 3 + - ) h"-h"Aivasian P P GñkR)aCJrkeXIj tamrUbmnþ a nig e eKeRbIcMeBaH cinP >10 sMrab; d eRbIcMeBaH cin3 < P < 400rIÉRbEvgrlks¶b;vij KWGnuvtþtamrUbmnþ lavr = ( 2.5 eTA 3 ) lres 2 rlkrMhUrCnlic cin cinP <3 or P > 0.375 h" haJ ' cth resl la cJ a h" crh =1.116h" haJ a< ' cth Ptr kMlaMgkkitrbs;TwkCamYy)at P1-P2 kMlaMgsm<aFGIuRdUsþaric KWTwkmanclna dUcenHCaTUeTA ' 3cin ' ct P " ( ) h h h = ' cinh' = h" P krNIEdl ' cinP 1.5< ' resl =10.6h' ( P - 1 )cin
  • 36. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 36 eRkaysMNg;Farasa®sþ EtgEtmanbBaðaekIteLIg nUvTæiBlrbs;rlk EdlkeRBa¢aly:agxøaMgbNþal eGaytYsMNg;manlkçN³swkricrilehIy manlkçN³rMj½r nigenAEpñkcugxageRkaybMput éntYsMNg;manlkçN³sIueRcaH dac; enAxag cug éntYsMNg;enaHedayclnaénvtßúravmineKarBtamlkç½NÐ ' '' '' ct ct ct ah < h but h >> h J eTAvij . dUcenHeyIgRtUvERbRbYlsMNg;xuslkç½NÐeTACasMNg;edayRtUvlkç½NÐeTAvijKW '' ct ah < h J Canic© b¤ a normalh hJ £ rbs;RbLayxageRkay . ' ct ah >> h J sMNg;manlkçN³KμanlMnwg nwgeRcaHdac;EpñkRKwHeRkABIeRBaHkMlaMgrbs;rlkenAmanlkçN³xøaMgdUcenHRtUveFVIeGaysMNg;enHeGayman kMralEvg rWeFIVkUnGag 4 kUnGagCYykat;bnßykMlaMgbukrbsrlkedayGnuvtþn_tameKalkarN_ '' ct a normalh < h hJ = rbs;RbLay ah J cth 1P 0H H 2 0 2g aJ 1 1 2 2 3 3 P '' cth '' cth cth P 0H H sMNg;begðóreFVIGMBIfμlay eCIgkarBarCMrabTwkxagmux sMNg;eFVIGMBIebtugGaem kMral Gagkat;bnßykMlag bukrlkeRkaysMNg; kMralebtugGag bøúkfμ 4 x 6 karBareRcaHdac; xagmuxsMNg;begðór xageRkaysMNg;begðór kMBs;Twk Normal kñúg RbLayeRkaysMNg;begðór normalh
  • 37. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 37 2/3 01 q H = 2nm gs æ ö÷ç ÷ç ÷ç ÷÷çè ø sMKal; arP dMubøúkebtugGaem parL RbEvgEdlRtUvdak;dMubøúk ,m 01H kMBs;Twksrub ,m 2 01 01 1 α h =H + ,m 2g J 01J el,ÓnTwkeRkaysMNg; ,m/s rUbmnþ " par ct 1P = σh - H 2 01 1 0 α H = H - ,m 2g J 2/3 01 g H = m 2g æ ö÷ç ÷ç ÷ç ÷÷çè ø ns emKuNénTwkCnliceRkaydMubøúkebtug M emKuNbrimaNFaTwk q brimaNFaTwkrt;tamTVarTwkmYy² 3 m , sm 0H H 1P P 0E 8D haJ basPhaJ basH 0J basL bøúkTI1 bøúkTI2
