SlideShare a Scribd company logo
Department of Civil Engineering                                             viTüasßanCatiBhubec©keTskm<úCa



                            XV.   karKNnasMrab;kMlaMgrmYl
                                   Design for Torsion

1> esckþIepþIm Introduction
          kugRtaMgrmYlekItmanenAkñúgmuxkat;FñwmenAeBlEdlm:Um:g;manGMeBIRsbeTAnwgmuxkat;enaH.
m:Um:g;rmYleFVIeGayGgát;vil nigmansñameRbHenAelIépÞrbs;va CaTUeTAEtgekItmanenAelImuxkat;mUl.
edIm,IbgðajkugRtaMgrmYl eKGnuvtþkMlaMgrmYl T Fñwm cantilever muxkat;mUlEdleFVIBI elastic
homogenous material dUcbgðajkñúgrUbTI 15>1. kMlaMgrmYlnwgeFVIeGayFñwmvil. cMnuc B clt½eTA

cMnuc B' enAxagcugrbs;Fñwm b:uEnþcugmçageTotrbs;FñwmRtUv)anbgáb;. mMu θ RtUv)aneKehAfa mMurmYl
(angle of twist). bøg; AO' OB nwgdUrrageTACarag AO'OB' . edaysnμt;fa Ggát;enArkSaRbEvgrbs;

vadEdl enaH shear strain KW
               BB' rθ
         γ =      =
                L   L
        Edl L CaRbEvgrbs;Fñwm nig r CakaMrbs;muxkat;rgVg;.




        enAkñμúgeRKOgbgÁúMebtugGarem: Ggát;nwgrgm:Um:g;rmYlenAeBlGgát;enaHekagenAkñúgbøg;/ RT
cantilever slab/ mannaTICa spandrel beam (end beam)/ b¤CaEpñkrbs;CeNþIrvil.


Design for Torsion                                                                                    346
T.Chhay                                                                                  NPIC




         Ggát;eRKOgbgÁúMGacrgnUvEtkMlaMgrmYlsuT§ b¤enAkñúgkrNICaeRcIn vargCamYyKñakñúgeBlEtmYy
nUvkMlaMgkat;TTwg nigm:Um:g;Bt;. ]TahrN_TI15>1 bgðajBIkMlaMgepSg²EdlGacGnuvtþmkelImuxkat;
epSgKñaénFñwm cantilever.
]TahrN_TI15>1³
KNnakMlaMgEdlmanGMeBIenAmuxkat; !/ @ nig # énFñwm cantilever EdlbgðajenAkñúgrUbTI 15>2. Fñwm
rgnUvkMlaMgbBaÄr P1 = 67kN / kMlaMgedk P2 = 53.5kN EdleFVIGMeBIenAcMnuc C nigbnÞúkedk
 P3 = 89kN EdlGnuvtþenAcMnuc B nigEkgeTAnwgTisedArbs;kMlaMg P2 .




dMeNaHRsay³
yk N = kMlaMgEkg (normal force)/ V = kMlaMgkat; (shear force)/ M = m:Um:g;Bt; (bending
moment)/ T =m:Um:g;rmYl (torsional moment). kMlaMgTaMgGs;RtUv)anbgðajenAkñúgtaragxageRkam³

muxkat; N (kN )             M x (kN .m) M y (kN .m)    V x (kN )  V y (kN )      T (kN .m)
   !           0              − 180.9     144.45         53.5         67             0
   @ − 53.5 ¬sgát;¦              0        144.45           89         67          180.9
   # − 53.5 ¬sgát;¦ 241.2                 464.85           89         67          180.9


karKNnasMrab;kMlaMgrmYl                                                                   347
Department of Civil Engineering                                          viTüasßanCatiBhubec©keTskm<úCa


RbsinebI P1 / P2 nig P3 CabnÞúkemKuN ¬ Pu = 1.2PD + 1.6PL ¦ enaHral;tMélenAkñúgtaragCakMlaMg
KNnaemKuN.
2> m:Um:g;rmYlenAkñúgFñwm Torsional Moments in Beams
         dUcbgðajenAkñúgrUbTI 15>1 kMlaMgGacGnuvtþenAelIeRKagsMNg;GKar edayeFVIeGaymanm:Um:g;
rmYl. RbsinebIkMlaMgcMcMnuc P GnuvtþenARtg;cMnuc C enAelIeRKag ABC dUcbgðajenAkñúgrUb 15>3 a
vabegáItm:Um:g;rmYl T = PZ enAkñúgFñwm AB Rtg;cMnuc D . enAeBl D sßitenAkNþalElVgénFñwm AB
enaHm:Um:g;rmYlKNnaenAkñúgkMNat; AD esμInwgm:Um:g;rmYlKNnaenAkñúgkMNat; DB b¤esμInwg 1 T . Rb
                                                                                      2
sinebIkMral cantilever slab RtUv)anRTedayFñwm AB ¬rUbTI 15>3 b¦ enaHkMralxNнbegáItm:Um:g;rmYl
BRgayesμI mt tambeNþayFñwm AB . m:Um:g;rmYlBRgayesμIenH KWekItBIbnÞúkenAelIcMerokTTwkmYy
Éktþarbs;kMralxNн. RbsinebI S CaTTwgén cantilever slab nig w CabnÞúkenAelIkMralxNн
¬ kN / m 2 ¦ enaH mt = wS 2 / 2 ¬ kN .m / m ¦énFñwm AB . m:Um:g;rmYlKNnaGtibrmaenAkñúgFñwm AB KW
T = mt L / 2 EdlGnuvtþenARtg;cMnuc A nig B . krNIbnÞúkepSgeTotRtUv)anbgðajenAkñúgtarag

15>1. CaTUeTA düaRkamm:Um:g;rmYlenAkñúgFñwmmanrag nigmantMéldUcKñanwgdüaRkamkMlaMgkat;TTWgsM
rab;FñwmEdlrgnUvkMlaMg mt nig T .




Design for Torsion                                                                                 348
T.Chhay                   NPIC




karKNnasMrab;kMlaMgrmYl   349
Department of Civil Engineering                                        viTüasßanCatiBhubec©keTskm<úCa


3> kugRtaMgrmYl         Torsional Moments in Beams




          edayBicarNaelIFñwm cantilever Edlmanmuxkat;mUl ¬rUbTI15>1¦ enAeBlEdlm:Um:g;rmYl T
manGMeBIelIFñwm vanwgbegáIteGaymankMlaMgkat;TTwg dV EkgeTAnwgkaMrbs;muxkat;. BIlkçxNÐl<nwg
m:Um:g;rmYlxageRkARtUv)anTb;edaym:Um:g;rmYlxagkñúgEdlmantMél T esμIKñaEtTisedApÞúyKña . Rbsin
ebI dV CakMlaMgkat;TTwgeFVIGMeBIelIépÞ dA ¬rUbTI 15>4¦ enaHGaMgtg;sIueténkMlaMgrmYlKW
       T = ∫ rdV

edayyk v CakugRtaMgkMlaMgkat;TTWgenaH
        dV = vdA       nig T = ∫ rvdA
        kMlaMgkat;TTwgeGLasÞicGtibrmaekItmanenAépÞxageRkArbs;muxkat;rgVg;Rtg;kaM r CamYynwgkM
ras; dr enaHkMlaMgrmYlGacRtUv)ankMNt;edayKitm:Um:g;eFobnwgcMnuc 0 sMrab;RkLaépÞkg³
        dT = (2πrdr )vr
       Edl 2πrdr CaRkLaépÞkg nig v CakugRtaMgkMlaMgkat;TTwgenAkñúgkg. dUcenH
       T = ∫ (2πrdr )vr = ∫ 2πr 2 dr
             R
             0
                            R
                            0
                                                                                     ¬!%>!¦
       sMrab;muxkat;RbehagEdlmankaMxagkñúg R1 /
             R
       T = ∫ 2πr 2 dr
             R1
                                                                                     ¬!%>@¦
       sMrab;muxkat;tan; edayeRbIsmIkar ¬!%>!¦ nig v = vmax r / R
             R     ⎛v r⎞         ⎛ 2π ⎞      R 3
       T = ∫ 2πr 2 ⎜ max ⎟dr = ⎜      ⎟vmax ∫0 r dr
            0      ⎝ R ⎠         ⎝ R ⎠
           ⎛ 2π ⎞           ⎛π ⎞
                        4
                      R
         =⎜     ⎟vmax     = ⎜ ⎟vmax R 3
           ⎝ R ⎠       4 ⎝2⎠



Design for Torsion                                                                               350
T.Chhay                                                                                     NPIC




          vmax =
                    2T
                   πR 3
                                                                                     ¬!%>#¦
      m:Um:g;niclPaBb:UElrénmuxkat;rgVg;KW J = πR 4 / 2 . dUcenH kugRtaMgkMlaMgkat;GacRtUv)an
sresrCaGnuKmn_énm:Um:g;niclPaBb:UElrdUcxageRkam³
      vmax =
                TR
                 J
                                                                                     ¬!%>$¦
4> m:Um:g;rmYlenAkñúgmuxkat;ctuekaN Torsional Moments in Rectangular Sections
        karKNnakugRtaMgenAkñúgGgát;manmuxkat;minmUlEdlrgbnÞúkrmYlminsamBaØdUckarKNnasM
rab;muxkat;mUleT. b:uEnþ lT§plEdlTTYlBIRTwsþIeGLasÞic (theory of elasticity) bgðajfakugRtaMg
kMlaMgkat;TTwgGtibrmasMrab;muxkat;ctuekaNEkgGacRtUv)ankMNt;dUcxageRkam³
        vmax = 2
                 T
               αx y
                                                                                   ¬!%>%¦
          Edl      T=  kMlaMgrmYlEdlGnuvtþ
                   x = RCugxøIrbs;muxkat;ctuekaN

                   y = RCugEvgrbs;muxkat;ctuekaN

                   α = emKuNEdlGaRs½ynwgpleFobén y / x tMélrbs;vaRtUv)aneGayenAkñúgtarag
                       xageRkam.
    y/x              1 .0       1 .2         1 .5         2 .0          4 .0          10

     α              0.208      0.219       0.231         0.246         0.282        0.312
       kugRtaMgkMlaMgkat;TTwgGtibrmaekItmanenAtamGkS½énRCugEvg y ¬rUbTI 15>5¦.
       sMrab;Ggát;EdlekItBIkarpÁúMénmuxkat;ctuekaNEkg dUcCamuxkat;GkSr L / T nig I tMél α
GacRtUv)ansnμt;faesμInwg 1/ 3 ehIymuxkat;GacRtUv)anEckecjCamuxkat;ctuekaNCaeRcInEdlman
RCugEvg yi nigRCugxøI xi . kugRtaMgkMlaMgkat;TTwgGacRtUv)anKNnaBI
        vmax =
                   3T
                                                                                  ¬!%>^¦
               ∑ i ix2 y

          Edl ∑ xi2 y i CatMélEdl)anBIplbUkmuxkat;ctuekaNEkgtUc². enAeBlEdl         y / x ≤ 10   eK
GaceRbIsmIkarsMrYlxageRkam³



karKNnasMrab;kMlaMgrmYl                                                                     351
Department of Civil Engineering                                           viTüasßanCatiBhubec©keTskm<úCa


        v max =
                          3T
                                                                                        ¬!%>&¦
                         ⎛           x⎞
                  ∑ x 2 y⎜1 − 0.63
                         ⎜
                                      ⎟
                                     y⎟
                         ⎝            ⎠




5> kMlaMgpÁÜbrvagkMlaMgkat; nigkMlaMgrmYl             Combined Shear and Torsion




        enAkñúgkrNIGnuvtþn_CaeRcIn Ggát;eRKOgbgÁúMGacrgnUvTaMgkMlaMgkat; nigkMlaMgrmYlCamYyKña.
kugRtaMgkMlaMgkat;GacnwgekItmanenAkñúgmuxkat;CamYynwgkugRtaMgkMlaMgkat;mFüm = v1 enAkñúgTis
Design for Torsion                                                                                  352
T.Chhay                                                                                    NPIC




edAénkMlaMgkat; V ¬rUbTI 15>6 a¦. kMlaMgrmYl T begáItkugRtaMgrmYlenAelIRKb;RCugrbs;muxkat;
ctuekaN ABCD ¬ rUbTI 15>6 a¦ CamYynig v3 > v2 . karBRgaykugRtaMgcugeRkayRtUv)anTTYlBI
karbUkbBa©ÚlnUvT§iBlénkugRtaMgkMlaMgkat; nigkugRtaMgrmYl edIm,IbegáIttMélGtibrmaesμI v1 + v3 enA
elIRCug CD b:uEnþRCug AB nwgmankugRtaMgcugeRkayesμI v1 − v3 . RCug AD nig BC nwgrgEtkugRtaMg
rmYl v2 . muxkat;RtUvd)anKNnasMrab;kugRtaMgGtibrma v = (v1 + v3 ) .
6> RTwsþIkarrmYlsMrab;Ggát;ebtug Torsion Theories for Concrete Members
         eKmanviFICaeRcInsMrab;viPaKGgát;ebtugBRgwgedayEdkEdlrgkarrmYl b¤rgkarrmYl karBt;
nigkarkat;kñúgeBlEtmYy. CaTUeTAviFIKNnasMGageTAelIRTwsþIeKalBIrKW³ the skew bending theory
nig space truss analogy.
    6>1> Skew Bending Theory
         viFIeKalrbs; skew bending theory EdlENnaMeday Hsu CaviFIEdlsikSakar)ak;énmuxkat;
ctuekaNedaykarrmYlEdlekItedaykarBt;eFobGkS½RsbeTAnwgépÞénmuxkat; y FMCag nigeRTteday
mMu 45o eTAnwgGkS½EvgénFñwm ¬rUbTI 15>7¦. QrelIviFIsaRsþenH m:Um:g;rmYlGb,brma Tn GacRtUv)an
KNnadUcxageRkam³




               ⎛ x2 y ⎞
          Tn = ⎜
               ⎜ 3 ⎟ r
                      ⎟f                                                             ¬!%>*¦
               ⎝      ⎠
        Edl f r KWm:UDuldac;rbs;ebtug. f r RtUv)ansnμt;esμInwg 5 f 'c / 12 enAkñúgkrNIenH Edl
RtUv)aneRbobeFobCamYy 7.5 f 'c /12 EdlTTYleday ACI Code sMrab;KNnaPaBdabenAkñúgFñwm.

karKNnasMrab;kMlaMgrmYl                                                                       353
Department of Civil Engineering                                      viTüasßanCatiBhubec©keTskm<úCa


       kMlaMgrmYlTb;edayebtugsMEdgdUcxageRkam³
            ⎛ 1 ⎞ 2
       Tc = ⎜   ⎟ x y f 'c                                               ¬!%>(¦
            ⎝ x⎠
       nigkMlaMgTb;karrmYledayEdkTb;karrmYlKW
              α1 ( x1 y1 At f y )
       Ts =
                      s
                                                                                   ¬!%>!0¦
       dUcenH Tn = Tc + Ts Edl Tn lT§PaBTb;m:Um:g;rmYl nominal énmuxkat;.
  6>2> Space Truss Analogy




        viFIsaRsþén space truss analogy KWQrelIkarsnμt;falT§PaBTb;Tl;karrmYlrbs;ebtugGar
em:muxkat;ctuekaNRtUv)anKitecjEtBIEdknigebtugEdlBT§½CMuvijEdkb:ueNÑaH. kñúgkrNIenH muxkat;
thin-wall RtUv)ansnμt;mannaTICa space truss ¬rUbTI 15>8¦. cMerokebtugvNнeRTtcenøaHsñameRbH

Tb;kMlaMgsgát; b:uEnþEdkbeNþayenARCug nigEdkkgTb;nwgkMlaMgTajEdlekItedaym:Um:g;rmYl.
        kareFVIkarrbs;FñwmebtugGarem:EdlrgkarrmYlsuT§GacbgðajedayRkaPicénTMnak;TMngrvagkar
rmYlnigmMurmYl dUcbgðajenAkñúgrUbTI15>9. eyIgemIleXIjfa muxnwgeRbH ebtugTb;nwgkugRtaMgrmYl
nigEdkswgEtKμanrgkugRtaMg. eRkayeBleRbH kareFVIkarrbs;FñwmCalkçN³eGLasÞicminGacGnuvtþ)an
dUcenHmMurmYlekIteLIgPøam² EdlekIneLIgrhUtdl;lT§PaBTb;Tl;m:Um:g;rmYlekItman. karkMNt;Edl
manlkçN³Rbhak;RbEhlénlT§PaBTb;karrmYlsMrab;muxkat;eRbHGacnwgsMEdgdUcxageRkam³
                ⎛A f ⎞
          Tn = 2⎜ t s ⎟ x1 y1
                ⎝ s ⎠
                                                                                   ¬!%>!!¦
        Edl At = éneCIgmçagrbs;Edkkg

Design for Torsion                                                                             354
T.Chhay                                                                                        NPIC




                    s=KMlatEdkkg
          x1 nig y1 = RbEvgxøI nigRbEvgEvg KitBIGkS½eTAGkS½énEdkkgbiTCit b¤BIEdkenARCug.




       smIkarmunecalnUvlT§PaBTb;karrmYlrbs;ebtug. Mitchell nig Collins ENnaMnUvsmIkarxag
eRkamedIm,IKNnamMurmYlkñúgmYyÉktþaRbEvg ψ ³
            ⎛ P ⎞ ⎡⎛ ε ⎞ ⎛ P (ε tan α ) ⎞ 2ε d ⎤
       ψ = ⎜ o ⎟ ⎢⎜ l ⎟ + ⎜ h h
            ⎜ 2 A ⎟ tan α    ⎜            ⎟+
                                          ⎟ sin α ⎥                           ¬!%>!@¦
                ⎝    o    ⎠ ⎣⎝      P ⎠ ⎝       o    ⎠         ⎦
          Edl       εl = bMErbMrYlrageFob (strain) enAkñúgEdkbeNþay (longitudinal reinforcing steel)
                    ε h = bMErbMrYlrageFobenAkñúgEdkkg (hoop steel)
                    ε d = bMErbMrYlrageFobebtugGgát;RTUgenARtg;TItaMgénkMlaMgpÁÜbénFarkMlaMgkat;
                                 (shear flow)
                    Ph = brimaRtrbs;EdkkgKitRtwmGkS½Edk
                                                                   ⎡          ⎛ P ⎞⎤
                    α = mMuénkMlaMgsgát;Ggát;RTUg = (ε d + ε l ) / ⎢ε d + ε h ⎜ h ⎟⎥
                                                                              ⎜P ⎟
                                                                   ⎣        ⎝   o   ⎠⎦
                    Ao =RkLaépÞEdlBT§½CMuvijedaykMlaMgkat; b¤
                      = torque / 2q ¬Edl q = FarkMlaMgkat;¦

                 Po = brimaRténKnøgFarkMlaMgkat; ¬brimaRtrbs; Ao ¦

          smIkarmMurmYlxagelImanlkçN³RsedogKñanwgsmIkarmMukMeNagkñúgkarBt; ¬rUbTI 15>10¦
                                   ε + εs
                 φ = curvature = c
                                     d
                                                                                   ¬!%>!#¦


karKNnasMrab;kMlaMgrmYl                                                                         355
Department of Civil Engineering                                         viTüasßanCatiBhubec©keTskm<úCa


        Edl ε c nig ε s CabMErbMrYlrageFobenAkñúgebtug nigEdk erogKña. smIkard¾samBaØRtUv)anbk
Rsayeday Solanki edIm,IkMNt;lT§PaBTb;nwgkarrmYlsuT§rbs;FñwmebtugGarem: edayQrelI space
truss analogy dUcxageRkam³
                                                      1
                   ⎡⎛ ∑ As f sy       ⎞ ⎛ Ah f hy   ⎞⎤ 2
       Tu = (2 Ao )⎢⎜
                    ⎜
                                      ⎟×⎜
                                      ⎟ ⎜
                                                    ⎟⎥
                                                    ⎟                                 ¬!%>!$¦
                   ⎢⎝ Po
                   ⎣                  ⎠ ⎝ s         ⎠⎥⎦
       Edl           / nig s RtUv)anBnül;BIxagelI
                 Ao Po

                 ∑ As f sy = kMlaMg yield énEdkbeNþayTaMgGs;
                 Ah f hy = kMlaMg yield énEdkkg

       ACI Code )anTTYlykRTwsþIenHedIm,IKNnaGgát;eRKOgbgÁúMebtugEdlrgkarrmYl b¤karrmYl

nigkarkat; enAkúñgviFIsaRsþd¾sMrYl.




7> ersIusþg;rmYlénGgát;ebtugsuT§ Torsional Strength of Plain Concrete Memgers
        Ggát;ebtugrgkarrmYlCaTUeTARtUv)anBRgwgedayEdkTb;nwgkarrmYlBiess. kñúgkrNIEdlkug
RtaMgrmYlmantMéltUc nigRtUvkarKNnasMrab;Ggát;ebtugsuT§ kugRtaMgkMlaMgkat; vtc GacRtUv)ankMNt;
edayeRbIsmIkar !%>^³
                  3T           f 'c
        vtc =              ≤
                φ∑ x y 2       2




Design for Torsion                                                                                356
T.Chhay                                                                                      NPIC




        nigmMurmYlKW θ = 3TL / x3 yG / Edl T Cam:Um:g;rmYlEdlGnuvtþmkelImuxkat; ¬tUcCagm:Um:g;
rmYlEdleFVIeGayeRbH¦ nig G KWCam:UDulkMlaMgkat; nigGacRtUv)ansnμt;esμInwg 0.45 dgénm:UDuleG-
LasÞicrbs;ebtug Ec Edl G = 2135 f 'c . kMlaMgkat;TTwgeFVIeGayeRbHedaysarkarrmYl
(torsional cracking shear) vc enAkñúgebtugsuT§GacRtUv)ansnμt;esμI 0.5 f 'c . dUcenH sMrab;muxkat;

ctuekaNebtugsuT§
               φ 2
        Tc =
               12
                  x y f 'c                                                           ¬!%>!%¦
nigsMrab;muxkat;EdlpSMeLIgedayctuekaNEkgeRcIn
               φ
        Tc =
               12
                    f 'c ∑ x 2 y                                                     ¬!%>!^¦
8> karrmYlenAkñúgGgát;ebtugBRgwgedayEdk              Torsion in Reinforced Concrete
Memebers (ACI Code Procedure)
  8>1> sBaØaNTUeTA General
         dMeNIrkarKNnasMrab;karrmYlmanlkçN³RsedogKñaeTAnwgkMlaMgkat;TTwgedaykarBt;. enA
eBlEdlm:Um:g;rmYlemKuNGnuvtþenAelImuxkat;FMCaglT§PaBTb;m:Um:g;rmYlkñúgrbs;ebtugGacTb;)an
enaHsñameRbHEdlekItedaykarrmYl (torsional crack) ekIteLIg dUcenHEdkTb;karrmYl (torsional
reinforcement) kñúgTMrg;CaEdkkgbiTCit (closed stirrup or hoop reinforcement) RtUv)andak;.

bEnßmBIelIEdkkgbiTCit EdkbeNþayk¾RtUv)andak;enAtamRCugrbs;Edkkg nigRtUv)anBRgayy:ag
l¥enACMuvijmuxkat;. TaMgEdkkgbiTCit nigEdkbeNþaymansarsMxan;Nas;kñúgkarTb;nwgkMlaMgTaj
Ggát;RTUgEdlbNþaymkBIkMlaMgrmYl EdkEtmYyRbePTnwgKμanRbsiT§PaBeTebIKμanEdkmYyRbePT
eTot. EdkkgRtUvEtbiTCit edaysarkugRtaMgrmYlekItmanenARKb;RCugrbs;muxkat;.
         EdkcaM)ac;sMrab;karrmYlRtUv)anbEnßmelIEdkcaM)ac;sMrab;kMlaMgkat;/ sMrab;karBt; nigkMlaMg
tamGkS½. EdkEdkcaM)ac;sMrab;karrmYlRtUv)andak;edIm,IeFVIeGayersIusþg;m:Um:g;rmYlrbs;muxkat; φTn
FMCagb¤esμInwgm:Um:g;rmYlemKuN Tu EdlRtUv)anKNnaBIbnÞúkemKuN.
          φTn ≥ Tu                                                                      ¬!%>!&¦
         enAeBleKRtUvkarEdkTb;karrmYl ersIusþg;m:Um:g;rmYl φTn RtUv)anKNnaedaysnμt;kMlaMg
rmYl Tu TaMgGs; RtUv)anTb;edayEdkkg nigEdkbeNþayCamYynwgersIusþg;Tb;karrmYlrbs;ebtug


karKNnasMrab;kMlaMgrmYl                                                                       357
Department of Civil Engineering                                      viTüasßanCatiBhubec©keTskm<úCa


Tc = 0 . kñúgeBlCamYyKña ersIusþg;kMlaMgkat;EdlTb;edayebtug vc RtUv)ansnμt;enAdEdledayKμan
karERbRbYledaysarvtþmanrbs;ersIusþg;rmYl.
  8>2> )a:ra:Em:RtFrNImaRténkarrmYl Torsional Geometric Parameters




       enAkñúg ACI Code, Section 11.6 karKNnasMrab;karrmYlKWQrenAelI space truss analogy
dUcbgðajenAkñúgrUbTI 15>8. eRkayeBlEdlsñameRbHedaykarrmYlekIteLIg karrmYlRtUv)anTb;
edayEdkkgbiTCit EdkbeNþay nigersIusþg;kMlaMgsgát;Ggát;RTUgrbs;ebtug. sac;ebtugenAxageRkA
EdkkgkøayeTACaKμanRbsiT§PaB nigRtUv)anecalenAkñúgkarKNna. RkLaépÞBT§½CMuvijedayGkS½énEdk

Design for Torsion                                                                             358
T.Chhay                                                                                      NPIC




kgbiTCitxageRkAbMput RtUv)ankMNt;eday Aoh ¬épÞqUtenAkñúgrUbTI 15>11¦. edaysarGgÁdéTeTot
RtUv)aneRbIenAkñúgsmIkarKNna vak¾RtUv)anENnaMCadMbUgenATIenHedIm,ICYyeGaykaryl;nUvsmIkarman
lkçN³gayRsYl. BIrUbTI 15>11 GgÁEdleGayRtUv)ankMNt;dUcxageRkam³
    Acp = RkLaépÞmuxkat;ebtugEdlBT§½CMuvijedaybrimaRtxageRkAénmuxkat;ebtug

    Pcp = brimaRténmuxkat;ebtugTaMgmUl Acp

    Aoh = RkLaépÞEdlBT§½CMuvijedayGkS½énEdkrgkarrmYlTTwgbiTCitxageRkAbMput ¬épÞqUtkñúgrUbTI

15>11¦
    Ao = RkLaépÞEdlBT§½CMuvijedayKnøgFarkMlaMgkat;TTwg nigGacykesμInwg 0.85 Aoh

    Ph = brimaRtebtugrbs;EdkrgkarrmYlTTwgbiTCitxageRkAbMput

   θ = mMuénkMlaMgsgát;Ggát;RTUgcenøaH 30 o eTA 60 o ¬b¤GacykesμInwg 45o sMrab;Ggát;ebtugGarem:¦
          sMrab;muxkat;GkSr T nig L TTwgRbsiT§PaBénsøabmçag²RtUv)ankMNt;esμInwgkMBs;FñwmEdl
sßitenABIelI b¤BIeRkamkMralxNн edayykmYyNaEdlFMCag b:uEnþminRtUvFMCag 4 dgkMras;kMralxNнeT
¬ACI Code, Sections 11.6.1 and 13.2.4¦.
   8>3> m:Um:g;rmYleFVIeGayeRbH Tcr Cracking Torsional Moment Tcr
          m:Um:g;eFVIeGayeRbHeRkamm:Um:g;rmYlsuT§ Tcr GacRtUv)anTajecjedayCMnYsmuxkat;BitR)akd
munnwgeRbH CamYynwg thin-walled tube smmUl t = 0.75 Acp / Pcp / CamYynwgRkLaépÞEdlBT§½CMuvij
edayGkS½CBa¢aMg A0 = 2 Acp / 3 . enAeBlEdl kugRtaMgTajGtibrma ¬kugRtaMgem¦ mantMélesμI
   f 'c / 3 sñameRbHnwgekItman ehIyCaTUeTAm:Um:g;rmYl T esμInwg

           T = 2 Aoτt                                                                 ¬!%>!*¦
   Edl τ = kugRtaMgkMlaMgkat;edaykarrmYl = f 'c / 3 sMrab;sñameRbHedaykarrmYl.
          CMnYs τ eday f 'c / 3
                      f 'c ⎛ Acp ⎞
                              2
           Tcr =
                      3
                           ⎜
                           ⎜P ⎟ n
                                 ⎟ =T       nig Tu = φTcr                             ¬!%>!(¦
                          ⎝   cp   ⎠
        edaysnμt;fam:Um:g;rmYltUcCagb¤esμInwg Tcr / 4
nwgmineFVIeGaymankarkat;bnßyersIusþg;Tb;karBt; b¤Tb;kMlaMgkat;enAkñúgGgát;énrcnasm<n§½ ACI
Code, Section 11.6.1
GnuBaØateGayecalnUvT§iBlm:Um:g;rmYlenAkñúgGgát;ebtugGarem:enAeBlEdlm:Um:g;rmYlemKuN
Tu ≤ φTcr / 4 b¤


karKNnasMrab;kMlaMgrmYl                                                                      359
Department of Civil Engineering                                          viTüasßanCatiBhubec©keTskm<úCa


                   f 'c ⎛ Acp ⎞
                           2
         Tu ≤ φ
                  12
                        ⎜     ⎟=T
                        ⎜ Pcp ⎟  a                                                     ¬!%>@0¦
                        ⎝     ⎠
       enAeBlEdl Tu FMCagtMélenAkñúgsmIkar !%>@0 Tu TaMgGs;RtUv)anTb;edayEdkkgbiTCit
nigEdkbeNþay. m:Um:g;rmYl Tu RtUv)anKNnaBImuxkat;EdlmanTItaMgRtg;cMgay d BIépÞénTMr nig
Tu = φTn Edl φ = 0.75 .