  • 38. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 38 lMhat;KMrU GMBIsMNg;Farasa®sþ KMnUsbMRBYjGMBIsMNg;bBa¢ÚlTwk ¬ BMnUHkat; A – A ¦ H=2.24m 10.0265 h =2.04 0.2m 9.8265 10.5865 xagmux xageRkay TVaTwk eCIgeTxageRkaysMNg; 1.5m 1.5m tYsMNg; tYsMNg; dgEdk pøÚvLanebIkbr bnÞÞÞÞÞHebtugGaem
  • 39. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 39 maxQ = ε × φ × B 2gZ edIm,IsikSaGMBiMsMNg;Farsa®sþcaM)ac;RtUvsÁas;smμtikmμ ³ -sikSaGMBIemkanicdIedIm,IrkTMhMRKwHrkCMrabTwkkñúgdIrkRbePTdIRTRKwHEdlCaersIusþg;rbs;dI ¬ ÉksaremkanicdI¦ - sikSaGMBIdæanelxa ¬tUb:Ul¦edIm,IrkkUteGay)anc,as;las;mun nigeFIVkarsagsg; . ¬ ÉksartUb:Ul ¦ - BinitüemIlÉksar nigr)aykarN¾rbs;GIuRdUlItEdlTak;Tg nigbBaðaCMrabrbs;Twk eCIgeTrRbEvg)atRbEvg kMrslx½NÐxagelImuxkat;FarTwknigeRKÓgbgÁMúepSg²rbs;sMNg; . ¬ ÉksarGIuRdUlik ¦ dMeNaHRsayGMBIlMhat;sMNg;Farasa®sþsikSakUdTwkxagmuxsMNg;eGay)anc,as;las; . -sikSaGMBIrUbmnþEdlRtUvykeTAGnuvtþn_ - sikSaGMBITTwgrgVHpøÚvTwkEdlhUrecj -sikSaGMBIkMhat;bg;énclnaTwkEdlkkitCamYynigCBa¢aMgCamYy nigTVaTwknigGMBIepSg²xøHdUcCaRckcUl nigRckecjrbs;clnaTwk -sikSaGMBIRbEvgclnaTwkEdlmanlkçN³keRBa¢alxøaMgenAEpñkxageRkaysMNg; edIm,IecosvagkMueGayman PaBeRcaHdac;eTAelIsac;ebtugnigEpñkxageRkamrbs;sMNg; -TaMgenHKWsikSanUvemeronGIuRdUlIt . tamrUbmnþRtUvykeTAeRbI sMKal; Q brimaNFaTwkEdlRtUvhUrecjGMBIrgVHTVaTwk ε emKuNEdlclnaTwkrt;cUleTArkrgVHTVaTwk emKuNel,ÓnTwkEdlRtUvrt;cUlsMNg;FarTwk ε = 1  0.95 
  • 40. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 40 3 2 0.714 B = = 7.69m 0.4×1× 2×9.81(0.14) 7.19 7.05 5.75 5.045 5.05 5.55 P B KWCaTTwgénrgVHpøÚvTwkhUr g =9.81m/s Z =Max mux– Max xageRkay rkTTwgFarTwk B B=8m edayeFVIkareRbobeFobrvagbrimaNFarTwkbegðórecj Qbegðór =0.4 x 8 x √9.81x 2 = 0.72 m3 /s Q brimaNFarTwkbegðórcaM)ac;=- 0.714m3 /s dUcenH Q = 0.72m3/s > Q = 0.714m3 /s karkMNt;sMNg;begðórrbs;eRKagsMNg; r)aMeXOnTI2
  • 41. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 41 kMNt;rkCMerAs,WtenAeBlTwkhUrecj q brimaNFarTwk 1Éktþam2 /s j emKuNelÓncrnþTwkrYm φ = 0.98 kMNt;rkCMerAs,WtenAeBlTwkhUrecj q brimaNFarTwk 1 Éktþa m2 /s φ emKuNel,ÓncrnþTwkrYm tamkarkMnt;kñúgtarag ' cq & h edayGnuvtþn_tamrUbmnþ ¬A¦xagelIeK)an ' ch ,(m) 0.016 0.018 0.020 0.025  2 q m /s 0.082 0.092 0.102 0.127 tamrUbmnþ ¬A¦eyIgGacrkhc'',(m) 2 ' cq = 0.089 m /s h = 0.071 dUcenHkMBs;énPaBke®Ba¢alman ' 2 c ' 3 c h 8q hc'' = ( 1 + - 1 ) 2 g(h ) 2 '' c 3 0.017 8×(0.089) h = ( 1 + - 1 ) = 0.299m 2 9.81(0.017) edayeyIgkMNt;r)aMgeXOnmankMBs; h= 0.3m EdlCar)(aMgeXOnTI2 eK)an 2 g = 9.81 m/s 2 o α H = H + 2g  2 7.19 7.05 (0.63) 0.16 2 9.81 m x     7.05 5.045 P= - = 2.005m  ' ' c o c o 2 q = φ × h × 2g(P+H -h ) φ = 0.89 , P = 0.3 m , H = 0.05m Q 0.714 q = = = 0.1785 m /s B 4 ' ' c o cq = φ × h × 2g(P+H +h ) (A)
  • 42. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 42  '' c min k×h = 1.2×0.113=0.136 h = 0.5m B rgVHr)aMg = 4m TMnak;TMng ' cq & h kMNt;xageRkam ' ch ,m 0.03 0.04 0.05 0.1 0.2 2 q ( m /s ) 0.073 0.168 0.203 0.217 0.336 tamlTæplkñúgtarageyIg)an kMBs;ke®Ba¢al ' 2 '' c c ' 3 c 2 3 h 8×q h = ( 1+ - 1 ) = 0.113m 2 g×(h ) 0.045 8×(0.178) = ( 1+ - 1 ) = 0.113m 2 g×(0.045) tamkarepÞógpÞat; '' min ch > k × h BitCaRtwmRtUvkarkMNt;kMralx½NÐxageRkaysMNg;begðórRbEvgPaBke®Ba¢al ¬Lers ¦ '' ' c clres = 2.5 ( 1.9 h - h ) = 2.5 ( 1.9 × 0.113 - 0.045 ) = 0.424m lres= 0.424m lres=0.5 RbEvgkUnGag ¬Lb ¦ EteyIgrk RbEvgkMralbnþGMBIkUnGag karkMNt;CMerAEdlsuIrUgxageRkaysMNg; 2 ' cq = 0.178 m /s h = 0.04m bL =1.25 ×lres =1.25×0.5 =0.625m bL =1m ' res resL =2.5 ×L =2.5 ×0.5 =1.25m 1.2R o q H =K× V
  • 43. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 43 edaykarKNnaCMralTwkxageRkamsMNg;Farsa®sþ sMKal; 1....8 kMNt;elxerogEdlmanenAeRkamsMNg;  sBaØaRBYjéncrnþTwk So b RbEvgCMerARKwHEdlRtUvmanGMBICMrabTwk ,m Tak kMras;dIEdlCaMTwk ,m taragsþIGMBIRbEvgskmμxagesMNg; rkRkadüg;énCMrabtamrUbmnþ  Rkadüg; LAB RbEvgsrubénCMrabTwkcab;BicMnuc 1 dl;cMnuc TI 8 H kMBs;EpñkmuxsMNg;¬ m ¦ Rkadüg;EdlTwkpulecjrUbmnþ Lo / So >5.0 5.03.4 3.41.0 1.00 T skmμ 0.5Lo 2.5 So 0.8S0 0.5So 0.5 So 0.3So 8.8m 7.4m 1.2m 0.2m 1.2oS m 2.24H m 7.7865 6.9745 7.5745 10.5865 Ta ែខ ពីេយសូវែម៉្រត 10.0265
  • 44. sakklviTüal½yGnþrCati mhaviTüal½yviTüasa®sþ EpñkvisVkr Hydraulic dwknaMedaysa®sþacarüa ³ Ebn Exm:Ura: TMB½r 44  pul ' o b = S