]TahrN_TI15>1³
sMrab;muxkat;bIEdlbgðajenAkñúgrUbTI 15>12 nigQrelIkarkMNt; ACI Code cUrkMNt;
    a. m:Um:g;eFVIeGayeRbH φTcr

    b. m:Um:g;rmYlemKuNGtibrma φTn EdlGacGnuvtþelImuxkat;nImYy²edaymineRbIEdkRTnugTb;kar

        rmYl.
        snμt; f 'c = 28MPa / f y = 400MPa / kMras;ebtugkarBarEdk 40mm nigeRbIEdkkg DB12 .




dMeNaHRsay³
    1>        muxkat; !
         a.      mU:m:g;eFVIeGayeRbH φTcr GacRtUv)anKNnaBIsmIkar !%>!(
                             f 'c ⎛ Acp ⎞
                                     2
                  φTcr = φ        ⎜     ⎟
                             3 ⎜ Pcp ⎟
                                  ⎝     ⎠




Design for Torsion                                                                                 360
T.Chhay                                                                                    NPIC




                   sMrab;muxkat;enH Acp = xo yo RkLaépÞmuxkat;TaMgmUl Edl xo = 400mm nig
                   yo = 610mm
                   Acp = 400 × 610 = 244000mm 2

                   Pcp =   brimaRténmuxkat;ebtugTaMgmUl
                          = 2( xo + yo ) = 2(400 + 610 ) = 2020mm
                                      28 ⎛ 244000 2 ⎞
                                         ⎜          ⎟ = 39kN .m
                   φTcr = 0.75
                                      3 ⎜ 2020 ⎟
                                         ⎝          ⎠
          b.       φTn    GnuBaØatEdlGacGnuvtþedaymineRbIEdkTb;karrmYlRtUv)anKNnaBIsmIkar !%>@0
                           φTcr       39
                   Ta =           =      = 9.75kN .m
                            4          4
     2>        muxkat; @
          a.      dMbUgKNna Acp nig Pcp sMrab;muxkat;enH nigGnuvtþsmIkarTI !%>!( edIm,IKNna φTcr .
                   edaysnμt;søabRtUv)andak;CamYyEdkkgbiTCit enaHsøabRbsiT§PaBEdlRtUveRbIenA
                   RCugmçag²énRTnugesμInwg $dgkMras;søab b¤ 4(100) = 400mm = hw = 400mm
                   Acp = web area + area of effective flanges

                   Acp = 500 × 350 + 2 ×100 × 400 = 255000mm 2

                   Pcp = 2(b + h ) = 2(350 + 2 × 400 + 500) = 3300mm
                               28 ⎛ 255000 2 ⎞
                                  ⎜          ⎟ = 26kN .m
                   φTcr = 0.75
                               3 ⎜ 3300 ⎟
                                  ⎝          ⎠
                   cMNaM³ RbsinebIsøabRtUv)anecal ehIyEdkTb;karrmYlRtUv)andak;EtenAkñúgRTnug
                   enaH
                   Acp = 350 × 500 = 175000mm 2

                   Pcp = 2(350 + 500) = 1700mm

                   φTcr = 23.8kN .m
          b.       φTn    GnuBaØatEdlGacGnuvtþedaymineRbIEdkTb;karrmYl
                           φTcr       26
                   Ta =           =      = 6.5kN .m
                            4         4
     3>        muxkat; 3


karKNnasMrab;kMlaMgrmYl                                                                     361
Department of Civil Engineering                                         viTüasßanCatiBhubec©keTskm<úCa


        a.      snμt;søabRtUv)andak;EdkkgbiTCit RbEcgRbsiT§PaBesμInwg
                hw = 370mm < 4 ×150 = 600mm
                Acp = 350 × 520 + 370 ×150 = 237500mm 2

               Pcp = 2(b + h) = 2(350 + 370 + 520) = 2480mm
                             28 ⎛ 237500 2 ⎞
                                ⎜          ⎟ = 30kN .m
               φTcr = 0.75
                             3 ⎜ 2480 ⎟
                                ⎝          ⎠
               cMNaM³ RbsinebIsøabRtUv)anecal enaH
                Acp = 350 × 520 = 182000mm 2

               Pcp = 2(350 + 520) = 1740mm

               φTcr = 25.2kN .m
        b.     φTn    GnuBaØat φTn = φTcr = 30 = 7.5kN.m
                                          4    4
   8>4> m:Um:g;rmYllMnwg nwgm:Um:g;rmYlRtUvKña Equilibrium Torsion and Compatibility Torsion
         kñúgkarviPaKeRKOgbgÁáúMGgát;ebtug kMlaMgepSg²EdlGnuvtþrYmman kMlaMgEkg (normal force)/
m:Um:g;Bt; (bending moment)/ kMlaMgkat; (shear force) nigm:Um:g;rmYl Edl)anBnül;enAkñúg]TahrN_
TI 15>1. karKNnaGgát;ebtugGarem:KWQrelIkar)ak;rbs;Ggát;GMeBIrbs;bnÞúkemKuN. sMrab;Ggát;sþa
TicminkMNt; (statically indeterminate member) karEbgEckm:Um:g;mþgeTot (redistribution of
moments) ekItmanmuneBl)ak; dUcenHm:Um:g;KNnaGacnwgRtUv)ankat;bnßy b:uEnþ sMrab;Ggát;sþaTickM

Nt; (statically determinate member) dUcCaFñwmsamBaØ (simple beam) b¤Fñwm cantilever Kμankar
EbgEckm:Um:g;mþgeTotekIteLIgeT.
         enAkñúgkarKNnaGgát;Edlrgm:Um:g;rmYl eKmanBIrkrNIEdlGacGnuvtþbnÞab;BIkareRbH.
         !> krNIm:Um:g;rmYllMnwg (equilibrium torsion case) ekItmanenAeBlm:Um:g;rmYlEdlRtUvkar
              sMrab;eRKOgbgÁúMsßitkñúgsßanPaBlMnwg ehIy Tu minGacRtUv)ankat;bnßyedaykarEbg
              EckeLIgvijrbs;m:Um:g;eT dUckrNIFñwmTMrsamBaØ. kñúgkrNIenHEdkTb;rmYlRtUv)andak;
              edIm,ITb;RKb; Tu . rUbTI 15>13 FñwmEdlenAEKmRTkMralxNн cantilever EdlKμankar
              EbgEckm:Um:g;mþgeTotekItman.
         @> krNIm:Um:g;rmYlRtUvKña (compatibility torsion case) ekItmanenAeBlm:Um:g;rmYl Tu Gac
              RtUv)ankat;bnßyedaykarEbgEckkMlaMgkñúgmþgeTotbnÞab;BIeRbH enAeBlEdlPaBRtUvKña

Design for Torsion                                                                                362
T.Chhay                                                                                   NPIC




            énkMhUcRTg;RTay (compatibility of deformation) RtUv)anrkSa enAkñúgGgát;eRKOgbgÁúM.
            rUbTI 15>14 bgðajBI]TahrN_sMrab;krNIenH EdlFñwmTTwgBIrmanGMeBIelIFñwmEKmbegáIt
            m:Um:g;rmYl. mMurmYlFMekItman enAeBlsñameRbHedaykarrmYlelcecj Edlpþl;nUvkar
            bgEckbnÞúkd¾FMenAkñúgeRKOgbgÁúM. vanwgeTAdl;m:Um:g;rmYlEdleFVIeGayeRbH Tcr eRkamGM
            eBIénbnSM karBt; karkat; nigkarrmYl enAeBlEdlkugRtaMgem (principle stress) mantM
            élRbEhl f 'c / 3 . enAeBlEdl Tu > Tcr m:Um:g;rmYlesμInwg Tcr ¬smIkar !%>!(¦
            EdlGacsnμt;ekItmanenARtg;muxkat;eRKaHfñak;enACitépÞénTMr.
       ACI Code kMNt;m:Um:g;rmYlKNnaesμInwgtMéltUcCageKén Tu Edl)anBIbnÞúkemKuN b¤ φTcr

BIsmIkar !%>!(.




  8>5> karkMNt;énersIusþg;m:Um:g;rmYl Limitation of Tortional Moment Strength
       ACI Code,Section 11.6.3 kMNt;TMhMmuxkat;edaysmIkarxageRkamBIr³

       !> sMrab;muxkat;tan;


karKNnasMrab;kMlaMgrmYl                                                                    363
Department of Civil Engineering                                            viTüasßanCatiBhubec©keTskm<úCa

                  2                  2
            ⎛ Vu ⎞ ⎛ Tu Ph ⎞         ⎡⎛      ⎞                      ⎤
            ⎜     ⎟ +⎜         ⎟ ≤ φ ⎢⎜ Vc ⎟ + 2
            ⎜ b d ⎟ ⎜ 1 .7 A 2 ⎟      ⎜      ⎟                 f 'c ⎥                    ¬!%>@!¦
            ⎝ w ⎠ ⎝         oh ⎠     ⎣⎝ bw d ⎠ 3                    ⎦
       @> sMrab;muxkat;Rbehag
        ⎛ Vu ⎞ ⎛ Tu Ph ⎞        ⎡⎛    ⎞                    ⎤
        ⎜     ⎟+⎜
        ⎜ b d ⎟ ⎜ 1.7 A2 ⎟
                          ⎟ ≤ φ ⎢⎜ Vc ⎟ + 2
                                 ⎜b d ⎟ 3             f 'c ⎥                             ¬!%>@@¦
        ⎝ w ⎠ ⎝        oh ⎠     ⎣⎝ w ⎠                     ⎦
         Edl Vc = f 'c bwd / 6 = ersIusþg;kMlaMgkat;sMrab;ebtugTMgn;Fmμta. GgÁdéTeTotRtUv)ankM
Nt;enAkñúgEpñk 8>2.
         karkMNt;enHKWQrelIPaBCak;EsþgEdlfaplbUkénkugRtaMgEdlbNþalBIkMlaMgkat; nigm:Um:g;
rmYl ¬GgÁxageqVg¦ minRtUvFMCagkugRtaMgEdleFVIeGayeRbHbUknwg 2 f 'c / 3 . krNIdUcKñaRtUv)an
GnuvtþedIm,IKNnakMlaMgkat;edayKμanm:Um:g;rmYlenAkñúgemeronTI 8. eKRtUvkarkarkMNt; (limitation)
edIm,Ikat;bnßysñameRbH nigedIm,IkarBarEbképÞebtugEdlbNþalmkBIkugRtaMgkMlaMgkat;TTwgeRTt
nigm:Um:g;rmYleRTt.
   8>6> muxkat;Rbehag            Hollow Section

         bnSMénkugRtaMgkMlaMgkat; nigkugRtaMgm:Um:g;rmYlenAkñúgmuxkat;RbehagRtUv)anbgðajenAkñúgrUb
15>6 EdlkMras;CBa¢aMgRtUvOansnμt;faefr. enAkñúgmuxkat;RbehagxøH kMras;CBa¢aMgGacERbRbYlCMuvij
brimaRt. sMrab;krNIenH smIkar !%>@@ RtUv)ankMNt;enATItaMgEdlGgÁxageqVgmantMélGtibrma. cM
NaMfa enAnwgsøabxagelI nigsøabxageRkam CaTUeTAkugRtaMgkMlaMgkat;RtUv)anecal. CaTUeTA Rbsin
ebIkMras;CBa¢aMgénmuxkat;Rbehag t tUcCag Aoh / Ph enaHsmIkar !%>@@ køayCa
          ⎛ Vu ⎞ ⎛ Tu Ph ⎞        ⎡⎛ V ⎞ 2            ⎤
          ⎜     ⎟+⎜⎜
          ⎜ b d ⎟ 1.7 A t ⎟ ⎟ ≤ φ ⎢⎜ c ⎟ +
                                   ⎜b d ⎟ 3      f 'c ⎥                                ¬!%>@#¦
        ⎝   w   ⎠ ⎝     oh   ⎠           ⎣⎝   w   ⎠       ⎦
(ACI Code, Section 11.6.3)       .
   8>7> EdkRTnug Web Reinforcement
          dUcEdl)anBnül;rYcehIy viFI ACI Code sMrab;KNnaGgát;Edlrgm:Um:g;rmYlKWQrelI space
truss analogy enAkñúgrUbTI 15>8. bnÞab;BIkareRbHedaykarrmYl eKRtUvkarEdkBIrRbePTedIm,ITb;nwg

m:Um:g;rmYlEdlGnuvtþ Tu KW EdkTTwg (transverse reinforcement) At enAkñúgTMrg;CaEdkkgbiTCit nig
EdkbeNþay (longitudinal reinforcement) Al . ACI Code )anbgðajnUvsmIkarxageRkamedIm,I
KNna At nig Al ³
          !> EdkkgbiTCit At EdlGacKNnadUcxageRkam³

Design for Torsion                                                                                   364
T.Chhay                                                                                           NPIC



                 2 Ao At f yt cot θ
          Tn =
                          s
                                                                                             ¬!%>@$¦
  Edl Tn = Tφu           nig φ = 0.75
        At = RkLaépÞéneCIgmYyrbs;EdkkgbiTCit

        f yt = ersIusþg;yal (yield strength) rbs; At At ≤ 400MPa

        s = KMlatEdkkg

   Ao nig θ RtUv)ankMNt;enAkñúgEpñk 8>2. smIkar !%>@$ GacRtUv)ansresrdUcxageRkam
        At
             =
                     Tn
         s 2 A f cot θ
                                                                              ¬!%>@%¦
                     o yt

  RbsinebI θ = 45o enaH cot θ = 1.0 nigRbsinebI               enaHsmIkar !%>@% køayCa
                                                               f yt = 400MPa
        At
           =
        s 800 Ao
                Tn
                                                                               ¬!%>@^¦
   Edl Tn KitCa N .mm . KMlatEdkkg s minRtUvFMCagéntMéltUcCageKkñúgcMeNam Ph / 8 nig
300mm . sMrab;muxkat; RbehagrgkarrmYl

cMgayEdlvas;BIGkS½énEdkkgeTAépÞxagkñúgrbs;CBa¢aMgminRtUvtUcCag 0.5 Aoh / Ph .
       @> EdkbeNþaybEnßm Al EdlcaM)ac;sMrab;karrmYlminKYrtUcCagtMélxageRkam³
             ⎛ A ⎞ ⎛ f yt ⎞ 2
       Al = ⎜ t ⎟ Ph ⎜
                     ⎜ f ⎟
                          ⎟ cot θ                                              ¬!%>@&¦
               s ⎝    ⎠     ⎝   y   ⎠
      Rbsin θ = 45 nig      o
                                        f yt = f y = 400MPa   sMrab;TaMgEdkkg nigEdkbeNþay
enaHsmIkar !%>@& køayCa
               ⎛A ⎞        ⎛A ⎞
          Al = ⎜ t ⎟ Ph = 2⎜ t ⎟( x1 + y1 )                                            ¬!%>@*¦
               ⎝ s ⎠       ⎝ s ⎠
       Ph RtUv)ankMNt;enAkñúgEpñk 8>2. cMNaMfa EdkEdlcaM)ac;sMrab;karrmYlKYrRtUv)anbEnßmBIelI

EdlEdlcaM)ac;sMrab;kMlaMgkat; m:Um:g;Bt; nigkMlaMgtamGkS½EdleFVIGMeBIrYmKñaCamYykMlaMgrmYl. kar
kMNt;epSgeTotsMrab;EdkbeNþay Al mandUcxageRkam³
       a.   Ggát;p©itEdktUcbMputsMrab;EdkbeNþayKW DB10 b¤KMlatEdkkgelI 24 b¤ s / 24
            edayykmYyNaEdlmantMéltUcCageK.
       b.    EdkbeNþayKYrRtUv)anBRgayCMuvijbrimaRtrrbs;EdkkgCamYyKMlatGtibrma 300mm .


karKNnasMrab;kMlaMgrmYl                                                                            365
Department of Civil Engineering                                                   viTüasßanCatiBhubec©keTskm<úCa


       c.    EdkbeNþayKYrEtdak;enAkñúgEdkkg y:agehacNas;k¾dak;EdkenARKb;mMurbs;Edkkg.
             EdkEdldak;enAnwgmMurbs;EdkkgRtUv)aneKrkeXIjfamanRbsiT§PaBkñúgkarbegáItersIu
             sþg;m:Um:g;rmYl nigkñúgkarkarBarsñameRbH.
       d.    EdkTb;m:Um:g;rmYlRtUvdak;enAcMgay (bt + d ) BIcMnucEdlRTwsþIRtUvkar Edl bt CaTTwgén
             Epñkrbs;muxkat;EdlmanEdkkgTb;kMlaMgrmYl.
  8>8> EdkTb;karrmYlGb,brma              Minimum Torsional Reinforcement

       enAkEnøgNaEdlEdkTb;karrmYlGb,brmaRtUvkar EdkTb;karrmYlGb,brmaRtUv)ankMNt;dUc
xageRkam (ACI Code, Section 11.6.5) ³
       !> EdkkgbiTCitGb,brmasMrab;bnSMénkMlaMgkat;TTwg nigkarrmYl ¬emIlEpñk 8>6¦³
               Av + 2 At ≥
                             0.35bw s
                                f
                                                       ¬sMrab; f 'c < 31MPa ¦
                                  yt

                                       ⎛b s⎞
                Av + 2 At ≥ 0.063 f 'c ⎜ w ⎟
                                       ⎜ f yt ⎟
                                                              ¬sMrab;   f 'c ≤ 31MPa   ¦        ¬!%>@(¦
                                       ⎝      ⎠
       Edl      Av =  RkLaépÞeCIgTaMgBIrrbs;EdkkgEdlkMNt;)anBIkMlaMgkat;
                At = RkLaépÞeCIgEtmYyrbs;EdkkgEdlkMNt;BIm:Um:g;rmYl

                s = KMlatEdkkg

                f yt = ersIusþg;yal (yield strength) rbs;Edkkg ≤ 400 MPa

        KMlatEdkkg s minKYrFMCagtMéltUcCagkñúgcMeNam Ph / 8 nig 300mm . KMlatenHRtUvkar
edIm,IRKb;RKgsñameRbH.
        @> RkLaépÞEdksrubGb,brmarbs;EdkbeNþayTb;karrmYl³
                          5 f 'c Acp ⎛ At ⎞ ⎛ f yt ⎞
                Al min =             − ⎜ ⎟ Ph ⎜
                                               ⎜ f ⎟
                                                    ⎟                         ¬!%>#0¦
                              yf       ⎝ s ⎠      ⎝   y   ⎠
       Edl At / s minRtUvyktUcCag 173bw / f yt .
        Al Gb,brmaenAkñúgsmIkar !%>#0 RtUv)ankMNt;edIm,Ipþl;nUvGRtaGb,brmaénmaDEdkTb;kM

laMgrmYlelImaDebtug mantMélRbEhl 1% sMrab;ebtugGarem:EdlrgkMlaMgrmYlsuT§.
9> segçbviFIsaRsþKNnaeday ACI Code Summary of ACI Code Procedures
     viFIsaRsþKNnasMrab;bnSMkMlaMgkat;TTwg nigkMlaMgrmYlGacRtUv)ansegçbdUcxageRkam³

Design for Torsion                                                                                          366
T.Chhay                                                                                     NPIC




          !> KNnakMlaMgkat;TTwgemKuN Vu nigm:Um:g;rmYlemKuN Tu BIkMlaMgEdlGnuvtþmkelIeRKOg
             bgÁúM. tMéleRKaHfñak;sMrab;kMlaMgkat;TTwg nigkMlaMgrmYlKWsßitenARtg;muxkat;EdlmancM
             gay d BIépÞrbs;TMr.
          @> a. eKRtUvkarEdkkMlaMgkat;TTwgenAeBl Vu > φVc / 2 Edl Vc = f 'c bwd / 6 .
             b. EdkTb;karrmYlRtUvkarenAeBlEdl
                            f 'c ⎛ Acp ⎞
                                    2
                    Tu > φ
                           12
                                 ⎜
                                 ⎜P ⎟
                                       ⎟                                          ¬!%>@0¦
                                   ⎝   cp   ⎠
                 RbsinebIEdkRTnugRtUvkar GnuvtþviFIsaRsþxageRkam.
          #> KNnasMrab;kMlaMgkat;TTwg
             a. KNnaersIuisþg;kMlaMgkat; nominal Edlpþl;edayebtug Vc . kMNt;kMlaMgkat;TTwg

                EdlTb;edayEdkRTnug³
                                             V − φVc
                 Vu = φVc + Vs b¤        Vs = u
                                                 φ
             b. eRbobeFob Vs Edl)anKNnaCamYynwgtMélGnuBaØatGtibrma 2 f 'c bw d / 3 eyag

                tam ACI Code. RbsinebI Vs tUcbnþkarKNna EtpÞúymkvijtMeLIgTMhMmuxkat;rbs;
                ebtug.
             c. EdkRTnugkMlaMgkat;TTwgRtUv)anKNnadUcxageRkam³
                          Vs s
                   Av =
                          f yt d

                   Edl      Av =RkLaépÞéneCIgTaMgBIrrbs;Edkkg
                          s = KMlatEdkkg

                   EdkkMlaMgkat;TTwgkñúgmYyÉktþaRbEvgKW
                    Av   V
                       = s
                    s   f yt d

             d.   RtYtBinitü Av / s Edl)anKNnaCamYynwg Av / s Gb,brma³
                    Av                    ⎛b       ⎞       ⎛        ⎞
                       (min) = 0.063 f 'c ⎜ w      ⎟ ≥ 0.35⎜ bw     ⎟
                    s                     ⎜ f yt   ⎟       ⎜ f yt   ⎟
                                          ⎝        ⎠       ⎝        ⎠
                   Av Gb,brma RtUv)ankMNt;edaybTdæaneRkambnSMénGMeBIrbs;kMlaMgkat;TTwg nigkM
                  laMgrmYlRtUv)aneGayenAkñúgCMhanTI5

karKNnasMrab;kMlaMgrmYl                                                                      367
Department of Civil Engineering                                           viTüasßanCatiBhubec©keTskm<úCa


       $> KNnasMrab;karrmYl³
          a. RtYtBinitüfaetIm:Um:g;rmYlemKuN Tu begáItm:Um:g;rmYllMnwg (equilibrium torsion)

             b¤m:Um:g;rmYlRtUvKña (compatibility torsion). sMrab; equilibrium torsion eRbI Tu .
             sMrab; compatibility torsion m:Um:g;rmYlKNnaKWtMéltUcCageKén Tu BIbnÞúkemKuN
             nig
                          f 'c ⎛ Acp ⎞
                                   2
              Tu 2 = φ
                          3
                               ⎜
                               ⎜P ⎟
                                     ⎟                                                 ¬!%>!(¦
                                 ⎝       cp   ⎠
          b.   RtYtBinitüfaetITMhMénmuxkat;RKb;RKan;b¤Gt;. vaTTYl)anedayeRbIsmIkar !%>@! sMrab;
               muxkat;tan; b¤smIkar !%>@@ sMrab;muxkat;Rbehag. RbsinebItMélenAGgÁxageqVgFM
               Cag φ (Vc / bwd + 2 f 'c / 3) enaHbegáInmuxkat; pÞúymkvijKNnabnþ. sMrab;muxkat;
               Rbehag RtYtBinitüfaetIkMras;CBa¢aMg t tUcCag Aoh / Ph b¤Gt;. RbsinebIvatUcCageRbI
               smIkar !%>@# pÞúymkvijeRbIsmIkar !%>@@.
          c.   kMNt;EdkkgbiTCitcaM)ac;BIsmIkar !%>@%
                 At
                    =
                            Tn
                 s 2 A f cot θ
                                                                                     ¬!%>@%¦
                         o yt

                At / s minRtUvtUcCag 173bw / f yt . ehIy mMu θ Gacsnμt;esμI 45o / Tn = Tu / φ nig
                φ = 0.75 .
               snμt; Ao = 0.85 Aoh = 0.85(x1 y1 )
               Edl x1 nig y1 CaTTwg nigkMBs;rbs;muxkat;KitBIGkS½eTAGkS½Edkkg ¬emIlrUb
               TI !%>!!¦. sMrab; θ = 45o nig f y = 400MPa
                At
                    =
                 s 800 Ao
                         Tn
                                                                                      ¬!%>@^¦
               KMlatGnuBaØatGtibrma s KWtMéltUcCageKén 300mm b¤ Ph / 8 .
          d.   kMNt;EdkbeNþaybEnßmBIsmIkar !%>@&³
                     ⎛ A ⎞ ⎛ f yt ⎞ 2
               Al = ⎜ t ⎟ Ph ⎜
                             ⎜ f ⎟
                                  ⎟ cot θ                                             ¬!%>@& a ¦
                     ⎝ s ⎠   ⎝       y   ⎠
               EtminRtUvtUcCag
                        ⎛ 5 f 'c Acp          ⎞ ⎛ A ⎞ ⎛ f yt ⎞
               Al min = ⎜
                        ⎜ 12 f y
                                              ⎟ − ⎜ t ⎟P ⎜
                                              ⎟ ⎝ s ⎠ h⎜ fy ⎟
                                                             ⎟                          ¬!%>@& b ¦
                        ⎝                     ⎠          ⎝   ⎠


Design for Torsion                                                                                  368
T.Chhay                                                                                  NPIC




                sMrab; θ = 45o nig f yt = 400MPa enaH Al = ( At / s )Ph          ¬!%>@*¦
                EdkbeNþayTb;karrmYlKYrmanGgát;p©ity:agticesμIKMlatEdkkgelI 24 b¤ s / 24 b:uEnþ
                minRtUvtUcCag DB10 . EdkbeNþayRtUvdak;enAkñúgEdkkgbiTCitCamYyKMlatGtibrma
                esμI 300mm . y:agehaceKRtUvdak;EdkmYyedImenARKb;mMurbs;Edkkg. CaTUeTAmYy
                PaKbIén Edk Al RtUv)anbEnßmeTAelIEdkTaj mYyPaKbIenABak;kNþalkMBs;rbs; mux
                kat; nigmYyPaKbIeTotenAEpñksgát;.
          %> kMNt;RkLaépÞsrubénEdkkgbiTCitEdlbNþalBI Vu nig Tu .
                 Avt = ( Av + 2 At ) ≥
                                       0.35bw s
                                          f
                                                                                 ¬!%>@(¦
                                       yt

             eRCIserIsEdkkgbiTCitsmrmüCamYyKMlat s EdlmantMéltUcCageKkñúgcMeNam 300mm
             nig Ph / 8 .
             EdkkgKYrRtUv)andak;enAcMgay (bt + d ) eRkaycMnucEdlRTwsþIRtUvkar Edl bt = TTwgén
             muxkat;EdlTb;nwgkMlaMgrmYl.
]TahrN_15>3³ (Equilibrium Torsion)
kMNt;brimaNEdkRTnugcaM)ac;sMrab;muxkat;ctuekaNEkgdUcbgðajenAkñúgrUbTI 15>15. muxkat;rgnUvkM
laMgkat;emKuN Vu = 213.5kN nigkMlaMgrmYllMnwg (equilibrium torsion) Tu = 41kN .m enATItaMg
EdlmancMgay d BIépÞénTMr. eKeGay f 'c = 28MPa nig f y = 400MPa .




karKNnasMrab;kMlaMgrmYl                                                                   369
Department of Civil Engineering                                               viTüasßanCatiBhubec©keTskm<úCa


dMeNaHRsay³
CMhanxageRkambgðajBIviFIsaRsþkñúgkarKNna
    1> kMlaMgKNnaKW Vu = 213.5kN nig Tu = 41kN .m
    2> a. EdkTb;kMlaMgkat;RtUvkarenAeBl Vu > φVc / 2 .
                      φ
                                  28 (400 )(520) ⋅10 − 3 = 137.6kN
                             0.75
             φVc =          f 'c bd =
                   6          6
                           φV
             Vu = 213.5kN > c = 68.8kN
                            2
             eKRtUvkarEdkTb;kMlaMgkat;.
       b.    eKRtUvkarEdkTb;karrmYlenAeBl
                           f 'c ⎛ Acp   ⎞
                                   2
             Tu > φ             ⎜       ⎟ =T
                          12 ⎜ Pcp      ⎟ a
                                ⎝       ⎠
              Acp = xo yo = 400 × 580 = 232000mm 2

              Pcp = 2( xo yo ) = 2(400 + 520) = 1840mm
                    0.75 28 (232000 )2 − 6
             Ta =                     10 = 9.7 kN .m
                        12 × 1840
             Tu = 41kN .m > 9.7kN .m
            EdkTb;kMlaMgrmYlRtUvkarcaM)ac;. cMNaMfa RbsinebI Tu tUcCag 9.7kN.m enaHEdkTb;kar
    rmYlnwgminRtUvkar b:uEnþEdkTb;kMlaMgkat;RtUvkar.
    3> KNnakMlaMgkat;TTwg³
        a. Vu = φVc + φVs / Vs = 101.2kN

                                              28 (400)(520 ) = 733.8kN > Vs
                            2               2
        b. Vs (max) =           f 'c bd =
                            3               3
                       101.2 ⋅10 3
        c.
             Av
             s
                 V
                = s =
                 f y d 400 × 520
                                   = 0.5mm 2 / m             ¬eCIgBIr¦
              Av
              2s
                 = 0.25mm 2 / m                              ¬eCIgmYy¦
    4> KNnasMrab;karrmYl
        a. kMlaMgrmYlKNna Tu = 41kN .m . KNnalkçN³muxkat; edaysnμt;kMras;ebtugkarBar

           Edk 40mm nigeRbIEdkkg DB12 ³
              x1 = 400 − 2(40 + 6 ) = 308mm



Design for Torsion                                                                                      370
T.Chhay                                                                                                 NPIC




               y1 = 580 − 2(40 + 6 ) = 488mm
               CakarGnuvtþn_ eKGacsnμt; x1 = b − 90mm nig y1 = h − 90mm
               Aoh = x1 y1 = 308 × 488 = 150304mm 2

               Ao = 0.85 Aoh = 127758.4mm 2

               Ph = 2(x1 + y1 ) = 2(308 + 488) = 1592mm
               θ = 45o   nig cot θ = 1.0
          b.   RtYtBinitüPaBRKb;RKan;rbs;muxkat;edayeRbIsmIkar !%>@!³
                        2                       2
                 ⎛ Vu ⎞ ⎛ Tu Ph ⎞      ⎡⎛    ⎞                           ⎤
                 ⎜        ⎜      ⎟ ≤ φ ⎢⎜ Vc ⎟ + 2
                 ⎜b d ⎟ +⎜
                      ⎟       2 ⎟       ⎜b d ⎟ 3                    f 'c ⎥
                 ⎝ w ⎠ ⎝ 1.7 Aoh ⎠     ⎣⎝ w ⎠                            ⎦
               φVc = 137.6kN             nig Vc = 183.5kN
                                                          2                        2
                                   ⎛ 137600 ⎞ ⎛ 41000000 × 1592 ⎞
               Left − hand side = ⎜            ⎟ +⎜               ⎟ = 1.82 MPa
                                   ⎝ 400 × 520 ⎠ ⎝ 1.7 × 150304 2 ⎠
                                       ⎛ 183500     2    ⎞
               Right − hand side = 0.75⎜          +   28 ⎟ = 3.3MPa > 1.82MPa
                                       ⎝ 400 × 520 3     ⎠
               muxkat;RKb;RKan;
          c.   kMNt;EdkkgbiTCitcaM)ac;EdlbNþalBIkarrmYlBIsmIkar !%>@%³
                 At     Tn
                    =
                 s 2 Ao f yt cot θ
                          Tu        41
                Tn =           =        = 54.7 kN .m       cot θ = 1.0       Ao = 127758.4mm 2
                          φ        0.75
                        54.7 ⋅10 6
                 At
                    =
                 s 2 × 127758.4 × 400
                                      = 0.535mm 2 / m                ¬eCIgmYy¦
          d.   kMNt;EdkbeNþaybEnßmBIsmIkarTI !%>@&³
                      ⎛A       ⎞ ⎛ f yt       ⎞ 2
                 Al = ⎜ t      ⎟ Ph ⎜         ⎟ cot θ
                      ⎝ s      ⎠ ⎜ fy
                                    ⎝
                                              ⎟
                                              ⎠
                 At
                    = 0.535               Ph = 1592mm               f yt = f y = 400MPa   cot θ = 1.0
                 s
                 Al = 0.535 × 1592 = 851.72mm 2
                                   5 f 'c Acp      ⎛ A ⎞ ⎛ f yt ⎞
                 Al (min) =                      − ⎜ t ⎟ Ph ⎜   ⎟
                                     12 f y        ⎝ s ⎠ ⎜ fy ⎟
                                                            ⎝   ⎠
                                                     At
                 Acp = 232000mm 2                       = 0.535     f yt = f y = 400MPa
                                                     s


karKNnasMrab;kMlaMgrmYl                                                                                 371
Department of Civil Engineering                                        viTüasßanCatiBhubec©keTskm<úCa


                           5 28 (232000)
              Al (min) =                 − (0.535)(1592) = 427mm 2
                             12 × 400
              Al = 851.72mm 2 lb;
    5> kMNt;RkLaépÞEdkkgsrub
       a. sMrab;eCIgmYyrbs;Edkkg
                                     Avt At Av
                                         =   +
                                      s     s 2s
          EdkkgEdlcaM)ac; Avt = 0.535 + 0.25 = 0.785mm 2 / m ¬eCIgmYy¦
          eRbIEdk DB12 RkLaépÞmuxkat;rbs;EdkkgsMrab;eCIgmYyKW 113mm 2
                                      = 144mm yk 140mm
                                 113
          spacing of stirrups =
                                0.785
       b. KMlatGtibrma s = h =          = 199mm b¤ 300mm mYyNaEdltUcCag.
                             P 1592
                              8     8
          KMlatEdleRbIKW 140mm < 199mm
                              0.35bw 0.35 × 400
       c. Avt / s Gb,brma =           =          = 0.35mm 2 / m < 0.785mm 2 / m
                                f    yt    400

    6> edIm,IrkkarBRgayEdkbeNþay cMNaMfa Al srub = 851.72mm 2 . eRbImYyPaKbIenAEpñkxag
       elI b¤ 851.72 / 3 = 283.9mm 2 edIm,IbEnßmenAkñúgEdkrgkarsgát; A's . eRbImYyPaKbIdak;enA
       EpñkxageRkam edIm,IbEnßmBIelIEdkrgkarTaj nigEdkmYyPaKbIeTotdak;enAkMBs;Bak;kNþal.
       a. RkLaépÞEdksrubenAEpñkxagelIesμI 226 + 283.9 = 509.9mm 2 . eRbI 3DB16

           ¬ As = 603mm 2 ¦
       b. RkLaépÞEdksrubenAEpñkxageRkamesμI 3078.8 + 283.9 = 3362.7 mm 2 . eRbI 3DB 28

           nig 2DB32 enARCugmMu ¬ As srub = 3455.8mm 2 ¦
             Al srubEdleRbI = (603 − 226 ) + (3455.8 − 3078.8) = 754mm 2

       c. enAkMBs;Bak;kNþal eRbIEdk 2DB12 ¬ As = 226mm 2 ¦

           bøg;srésEdklMGitRtUv)anbgðajenAkñúgrUbTI 15>15. KMlatEdkbeNþayesμInwg
        230mm EdltUcCagKMlatEdkGtibrmaEdlRtUvkar 300mm 2 . Ggát;p©itEdkkg DB12 Edl

       eRbIFMCagGgát;p©itGb,brma DB10 b¤KMlatEdkkgelI 24 ¬ s / 24 = 5.8mm ¦.
]TahrN_15>4³ (Compatibility Torsion)
edaHRsay]TahrN_TI 15>3 eLIgvij RbsinebIkMlaMgrmYlemKuNCa compatibility torsion.
dMeNaHRsay³

Design for Torsion                                                                               372
T.Chhay                                                                                  NPIC




eyagtamdMeNaHRsaykñúg]TahrNITI 15>3
   !> kMlaMgKNnaKW V u = 213.5kN nig compatibility torsion Tu = 41kN .m
   @> CMhan (a) nig (b) dUcKñaenAkñúg]TahrN_TI 15>3. eKRtUvkarEdkRTnug.
   #> CMhan (c) KWdUcKña.
   $> KNnasMrab;kMlaMgrmYl³
       edaysar compatibility torsion Tu = 41kN .m enaH Tu KNnaRtUvtUvCag 41kN .m b¤ φTcr
       RtUv)aneGayenAkñúgsmIkar !%>!(
                          f 'c ⎛ Acp ⎞ 0.75 28 ⎛ 232000 2 ⎞ − 6
                                  2
          φTcr = φ             ⎜     ⎟=        ⎜          ⎟ ⋅10 = 38.7 kN .m
                          3 ⎜ Pcp ⎟        3   ⎜ 1840 ⎟
                               ⎝     ⎠         ⎝          ⎠
          edaysarEt φTcr < Tu / eRbI Tu = 38.7kN .m . GnuvtþeLIgvijRKb;CMhanenAkñúg]TahrN_TI
          15>3 edayeRbI Tu = 38.7kN .m edIm,IkMNt;famuxkat;RKb;RKan;.
                 At
                 s
                    = 0.5mm 2 / m       ¬eCIgmYy¦
                   Al = 0.5 × 1592 = 796mm 2
                eRbI Al = 852mm 2 > Al (min)
     %> Avt caM)ac; = 025 + 0.5 = 0.75mm 2 / m ¬eCIgmYy¦
                       .

               113
          s=        = 150.6mm
               0.75
          eRbI 150mm . eRCIserIsEdkbeNþay nigEdkkgdUckñúg]TahrN_TI 15>3.
]TahrN_15>5³ (L-section with Equilibrium Torsion)
FñwmxagénRbBn§½kMralxNнrbs;GKardUcbgðajenAkñúgrUbTI 15>16. muxkat;enAcMgay d BIépÞénTMrrg
nUv Vu = 235kN nig equilibrium torque Tu = 27kN .m . KNnaEdkRTnugcaM)ac;edayeRbI
 f 'c = 28MPa nig f y = 400MPa sMrab;RKb;EdkEdleRbIenAkñúgFñwm.

dMeNaHRsay³
     1> kMlaMgKNnaKW Vu = 235kN nig Tu = 27kN .m
     2> a. EdkTb;kMlaMgkat;RtUvkarenAeBl Vu > φVc / 2
                          φ f 'c            0.75 28
               φVc =               bw d =           350 × 455 ⋅10 − 3 = 105.3kN
                              6                 6
                      φVc
               Vu >           = 52.65kN
                          2


karKNnasMrab;kMlaMgrmYl                                                                   373
Department of Civil Engineering                                           viTüasßanCatiBhubec©keTskm<úCa


            eKRtUvkarEdkkMlaMgkat;TTwg
       b. RtYtBinitüfaetIEdkTb;karrmYlRtUvkarb¤Gt;. snμt;fasøabcUlrYmkñúgkarTb;karrmYl RbEvg

            søabRbsiT§PaBKW hw = 380mm < 150 × 4 = 600mm .
             xo = 350mm       nig yo = 530mm
            Acp = (350 × 530) + (150 × 380 ) = 242500mm 2

            Pcp = 2(730 + 530) = 2520mm
                                               ⎛ 242500 2 ⎞ − 6
            BIsmIkar !%>@0     Ta =
                                       0.75
                                        12
                                            28 ⎜
                                               ⎜ 2520 ⎟
                                                          ⎟ ⋅10 = 7.7kN .m
                                               ⎝          ⎠
            Tu > Ta
         muxkat;RtUvkarEdkTb;karrmYl.
    3> KNnaEdkTb;kMlaMgkat;TTwg³
       a.   Vu = φVc + φVs

            235 = 105.3 + 0.75Vs

            Vs = 173kN
                       2
       b.   Vs (max) =    f 'c bw d = 561.8kN > Vs
                       3
       c.
            Av
             s
                  V
                = s =
                         173000
                  f y d 400 × 455
                                    = 0.95mm 2 / m            ¬eCIgBIr¦
            Av 0.95
               =    = 0.475mm 2 / m
            2s   2
    4> KNnaEdkTb;karrmYl³ Tu = 27kN .m
        a. KNnalkçN³muxkat;edaysnμt; kMras;ebtugkarBarEdk 40mm nigEdkkg DB12 .

           RTnug x1 = 350 − (2 × 40) − 12 = 258mm y1 = 530 − (2 × 40) − 12 = 438mm
           søab x1 = 380mm ¬EdkkghYscUleTAkñúgRTnug¦
                         y1 = 150 − 92 = 58mm
                Aoh = (58 × 380) + (258 × 438) = 135044mm 2

                Ao = 0.85 Aoh = 114787.4mm 2

               Ph = 2(58 + 380) + 2(258 + 438) = 2268mm

               θ = 45o            cot θ = 1.0




Design for Torsion                                                                                  374
T.Chhay                                                                                       NPIC




          b.   RtYtBinitüPaBRKb;RKan;rbs;muxkat;edayeRbIsmIkarTI !%>@!³ Vu = 235kN /
                φVc = 105.3kN / Vc = 140.4kN / Tu = 27kN .m

                                   ⎛ 235000 ⎞ ⎛ 27 ⋅10 × 2268 ⎞
                                                2         6
               Left − hand side = ⎜            ⎟ +⎜               ⎟ = 2.47 MPa
                                   ⎝ 350 × 455 ⎠ ⎜ 1.7 × 135044 2 ⎟
                                                  ⎝               ⎠
                                       ⎛ 140400     2      ⎞
               Right − hand side = 0.75⎜          +    28 ⎟ = 3.3MPa
                                       ⎝ 350 × 455 3       ⎠
               muxkat;manlkçN³RKb;RKan;
          c.   kMNt;EdkkgbiTCitedIm,ITb;karrmYl At / s BIsmIkar !%>@%³
                                              27 ⋅ 10 6
                At
                s
                   =
                           Tn
                                    =
                     2 Ao f yt cot θ 0.75 × 2 × 114787.4 × 400
                                                               = 0.392mm 2 / m         ¬eCIgmYy¦
          d.   KNnaEdkbeNþaybEnßmBIsmIkar !%>@* ¬sMrab;      f 'c = 400 MPa   nig cot θ = 1.0 ¦
                    ⎛A ⎞
               Al = ⎜ t ⎟ Ph = 0.392 × 2268 = 889mm 2
                    ⎝ s ⎠
               Al min     ¬BIsmIkar !%>#0¦ KW
                           5 28 × 242500
               Al min =                  − 889 = 447.7mm 2
                             12 × 400
            karcUlrYmrbs;søabRtUv)anecaledaysarTTYl)anlT§plxusKñatictYc nigtMélBlkmμ
            ticCag.
     5> kMNt;RkLaépÞmuxkat;EdkkgbiTCit
         a. sMrab;eCIgmYy vt = t + v
                            A      A A
                              s     s 2s
                muxkat;cM)ac; Avt = 0.392 + 0.475 = 0.867mm 2 / m ¬eCIgmYy¦
                eRCIserIsEdk DB12 ¬ As = 113mm 2 ¦
                KMlatEdkkg = 0113 = 130mm eRbI 125mm
                                  .867
         b. KMlatEdkGtibrma s max = h =             = 283.5mm . eRbI s = 125mm dUckarKNna.
                                        P     2268
                                         8      8
             Avt 0.35bw 0.35 × 350
         c.       =          =            = 0.31mm 2 / m < 0.867mm 2 / m dUcenHeRbI
              s       f      yt   400

                DB12 @125
     6> kMNt;karBRgayrbs;EdkbeNþay. Al srubKW 889mm 2 . eRbImYyPaKbI b¤
         889 / 3 = 296.3mm 2 enAEpñkxagelI EpñkkNþal nigEpñkxageRkam.



karKNnasMrab;kMlaMgrmYl                                                                           375
Department of Civil Engineering                                      viTüasßanCatiBhubec©keTskm<úCa


        a.   brimaNEdksrubenAEpñkxagelI = 628.3 + 296.3 = 924.6mm 2 eRbI 3DB20
             ¬ As = 942.5mm 2 ¦
        b.   brimaNEdksrubenAEpñkxagelI = 2463 + 296.3 = 2759.3mm 2 eRbI 5DB28
             ¬ As = 3078.8mm 2 ¦
                  Al srubEdleRbI = (942.5 − 628.3) + (3078.8 − 2463) = 930mm 2

        c.   eRbIEdk 2DB12 enABak;kNþalkMBs; ¬ As = 226mm 2 ¦. bøg;EdklMGitRtUv)anbgðajenA
             kñúgrUbTI 15>16. KMlatEdkbeNþayKW 190mm < 300mm . Ggát;p©itrbs;EdkkgKW
             12mm EdlFMCagGgát;p©itEdk DB10 b¤KMlatEdkkgelI 24 ¬ s / 24 = 5.2mm ¦.

             bEnßmEdkbeNþay DB12 enARKb;mMurbs;EdkkgenAkñúgRTnugFñwm nigsøabFñwm.




Design for Torsion                                                                             376
T.Chhay                   NPIC




karKNnasMrab;kMlaMgrmYl   377

More Related Content

What's hot

Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsChhay Teng
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete elementChhay Teng
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsChhay Teng
 
15. beam analysis using the stiffness method
15. beam analysis using the stiffness method15. beam analysis using the stiffness method
15. beam analysis using the stiffness methodChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equationsChhay Teng
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 

What's hot (20)

Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systems
 
15. beam analysis using the stiffness method
15. beam analysis using the stiffness method15. beam analysis using the stiffness method
15. beam analysis using the stiffness method
 
8. deflection
8. deflection8. deflection
8. deflection
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
1.introduction
1.introduction1.introduction
1.introduction
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdoc
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 

Viewers also liked

Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 

Viewers also liked (20)

Euron fl
Euron flEuron fl
Euron fl
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Euro l
Euro lEuro l
Euro l
 
Construction work
Construction work Construction work
Construction work
 
Euro upe
Euro upeEuro upe
Euro upe
 
Construction plan
Construction planConstruction plan
Construction plan
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Appendix
AppendixAppendix
Appendix
 
Euro sq
Euro sqEuro sq
Euro sq
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
5.beams
5.beams5.beams
5.beams
 
Appendix
AppendixAppendix
Appendix
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
3.tension members
3.tension members3.tension members
3.tension members
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
4.compression members
4.compression members4.compression members
4.compression members
 

Similar to Xv design for torsion

X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structuresChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence IntervalsTung Nget
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and archesChhay Teng
 
Roof preparation
Roof preparationRoof preparation
Roof preparationChhay Teng
 
1.resultants of coplanar force system17
1.resultants of coplanar force system171.resultants of coplanar force system17
1.resultants of coplanar force system17Chhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
Fundamental laws 1
Fundamental laws 1Fundamental laws 1
Fundamental laws 1
Pana Mann
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110Chhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 

Similar to Xv design for torsion (15)

X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence Intervals
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
Roof preparation
Roof preparationRoof preparation
Roof preparation
 
1.resultants of coplanar force system17
1.resultants of coplanar force system171.resultants of coplanar force system17
1.resultants of coplanar force system17
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
Fundamental laws 1
Fundamental laws 1Fundamental laws 1
Fundamental laws 1
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 

More from Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

More from Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Xv design for torsion

  • 1. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa XV. karKNnasMrab;kMlaMgrmYl Design for Torsion 1> esckþIepþIm Introduction kugRtaMgrmYlekItmanenAkñúgmuxkat;FñwmenAeBlEdlm:Um:g;manGMeBIRsbeTAnwgmuxkat;enaH. m:Um:g;rmYleFVIeGayGgát;vil nigmansñameRbHenAelIépÞrbs;va CaTUeTAEtgekItmanenAelImuxkat;mUl. edIm,IbgðajkugRtaMgrmYl eKGnuvtþkMlaMgrmYl T Fñwm cantilever muxkat;mUlEdleFVIBI elastic homogenous material dUcbgðajkñúgrUbTI 15>1. kMlaMgrmYlnwgeFVIeGayFñwmvil. cMnuc B clt½eTA cMnuc B' enAxagcugrbs;Fñwm b:uEnþcugmçageTotrbs;FñwmRtUv)anbgáb;. mMu θ RtUv)aneKehAfa mMurmYl (angle of twist). bøg; AO' OB nwgdUrrageTACarag AO'OB' . edaysnμt;fa Ggát;enArkSaRbEvgrbs; vadEdl enaH shear strain KW BB' rθ γ = = L L Edl L CaRbEvgrbs;Fñwm nig r CakaMrbs;muxkat;rgVg;. enAkñμúgeRKOgbgÁúMebtugGarem: Ggát;nwgrgm:Um:g;rmYlenAeBlGgát;enaHekagenAkñúgbøg;/ RT cantilever slab/ mannaTICa spandrel beam (end beam)/ b¤CaEpñkrbs;CeNþIrvil. Design for Torsion 346
  • 2. T.Chhay NPIC Ggát;eRKOgbgÁúMGacrgnUvEtkMlaMgrmYlsuT§ b¤enAkñúgkrNICaeRcIn vargCamYyKñakñúgeBlEtmYy nUvkMlaMgkat;TTwg nigm:Um:g;Bt;. ]TahrN_TI15>1 bgðajBIkMlaMgepSg²EdlGacGnuvtþmkelImuxkat; epSgKñaénFñwm cantilever. ]TahrN_TI15>1³ KNnakMlaMgEdlmanGMeBIenAmuxkat; !/ @ nig # énFñwm cantilever EdlbgðajenAkñúgrUbTI 15>2. Fñwm rgnUvkMlaMgbBaÄr P1 = 67kN / kMlaMgedk P2 = 53.5kN EdleFVIGMeBIenAcMnuc C nigbnÞúkedk P3 = 89kN EdlGnuvtþenAcMnuc B nigEkgeTAnwgTisedArbs;kMlaMg P2 . dMeNaHRsay³ yk N = kMlaMgEkg (normal force)/ V = kMlaMgkat; (shear force)/ M = m:Um:g;Bt; (bending moment)/ T =m:Um:g;rmYl (torsional moment). kMlaMgTaMgGs;RtUv)anbgðajenAkñúgtaragxageRkam³ muxkat; N (kN ) M x (kN .m) M y (kN .m) V x (kN ) V y (kN ) T (kN .m) ! 0 − 180.9 144.45 53.5 67 0 @ − 53.5 ¬sgát;¦ 0 144.45 89 67 180.9 # − 53.5 ¬sgát;¦ 241.2 464.85 89 67 180.9 karKNnasMrab;kMlaMgrmYl 347
  • 3. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa RbsinebI P1 / P2 nig P3 CabnÞúkemKuN ¬ Pu = 1.2PD + 1.6PL ¦ enaHral;tMélenAkñúgtaragCakMlaMg KNnaemKuN. 2> m:Um:g;rmYlenAkñúgFñwm Torsional Moments in Beams dUcbgðajenAkñúgrUbTI 15>1 kMlaMgGacGnuvtþenAelIeRKagsMNg;GKar edayeFVIeGaymanm:Um:g; rmYl. RbsinebIkMlaMgcMcMnuc P GnuvtþenARtg;cMnuc C enAelIeRKag ABC dUcbgðajenAkñúgrUb 15>3 a vabegáItm:Um:g;rmYl T = PZ enAkñúgFñwm AB Rtg;cMnuc D . enAeBl D sßitenAkNþalElVgénFñwm AB enaHm:Um:g;rmYlKNnaenAkñúgkMNat; AD esμInwgm:Um:g;rmYlKNnaenAkñúgkMNat; DB b¤esμInwg 1 T . Rb 2 sinebIkMral cantilever slab RtUv)anRTedayFñwm AB ¬rUbTI 15>3 b¦ enaHkMralxNнbegáItm:Um:g;rmYl BRgayesμI mt tambeNþayFñwm AB . m:Um:g;rmYlBRgayesμIenH KWekItBIbnÞúkenAelIcMerokTTwkmYy Éktþarbs;kMralxNн. RbsinebI S CaTTwgén cantilever slab nig w CabnÞúkenAelIkMralxNн ¬ kN / m 2 ¦ enaH mt = wS 2 / 2 ¬ kN .m / m ¦énFñwm AB . m:Um:g;rmYlKNnaGtibrmaenAkñúgFñwm AB KW T = mt L / 2 EdlGnuvtþenARtg;cMnuc A nig B . krNIbnÞúkepSgeTotRtUv)anbgðajenAkñúgtarag 15>1. CaTUeTA düaRkamm:Um:g;rmYlenAkñúgFñwmmanrag nigmantMéldUcKñanwgdüaRkamkMlaMgkat;TTWgsM rab;FñwmEdlrgnUvkMlaMg mt nig T . Design for Torsion 348
  • 4. T.Chhay NPIC karKNnasMrab;kMlaMgrmYl 349
  • 5. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 3> kugRtaMgrmYl Torsional Moments in Beams edayBicarNaelIFñwm cantilever Edlmanmuxkat;mUl ¬rUbTI15>1¦ enAeBlEdlm:Um:g;rmYl T manGMeBIelIFñwm vanwgbegáIteGaymankMlaMgkat;TTwg dV EkgeTAnwgkaMrbs;muxkat;. BIlkçxNÐl<nwg m:Um:g;rmYlxageRkARtUv)anTb;edaym:Um:g;rmYlxagkñúgEdlmantMél T esμIKñaEtTisedApÞúyKña . Rbsin ebI dV CakMlaMgkat;TTwgeFVIGMeBIelIépÞ dA ¬rUbTI 15>4¦ enaHGaMgtg;sIueténkMlaMgrmYlKW T = ∫ rdV edayyk v CakugRtaMgkMlaMgkat;TTWgenaH dV = vdA nig T = ∫ rvdA kMlaMgkat;TTwgeGLasÞicGtibrmaekItmanenAépÞxageRkArbs;muxkat;rgVg;Rtg;kaM r CamYynwgkM ras; dr enaHkMlaMgrmYlGacRtUv)ankMNt;edayKitm:Um:g;eFobnwgcMnuc 0 sMrab;RkLaépÞkg³ dT = (2πrdr )vr Edl 2πrdr CaRkLaépÞkg nig v CakugRtaMgkMlaMgkat;TTwgenAkñúgkg. dUcenH T = ∫ (2πrdr )vr = ∫ 2πr 2 dr R 0 R 0 ¬!%>!¦ sMrab;muxkat;RbehagEdlmankaMxagkñúg R1 / R T = ∫ 2πr 2 dr R1 ¬!%>@¦ sMrab;muxkat;tan; edayeRbIsmIkar ¬!%>!¦ nig v = vmax r / R R ⎛v r⎞ ⎛ 2π ⎞ R 3 T = ∫ 2πr 2 ⎜ max ⎟dr = ⎜ ⎟vmax ∫0 r dr 0 ⎝ R ⎠ ⎝ R ⎠ ⎛ 2π ⎞ ⎛π ⎞ 4 R =⎜ ⎟vmax = ⎜ ⎟vmax R 3 ⎝ R ⎠ 4 ⎝2⎠ Design for Torsion 350
  • 6. T.Chhay NPIC vmax = 2T πR 3 ¬!%>#¦ m:Um:g;niclPaBb:UElrénmuxkat;rgVg;KW J = πR 4 / 2 . dUcenH kugRtaMgkMlaMgkat;GacRtUv)an sresrCaGnuKmn_énm:Um:g;niclPaBb:UElrdUcxageRkam³ vmax = TR J ¬!%>$¦ 4> m:Um:g;rmYlenAkñúgmuxkat;ctuekaN Torsional Moments in Rectangular Sections karKNnakugRtaMgenAkñúgGgát;manmuxkat;minmUlEdlrgbnÞúkrmYlminsamBaØdUckarKNnasM rab;muxkat;mUleT. b:uEnþ lT§plEdlTTYlBIRTwsþIeGLasÞic (theory of elasticity) bgðajfakugRtaMg kMlaMgkat;TTwgGtibrmasMrab;muxkat;ctuekaNEkgGacRtUv)ankMNt;dUcxageRkam³ vmax = 2 T αx y ¬!%>%¦ Edl T= kMlaMgrmYlEdlGnuvtþ x = RCugxøIrbs;muxkat;ctuekaN y = RCugEvgrbs;muxkat;ctuekaN α = emKuNEdlGaRs½ynwgpleFobén y / x tMélrbs;vaRtUv)aneGayenAkñúgtarag xageRkam. y/x 1 .0 1 .2 1 .5 2 .0 4 .0 10 α 0.208 0.219 0.231 0.246 0.282 0.312 kugRtaMgkMlaMgkat;TTwgGtibrmaekItmanenAtamGkS½énRCugEvg y ¬rUbTI 15>5¦. sMrab;Ggát;EdlekItBIkarpÁúMénmuxkat;ctuekaNEkg dUcCamuxkat;GkSr L / T nig I tMél α GacRtUv)ansnμt;faesμInwg 1/ 3 ehIymuxkat;GacRtUv)anEckecjCamuxkat;ctuekaNCaeRcInEdlman RCugEvg yi nigRCugxøI xi . kugRtaMgkMlaMgkat;TTwgGacRtUv)anKNnaBI vmax = 3T ¬!%>^¦ ∑ i ix2 y Edl ∑ xi2 y i CatMélEdl)anBIplbUkmuxkat;ctuekaNEkgtUc². enAeBlEdl y / x ≤ 10 eK GaceRbIsmIkarsMrYlxageRkam³ karKNnasMrab;kMlaMgrmYl 351
  • 7. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa v max = 3T ¬!%>&¦ ⎛ x⎞ ∑ x 2 y⎜1 − 0.63 ⎜ ⎟ y⎟ ⎝ ⎠ 5> kMlaMgpÁÜbrvagkMlaMgkat; nigkMlaMgrmYl Combined Shear and Torsion enAkñúgkrNIGnuvtþn_CaeRcIn Ggát;eRKOgbgÁúMGacrgnUvTaMgkMlaMgkat; nigkMlaMgrmYlCamYyKña. kugRtaMgkMlaMgkat;GacnwgekItmanenAkñúgmuxkat;CamYynwgkugRtaMgkMlaMgkat;mFüm = v1 enAkñúgTis Design for Torsion 352
  • 8. T.Chhay NPIC edAénkMlaMgkat; V ¬rUbTI 15>6 a¦. kMlaMgrmYl T begáItkugRtaMgrmYlenAelIRKb;RCugrbs;muxkat; ctuekaN ABCD ¬ rUbTI 15>6 a¦ CamYynig v3 > v2 . karBRgaykugRtaMgcugeRkayRtUv)anTTYlBI karbUkbBa©ÚlnUvT§iBlénkugRtaMgkMlaMgkat; nigkugRtaMgrmYl edIm,IbegáIttMélGtibrmaesμI v1 + v3 enA elIRCug CD b:uEnþRCug AB nwgmankugRtaMgcugeRkayesμI v1 − v3 . RCug AD nig BC nwgrgEtkugRtaMg rmYl v2 . muxkat;RtUvd)anKNnasMrab;kugRtaMgGtibrma v = (v1 + v3 ) . 6> RTwsþIkarrmYlsMrab;Ggát;ebtug Torsion Theories for Concrete Members eKmanviFICaeRcInsMrab;viPaKGgát;ebtugBRgwgedayEdkEdlrgkarrmYl b¤rgkarrmYl karBt; nigkarkat;kñúgeBlEtmYy. CaTUeTAviFIKNnasMGageTAelIRTwsþIeKalBIrKW³ the skew bending theory nig space truss analogy. 6>1> Skew Bending Theory viFIeKalrbs; skew bending theory EdlENnaMeday Hsu CaviFIEdlsikSakar)ak;énmuxkat; ctuekaNedaykarrmYlEdlekItedaykarBt;eFobGkS½RsbeTAnwgépÞénmuxkat; y FMCag nigeRTteday mMu 45o eTAnwgGkS½EvgénFñwm ¬rUbTI 15>7¦. QrelIviFIsaRsþenH m:Um:g;rmYlGb,brma Tn GacRtUv)an KNnadUcxageRkam³ ⎛ x2 y ⎞ Tn = ⎜ ⎜ 3 ⎟ r ⎟f ¬!%>*¦ ⎝ ⎠ Edl f r KWm:UDuldac;rbs;ebtug. f r RtUv)ansnμt;esμInwg 5 f 'c / 12 enAkñúgkrNIenH Edl RtUv)aneRbobeFobCamYy 7.5 f 'c /12 EdlTTYleday ACI Code sMrab;KNnaPaBdabenAkñúgFñwm. karKNnasMrab;kMlaMgrmYl 353
  • 9. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa kMlaMgrmYlTb;edayebtugsMEdgdUcxageRkam³ ⎛ 1 ⎞ 2 Tc = ⎜ ⎟ x y f 'c ¬!%>(¦ ⎝ x⎠ nigkMlaMgTb;karrmYledayEdkTb;karrmYlKW α1 ( x1 y1 At f y ) Ts = s ¬!%>!0¦ dUcenH Tn = Tc + Ts Edl Tn lT§PaBTb;m:Um:g;rmYl nominal énmuxkat;. 6>2> Space Truss Analogy viFIsaRsþén space truss analogy KWQrelIkarsnμt;falT§PaBTb;Tl;karrmYlrbs;ebtugGar em:muxkat;ctuekaNRtUv)anKitecjEtBIEdknigebtugEdlBT§½CMuvijEdkb:ueNÑaH. kñúgkrNIenH muxkat; thin-wall RtUv)ansnμt;mannaTICa space truss ¬rUbTI 15>8¦. cMerokebtugvNнeRTtcenøaHsñameRbH Tb;kMlaMgsgát; b:uEnþEdkbeNþayenARCug nigEdkkgTb;nwgkMlaMgTajEdlekItedaym:Um:g;rmYl. kareFVIkarrbs;FñwmebtugGarem:EdlrgkarrmYlsuT§GacbgðajedayRkaPicénTMnak;TMngrvagkar rmYlnigmMurmYl dUcbgðajenAkñúgrUbTI15>9. eyIgemIleXIjfa muxnwgeRbH ebtugTb;nwgkugRtaMgrmYl nigEdkswgEtKμanrgkugRtaMg. eRkayeBleRbH kareFVIkarrbs;FñwmCalkçN³eGLasÞicminGacGnuvtþ)an dUcenHmMurmYlekIteLIgPøam² EdlekIneLIgrhUtdl;lT§PaBTb;Tl;m:Um:g;rmYlekItman. karkMNt;Edl manlkçN³Rbhak;RbEhlénlT§PaBTb;karrmYlsMrab;muxkat;eRbHGacnwgsMEdgdUcxageRkam³ ⎛A f ⎞ Tn = 2⎜ t s ⎟ x1 y1 ⎝ s ⎠ ¬!%>!!¦ Edl At = éneCIgmçagrbs;Edkkg Design for Torsion 354
  • 10. T.Chhay NPIC s=KMlatEdkkg x1 nig y1 = RbEvgxøI nigRbEvgEvg KitBIGkS½eTAGkS½énEdkkgbiTCit b¤BIEdkenARCug. smIkarmunecalnUvlT§PaBTb;karrmYlrbs;ebtug. Mitchell nig Collins ENnaMnUvsmIkarxag eRkamedIm,IKNnamMurmYlkñúgmYyÉktþaRbEvg ψ ³ ⎛ P ⎞ ⎡⎛ ε ⎞ ⎛ P (ε tan α ) ⎞ 2ε d ⎤ ψ = ⎜ o ⎟ ⎢⎜ l ⎟ + ⎜ h h ⎜ 2 A ⎟ tan α ⎜ ⎟+ ⎟ sin α ⎥ ¬!%>!@¦ ⎝ o ⎠ ⎣⎝ P ⎠ ⎝ o ⎠ ⎦ Edl εl = bMErbMrYlrageFob (strain) enAkñúgEdkbeNþay (longitudinal reinforcing steel) ε h = bMErbMrYlrageFobenAkñúgEdkkg (hoop steel) ε d = bMErbMrYlrageFobebtugGgát;RTUgenARtg;TItaMgénkMlaMgpÁÜbénFarkMlaMgkat; (shear flow) Ph = brimaRtrbs;EdkkgKitRtwmGkS½Edk ⎡ ⎛ P ⎞⎤ α = mMuénkMlaMgsgát;Ggát;RTUg = (ε d + ε l ) / ⎢ε d + ε h ⎜ h ⎟⎥ ⎜P ⎟ ⎣ ⎝ o ⎠⎦ Ao =RkLaépÞEdlBT§½CMuvijedaykMlaMgkat; b¤ = torque / 2q ¬Edl q = FarkMlaMgkat;¦ Po = brimaRténKnøgFarkMlaMgkat; ¬brimaRtrbs; Ao ¦ smIkarmMurmYlxagelImanlkçN³RsedogKñanwgsmIkarmMukMeNagkñúgkarBt; ¬rUbTI 15>10¦ ε + εs φ = curvature = c d ¬!%>!#¦ karKNnasMrab;kMlaMgrmYl 355
  • 11. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa Edl ε c nig ε s CabMErbMrYlrageFobenAkñúgebtug nigEdk erogKña. smIkard¾samBaØRtUv)anbk Rsayeday Solanki edIm,IkMNt;lT§PaBTb;nwgkarrmYlsuT§rbs;FñwmebtugGarem: edayQrelI space truss analogy dUcxageRkam³ 1 ⎡⎛ ∑ As f sy ⎞ ⎛ Ah f hy ⎞⎤ 2 Tu = (2 Ao )⎢⎜ ⎜ ⎟×⎜ ⎟ ⎜ ⎟⎥ ⎟ ¬!%>!$¦ ⎢⎝ Po ⎣ ⎠ ⎝ s ⎠⎥⎦ Edl / nig s RtUv)anBnül;BIxagelI Ao Po ∑ As f sy = kMlaMg yield énEdkbeNþayTaMgGs; Ah f hy = kMlaMg yield énEdkkg ACI Code )anTTYlykRTwsþIenHedIm,IKNnaGgát;eRKOgbgÁúMebtugEdlrgkarrmYl b¤karrmYl nigkarkat; enAkúñgviFIsaRsþd¾sMrYl. 7> ersIusþg;rmYlénGgát;ebtugsuT§ Torsional Strength of Plain Concrete Memgers Ggát;ebtugrgkarrmYlCaTUeTARtUv)anBRgwgedayEdkTb;nwgkarrmYlBiess. kñúgkrNIEdlkug RtaMgrmYlmantMéltUc nigRtUvkarKNnasMrab;Ggát;ebtugsuT§ kugRtaMgkMlaMgkat; vtc GacRtUv)ankMNt; edayeRbIsmIkar !%>^³ 3T f 'c vtc = ≤ φ∑ x y 2 2 Design for Torsion 356
  • 12. T.Chhay NPIC nigmMurmYlKW θ = 3TL / x3 yG / Edl T Cam:Um:g;rmYlEdlGnuvtþmkelImuxkat; ¬tUcCagm:Um:g; rmYlEdleFVIeGayeRbH¦ nig G KWCam:UDulkMlaMgkat; nigGacRtUv)ansnμt;esμInwg 0.45 dgénm:UDuleG- LasÞicrbs;ebtug Ec Edl G = 2135 f 'c . kMlaMgkat;TTwgeFVIeGayeRbHedaysarkarrmYl (torsional cracking shear) vc enAkñúgebtugsuT§GacRtUv)ansnμt;esμI 0.5 f 'c . dUcenH sMrab;muxkat; ctuekaNebtugsuT§ φ 2 Tc = 12 x y f 'c ¬!%>!%¦ nigsMrab;muxkat;EdlpSMeLIgedayctuekaNEkgeRcIn φ Tc = 12 f 'c ∑ x 2 y ¬!%>!^¦ 8> karrmYlenAkñúgGgát;ebtugBRgwgedayEdk Torsion in Reinforced Concrete Memebers (ACI Code Procedure) 8>1> sBaØaNTUeTA General dMeNIrkarKNnasMrab;karrmYlmanlkçN³RsedogKñaeTAnwgkMlaMgkat;TTwgedaykarBt;. enA eBlEdlm:Um:g;rmYlemKuNGnuvtþenAelImuxkat;FMCaglT§PaBTb;m:Um:g;rmYlkñúgrbs;ebtugGacTb;)an enaHsñameRbHEdlekItedaykarrmYl (torsional crack) ekIteLIg dUcenHEdkTb;karrmYl (torsional reinforcement) kñúgTMrg;CaEdkkgbiTCit (closed stirrup or hoop reinforcement) RtUv)andak;. bEnßmBIelIEdkkgbiTCit EdkbeNþayk¾RtUv)andak;enAtamRCugrbs;Edkkg nigRtUv)anBRgayy:ag l¥enACMuvijmuxkat;. TaMgEdkkgbiTCit nigEdkbeNþaymansarsMxan;Nas;kñúgkarTb;nwgkMlaMgTaj Ggát;RTUgEdlbNþaymkBIkMlaMgrmYl EdkEtmYyRbePTnwgKμanRbsiT§PaBeTebIKμanEdkmYyRbePT eTot. EdkkgRtUvEtbiTCit edaysarkugRtaMgrmYlekItmanenARKb;RCugrbs;muxkat;. EdkcaM)ac;sMrab;karrmYlRtUv)anbEnßmelIEdkcaM)ac;sMrab;kMlaMgkat;/ sMrab;karBt; nigkMlaMg tamGkS½. EdkEdkcaM)ac;sMrab;karrmYlRtUv)andak;edIm,IeFVIeGayersIusþg;m:Um:g;rmYlrbs;muxkat; φTn FMCagb¤esμInwgm:Um:g;rmYlemKuN Tu EdlRtUv)anKNnaBIbnÞúkemKuN. φTn ≥ Tu ¬!%>!&¦ enAeBleKRtUvkarEdkTb;karrmYl ersIusþg;m:Um:g;rmYl φTn RtUv)anKNnaedaysnμt;kMlaMg rmYl Tu TaMgGs; RtUv)anTb;edayEdkkg nigEdkbeNþayCamYynwgersIusþg;Tb;karrmYlrbs;ebtug karKNnasMrab;kMlaMgrmYl 357
  • 13. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa Tc = 0 . kñúgeBlCamYyKña ersIusþg;kMlaMgkat;EdlTb;edayebtug vc RtUv)ansnμt;enAdEdledayKμan karERbRbYledaysarvtþmanrbs;ersIusþg;rmYl. 8>2> )a:ra:Em:RtFrNImaRténkarrmYl Torsional Geometric Parameters enAkñúg ACI Code, Section 11.6 karKNnasMrab;karrmYlKWQrenAelI space truss analogy dUcbgðajenAkñúgrUbTI 15>8. eRkayeBlEdlsñameRbHedaykarrmYlekIteLIg karrmYlRtUv)anTb; edayEdkkgbiTCit EdkbeNþay nigersIusþg;kMlaMgsgát;Ggát;RTUgrbs;ebtug. sac;ebtugenAxageRkA EdkkgkøayeTACaKμanRbsiT§PaB nigRtUv)anecalenAkñúgkarKNna. RkLaépÞBT§½CMuvijedayGkS½énEdk Design for Torsion 358
  • 14. T.Chhay NPIC kgbiTCitxageRkAbMput RtUv)ankMNt;eday Aoh ¬épÞqUtenAkñúgrUbTI 15>11¦. edaysarGgÁdéTeTot RtUv)aneRbIenAkñúgsmIkarKNna vak¾RtUv)anENnaMCadMbUgenATIenHedIm,ICYyeGaykaryl;nUvsmIkarman lkçN³gayRsYl. BIrUbTI 15>11 GgÁEdleGayRtUv)ankMNt;dUcxageRkam³ Acp = RkLaépÞmuxkat;ebtugEdlBT§½CMuvijedaybrimaRtxageRkAénmuxkat;ebtug Pcp = brimaRténmuxkat;ebtugTaMgmUl Acp Aoh = RkLaépÞEdlBT§½CMuvijedayGkS½énEdkrgkarrmYlTTwgbiTCitxageRkAbMput ¬épÞqUtkñúgrUbTI 15>11¦ Ao = RkLaépÞEdlBT§½CMuvijedayKnøgFarkMlaMgkat;TTwg nigGacykesμInwg 0.85 Aoh Ph = brimaRtebtugrbs;EdkrgkarrmYlTTwgbiTCitxageRkAbMput θ = mMuénkMlaMgsgát;Ggát;RTUgcenøaH 30 o eTA 60 o ¬b¤GacykesμInwg 45o sMrab;Ggát;ebtugGarem:¦ sMrab;muxkat;GkSr T nig L TTwgRbsiT§PaBénsøabmçag²RtUv)ankMNt;esμInwgkMBs;FñwmEdl sßitenABIelI b¤BIeRkamkMralxNн edayykmYyNaEdlFMCag b:uEnþminRtUvFMCag 4 dgkMras;kMralxNнeT ¬ACI Code, Sections 11.6.1 and 13.2.4¦. 8>3> m:Um:g;rmYleFVIeGayeRbH Tcr Cracking Torsional Moment Tcr m:Um:g;eFVIeGayeRbHeRkamm:Um:g;rmYlsuT§ Tcr GacRtUv)anTajecjedayCMnYsmuxkat;BitR)akd munnwgeRbH CamYynwg thin-walled tube smmUl t = 0.75 Acp / Pcp / CamYynwgRkLaépÞEdlBT§½CMuvij edayGkS½CBa¢aMg A0 = 2 Acp / 3 . enAeBlEdl kugRtaMgTajGtibrma ¬kugRtaMgem¦ mantMélesμI f 'c / 3 sñameRbHnwgekItman ehIyCaTUeTAm:Um:g;rmYl T esμInwg T = 2 Aoτt ¬!%>!*¦ Edl τ = kugRtaMgkMlaMgkat;edaykarrmYl = f 'c / 3 sMrab;sñameRbHedaykarrmYl. CMnYs τ eday f 'c / 3 f 'c ⎛ Acp ⎞ 2 Tcr = 3 ⎜ ⎜P ⎟ n ⎟ =T nig Tu = φTcr ¬!%>!(¦ ⎝ cp ⎠ edaysnμt;fam:Um:g;rmYltUcCagb¤esμInwg Tcr / 4 nwgmineFVIeGaymankarkat;bnßyersIusþg;Tb;karBt; b¤Tb;kMlaMgkat;enAkñúgGgát;énrcnasm<n§½ ACI Code, Section 11.6.1 GnuBaØateGayecalnUvT§iBlm:Um:g;rmYlenAkñúgGgát;ebtugGarem:enAeBlEdlm:Um:g;rmYlemKuN Tu ≤ φTcr / 4 b¤ karKNnasMrab;kMlaMgrmYl 359
  • 15. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa f 'c ⎛ Acp ⎞ 2 Tu ≤ φ 12 ⎜ ⎟=T ⎜ Pcp ⎟ a ¬!%>@0¦ ⎝ ⎠ enAeBlEdl Tu FMCagtMélenAkñúgsmIkar !%>@0 Tu TaMgGs;RtUv)anTb;edayEdkkgbiTCit nigEdkbeNþay. m:Um:g;rmYl Tu RtUv)anKNnaBImuxkat;EdlmanTItaMgRtg;cMgay d BIépÞénTMr nig Tu = φTn Edl φ = 0.75 . ]TahrN_TI15>1³ sMrab;muxkat;bIEdlbgðajenAkñúgrUbTI 15>12 nigQrelIkarkMNt; ACI Code cUrkMNt; a. m:Um:g;eFVIeGayeRbH φTcr b. m:Um:g;rmYlemKuNGtibrma φTn EdlGacGnuvtþelImuxkat;nImYy²edaymineRbIEdkRTnugTb;kar rmYl. snμt; f 'c = 28MPa / f y = 400MPa / kMras;ebtugkarBarEdk 40mm nigeRbIEdkkg DB12 . dMeNaHRsay³ 1> muxkat; ! a. mU:m:g;eFVIeGayeRbH φTcr GacRtUv)anKNnaBIsmIkar !%>!( f 'c ⎛ Acp ⎞ 2 φTcr = φ ⎜ ⎟ 3 ⎜ Pcp ⎟ ⎝ ⎠ Design for Torsion 360
  • 16. T.Chhay NPIC sMrab;muxkat;enH Acp = xo yo RkLaépÞmuxkat;TaMgmUl Edl xo = 400mm nig yo = 610mm Acp = 400 × 610 = 244000mm 2 Pcp = brimaRténmuxkat;ebtugTaMgmUl = 2( xo + yo ) = 2(400 + 610 ) = 2020mm 28 ⎛ 244000 2 ⎞ ⎜ ⎟ = 39kN .m φTcr = 0.75 3 ⎜ 2020 ⎟ ⎝ ⎠ b. φTn GnuBaØatEdlGacGnuvtþedaymineRbIEdkTb;karrmYlRtUv)anKNnaBIsmIkar !%>@0 φTcr 39 Ta = = = 9.75kN .m 4 4 2> muxkat; @ a. dMbUgKNna Acp nig Pcp sMrab;muxkat;enH nigGnuvtþsmIkarTI !%>!( edIm,IKNna φTcr . edaysnμt;søabRtUv)andak;CamYyEdkkgbiTCit enaHsøabRbsiT§PaBEdlRtUveRbIenA RCugmçag²énRTnugesμInwg $dgkMras;søab b¤ 4(100) = 400mm = hw = 400mm Acp = web area + area of effective flanges Acp = 500 × 350 + 2 ×100 × 400 = 255000mm 2 Pcp = 2(b + h ) = 2(350 + 2 × 400 + 500) = 3300mm 28 ⎛ 255000 2 ⎞ ⎜ ⎟ = 26kN .m φTcr = 0.75 3 ⎜ 3300 ⎟ ⎝ ⎠ cMNaM³ RbsinebIsøabRtUv)anecal ehIyEdkTb;karrmYlRtUv)andak;EtenAkñúgRTnug enaH Acp = 350 × 500 = 175000mm 2 Pcp = 2(350 + 500) = 1700mm φTcr = 23.8kN .m b. φTn GnuBaØatEdlGacGnuvtþedaymineRbIEdkTb;karrmYl φTcr 26 Ta = = = 6.5kN .m 4 4 3> muxkat; 3 karKNnasMrab;kMlaMgrmYl 361
  • 17. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa a. snμt;søabRtUv)andak;EdkkgbiTCit RbEcgRbsiT§PaBesμInwg hw = 370mm < 4 ×150 = 600mm Acp = 350 × 520 + 370 ×150 = 237500mm 2 Pcp = 2(b + h) = 2(350 + 370 + 520) = 2480mm 28 ⎛ 237500 2 ⎞ ⎜ ⎟ = 30kN .m φTcr = 0.75 3 ⎜ 2480 ⎟ ⎝ ⎠ cMNaM³ RbsinebIsøabRtUv)anecal enaH Acp = 350 × 520 = 182000mm 2 Pcp = 2(350 + 520) = 1740mm φTcr = 25.2kN .m b. φTn GnuBaØat φTn = φTcr = 30 = 7.5kN.m 4 4 8>4> m:Um:g;rmYllMnwg nwgm:Um:g;rmYlRtUvKña Equilibrium Torsion and Compatibility Torsion kñúgkarviPaKeRKOgbgÁáúMGgát;ebtug kMlaMgepSg²EdlGnuvtþrYmman kMlaMgEkg (normal force)/ m:Um:g;Bt; (bending moment)/ kMlaMgkat; (shear force) nigm:Um:g;rmYl Edl)anBnül;enAkñúg]TahrN_ TI 15>1. karKNnaGgát;ebtugGarem:KWQrelIkar)ak;rbs;Ggát;GMeBIrbs;bnÞúkemKuN. sMrab;Ggát;sþa TicminkMNt; (statically indeterminate member) karEbgEckm:Um:g;mþgeTot (redistribution of moments) ekItmanmuneBl)ak; dUcenHm:Um:g;KNnaGacnwgRtUv)ankat;bnßy b:uEnþ sMrab;Ggát;sþaTickM Nt; (statically determinate member) dUcCaFñwmsamBaØ (simple beam) b¤Fñwm cantilever Kμankar EbgEckm:Um:g;mþgeTotekIteLIgeT. enAkñúgkarKNnaGgát;Edlrgm:Um:g;rmYl eKmanBIrkrNIEdlGacGnuvtþbnÞab;BIkareRbH. !> krNIm:Um:g;rmYllMnwg (equilibrium torsion case) ekItmanenAeBlm:Um:g;rmYlEdlRtUvkar sMrab;eRKOgbgÁúMsßitkñúgsßanPaBlMnwg ehIy Tu minGacRtUv)ankat;bnßyedaykarEbg EckeLIgvijrbs;m:Um:g;eT dUckrNIFñwmTMrsamBaØ. kñúgkrNIenHEdkTb;rmYlRtUv)andak; edIm,ITb;RKb; Tu . rUbTI 15>13 FñwmEdlenAEKmRTkMralxNн cantilever EdlKμankar EbgEckm:Um:g;mþgeTotekItman. @> krNIm:Um:g;rmYlRtUvKña (compatibility torsion case) ekItmanenAeBlm:Um:g;rmYl Tu Gac RtUv)ankat;bnßyedaykarEbgEckkMlaMgkñúgmþgeTotbnÞab;BIeRbH enAeBlEdlPaBRtUvKña Design for Torsion 362
  • 18. T.Chhay NPIC énkMhUcRTg;RTay (compatibility of deformation) RtUv)anrkSa enAkñúgGgát;eRKOgbgÁúM. rUbTI 15>14 bgðajBI]TahrN_sMrab;krNIenH EdlFñwmTTwgBIrmanGMeBIelIFñwmEKmbegáIt m:Um:g;rmYl. mMurmYlFMekItman enAeBlsñameRbHedaykarrmYlelcecj Edlpþl;nUvkar bgEckbnÞúkd¾FMenAkñúgeRKOgbgÁúM. vanwgeTAdl;m:Um:g;rmYlEdleFVIeGayeRbH Tcr eRkamGM eBIénbnSM karBt; karkat; nigkarrmYl enAeBlEdlkugRtaMgem (principle stress) mantM élRbEhl f 'c / 3 . enAeBlEdl Tu > Tcr m:Um:g;rmYlesμInwg Tcr ¬smIkar !%>!(¦ EdlGacsnμt;ekItmanenARtg;muxkat;eRKaHfñak;enACitépÞénTMr. ACI Code kMNt;m:Um:g;rmYlKNnaesμInwgtMéltUcCageKén Tu Edl)anBIbnÞúkemKuN b¤ φTcr BIsmIkar !%>!(. 8>5> karkMNt;énersIusþg;m:Um:g;rmYl Limitation of Tortional Moment Strength ACI Code,Section 11.6.3 kMNt;TMhMmuxkat;edaysmIkarxageRkamBIr³ !> sMrab;muxkat;tan; karKNnasMrab;kMlaMgrmYl 363
  • 19. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 2 2 ⎛ Vu ⎞ ⎛ Tu Ph ⎞ ⎡⎛ ⎞ ⎤ ⎜ ⎟ +⎜ ⎟ ≤ φ ⎢⎜ Vc ⎟ + 2 ⎜ b d ⎟ ⎜ 1 .7 A 2 ⎟ ⎜ ⎟ f 'c ⎥ ¬!%>@!¦ ⎝ w ⎠ ⎝ oh ⎠ ⎣⎝ bw d ⎠ 3 ⎦ @> sMrab;muxkat;Rbehag ⎛ Vu ⎞ ⎛ Tu Ph ⎞ ⎡⎛ ⎞ ⎤ ⎜ ⎟+⎜ ⎜ b d ⎟ ⎜ 1.7 A2 ⎟ ⎟ ≤ φ ⎢⎜ Vc ⎟ + 2 ⎜b d ⎟ 3 f 'c ⎥ ¬!%>@@¦ ⎝ w ⎠ ⎝ oh ⎠ ⎣⎝ w ⎠ ⎦ Edl Vc = f 'c bwd / 6 = ersIusþg;kMlaMgkat;sMrab;ebtugTMgn;Fmμta. GgÁdéTeTotRtUv)ankM Nt;enAkñúgEpñk 8>2. karkMNt;enHKWQrelIPaBCak;EsþgEdlfaplbUkénkugRtaMgEdlbNþalBIkMlaMgkat; nigm:Um:g; rmYl ¬GgÁxageqVg¦ minRtUvFMCagkugRtaMgEdleFVIeGayeRbHbUknwg 2 f 'c / 3 . krNIdUcKñaRtUv)an GnuvtþedIm,IKNnakMlaMgkat;edayKμanm:Um:g;rmYlenAkñúgemeronTI 8. eKRtUvkarkarkMNt; (limitation) edIm,Ikat;bnßysñameRbH nigedIm,IkarBarEbképÞebtugEdlbNþalmkBIkugRtaMgkMlaMgkat;TTwgeRTt nigm:Um:g;rmYleRTt. 8>6> muxkat;Rbehag Hollow Section bnSMénkugRtaMgkMlaMgkat; nigkugRtaMgm:Um:g;rmYlenAkñúgmuxkat;RbehagRtUv)anbgðajenAkñúgrUb 15>6 EdlkMras;CBa¢aMgRtUvOansnμt;faefr. enAkñúgmuxkat;RbehagxøH kMras;CBa¢aMgGacERbRbYlCMuvij brimaRt. sMrab;krNIenH smIkar !%>@@ RtUv)ankMNt;enATItaMgEdlGgÁxageqVgmantMélGtibrma. cM NaMfa enAnwgsøabxagelI nigsøabxageRkam CaTUeTAkugRtaMgkMlaMgkat;RtUv)anecal. CaTUeTA Rbsin ebIkMras;CBa¢aMgénmuxkat;Rbehag t tUcCag Aoh / Ph enaHsmIkar !%>@@ køayCa ⎛ Vu ⎞ ⎛ Tu Ph ⎞ ⎡⎛ V ⎞ 2 ⎤ ⎜ ⎟+⎜⎜ ⎜ b d ⎟ 1.7 A t ⎟ ⎟ ≤ φ ⎢⎜ c ⎟ + ⎜b d ⎟ 3 f 'c ⎥ ¬!%>@#¦ ⎝ w ⎠ ⎝ oh ⎠ ⎣⎝ w ⎠ ⎦ (ACI Code, Section 11.6.3) . 8>7> EdkRTnug Web Reinforcement dUcEdl)anBnül;rYcehIy viFI ACI Code sMrab;KNnaGgát;Edlrgm:Um:g;rmYlKWQrelI space truss analogy enAkñúgrUbTI 15>8. bnÞab;BIkareRbHedaykarrmYl eKRtUvkarEdkBIrRbePTedIm,ITb;nwg m:Um:g;rmYlEdlGnuvtþ Tu KW EdkTTwg (transverse reinforcement) At enAkñúgTMrg;CaEdkkgbiTCit nig EdkbeNþay (longitudinal reinforcement) Al . ACI Code )anbgðajnUvsmIkarxageRkamedIm,I KNna At nig Al ³ !> EdkkgbiTCit At EdlGacKNnadUcxageRkam³ Design for Torsion 364
  • 20. T.Chhay NPIC 2 Ao At f yt cot θ Tn = s ¬!%>@$¦ Edl Tn = Tφu nig φ = 0.75 At = RkLaépÞéneCIgmYyrbs;EdkkgbiTCit f yt = ersIusþg;yal (yield strength) rbs; At At ≤ 400MPa s = KMlatEdkkg Ao nig θ RtUv)ankMNt;enAkñúgEpñk 8>2. smIkar !%>@$ GacRtUv)ansresrdUcxageRkam At = Tn s 2 A f cot θ ¬!%>@%¦ o yt RbsinebI θ = 45o enaH cot θ = 1.0 nigRbsinebI enaHsmIkar !%>@% køayCa f yt = 400MPa At = s 800 Ao Tn ¬!%>@^¦ Edl Tn KitCa N .mm . KMlatEdkkg s minRtUvFMCagéntMéltUcCageKkñúgcMeNam Ph / 8 nig 300mm . sMrab;muxkat; RbehagrgkarrmYl cMgayEdlvas;BIGkS½énEdkkgeTAépÞxagkñúgrbs;CBa¢aMgminRtUvtUcCag 0.5 Aoh / Ph . @> EdkbeNþaybEnßm Al EdlcaM)ac;sMrab;karrmYlminKYrtUcCagtMélxageRkam³ ⎛ A ⎞ ⎛ f yt ⎞ 2 Al = ⎜ t ⎟ Ph ⎜ ⎜ f ⎟ ⎟ cot θ ¬!%>@&¦ s ⎝ ⎠ ⎝ y ⎠ Rbsin θ = 45 nig o f yt = f y = 400MPa sMrab;TaMgEdkkg nigEdkbeNþay enaHsmIkar !%>@& køayCa ⎛A ⎞ ⎛A ⎞ Al = ⎜ t ⎟ Ph = 2⎜ t ⎟( x1 + y1 ) ¬!%>@*¦ ⎝ s ⎠ ⎝ s ⎠ Ph RtUv)ankMNt;enAkñúgEpñk 8>2. cMNaMfa EdkEdlcaM)ac;sMrab;karrmYlKYrRtUv)anbEnßmBIelI EdlEdlcaM)ac;sMrab;kMlaMgkat; m:Um:g;Bt; nigkMlaMgtamGkS½EdleFVIGMeBIrYmKñaCamYykMlaMgrmYl. kar kMNt;epSgeTotsMrab;EdkbeNþay Al mandUcxageRkam³ a. Ggát;p©itEdktUcbMputsMrab;EdkbeNþayKW DB10 b¤KMlatEdkkgelI 24 b¤ s / 24 edayykmYyNaEdlmantMéltUcCageK. b. EdkbeNþayKYrRtUv)anBRgayCMuvijbrimaRtrrbs;EdkkgCamYyKMlatGtibrma 300mm . karKNnasMrab;kMlaMgrmYl 365
  • 21. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa c. EdkbeNþayKYrEtdak;enAkñúgEdkkg y:agehacNas;k¾dak;EdkenARKb;mMurbs;Edkkg. EdkEdldak;enAnwgmMurbs;EdkkgRtUv)aneKrkeXIjfamanRbsiT§PaBkñúgkarbegáItersIu sþg;m:Um:g;rmYl nigkñúgkarkarBarsñameRbH. d. EdkTb;m:Um:g;rmYlRtUvdak;enAcMgay (bt + d ) BIcMnucEdlRTwsþIRtUvkar Edl bt CaTTwgén Epñkrbs;muxkat;EdlmanEdkkgTb;kMlaMgrmYl. 8>8> EdkTb;karrmYlGb,brma Minimum Torsional Reinforcement enAkEnøgNaEdlEdkTb;karrmYlGb,brmaRtUvkar EdkTb;karrmYlGb,brmaRtUv)ankMNt;dUc xageRkam (ACI Code, Section 11.6.5) ³ !> EdkkgbiTCitGb,brmasMrab;bnSMénkMlaMgkat;TTwg nigkarrmYl ¬emIlEpñk 8>6¦³ Av + 2 At ≥ 0.35bw s f ¬sMrab; f 'c < 31MPa ¦ yt ⎛b s⎞ Av + 2 At ≥ 0.063 f 'c ⎜ w ⎟ ⎜ f yt ⎟ ¬sMrab; f 'c ≤ 31MPa ¦ ¬!%>@(¦ ⎝ ⎠ Edl Av = RkLaépÞeCIgTaMgBIrrbs;EdkkgEdlkMNt;)anBIkMlaMgkat; At = RkLaépÞeCIgEtmYyrbs;EdkkgEdlkMNt;BIm:Um:g;rmYl s = KMlatEdkkg f yt = ersIusþg;yal (yield strength) rbs;Edkkg ≤ 400 MPa KMlatEdkkg s minKYrFMCagtMéltUcCagkñúgcMeNam Ph / 8 nig 300mm . KMlatenHRtUvkar edIm,IRKb;RKgsñameRbH. @> RkLaépÞEdksrubGb,brmarbs;EdkbeNþayTb;karrmYl³ 5 f 'c Acp ⎛ At ⎞ ⎛ f yt ⎞ Al min = − ⎜ ⎟ Ph ⎜ ⎜ f ⎟ ⎟ ¬!%>#0¦ yf ⎝ s ⎠ ⎝ y ⎠ Edl At / s minRtUvyktUcCag 173bw / f yt . Al Gb,brmaenAkñúgsmIkar !%>#0 RtUv)ankMNt;edIm,Ipþl;nUvGRtaGb,brmaénmaDEdkTb;kM laMgrmYlelImaDebtug mantMélRbEhl 1% sMrab;ebtugGarem:EdlrgkMlaMgrmYlsuT§. 9> segçbviFIsaRsþKNnaeday ACI Code Summary of ACI Code Procedures viFIsaRsþKNnasMrab;bnSMkMlaMgkat;TTwg nigkMlaMgrmYlGacRtUv)ansegçbdUcxageRkam³ Design for Torsion 366
  • 22. T.Chhay NPIC !> KNnakMlaMgkat;TTwgemKuN Vu nigm:Um:g;rmYlemKuN Tu BIkMlaMgEdlGnuvtþmkelIeRKOg bgÁúM. tMéleRKaHfñak;sMrab;kMlaMgkat;TTwg nigkMlaMgrmYlKWsßitenARtg;muxkat;EdlmancM gay d BIépÞrbs;TMr. @> a. eKRtUvkarEdkkMlaMgkat;TTwgenAeBl Vu > φVc / 2 Edl Vc = f 'c bwd / 6 . b. EdkTb;karrmYlRtUvkarenAeBlEdl f 'c ⎛ Acp ⎞ 2 Tu > φ 12 ⎜ ⎜P ⎟ ⎟ ¬!%>@0¦ ⎝ cp ⎠ RbsinebIEdkRTnugRtUvkar GnuvtþviFIsaRsþxageRkam. #> KNnasMrab;kMlaMgkat;TTwg a. KNnaersIuisþg;kMlaMgkat; nominal Edlpþl;edayebtug Vc . kMNt;kMlaMgkat;TTwg EdlTb;edayEdkRTnug³ V − φVc Vu = φVc + Vs b¤ Vs = u φ b. eRbobeFob Vs Edl)anKNnaCamYynwgtMélGnuBaØatGtibrma 2 f 'c bw d / 3 eyag tam ACI Code. RbsinebI Vs tUcbnþkarKNna EtpÞúymkvijtMeLIgTMhMmuxkat;rbs; ebtug. c. EdkRTnugkMlaMgkat;TTwgRtUv)anKNnadUcxageRkam³ Vs s Av = f yt d Edl Av =RkLaépÞéneCIgTaMgBIrrbs;Edkkg s = KMlatEdkkg EdkkMlaMgkat;TTwgkñúgmYyÉktþaRbEvgKW Av V = s s f yt d d. RtYtBinitü Av / s Edl)anKNnaCamYynwg Av / s Gb,brma³ Av ⎛b ⎞ ⎛ ⎞ (min) = 0.063 f 'c ⎜ w ⎟ ≥ 0.35⎜ bw ⎟ s ⎜ f yt ⎟ ⎜ f yt ⎟ ⎝ ⎠ ⎝ ⎠ Av Gb,brma RtUv)ankMNt;edaybTdæaneRkambnSMénGMeBIrbs;kMlaMgkat;TTwg nigkM laMgrmYlRtUv)aneGayenAkñúgCMhanTI5 karKNnasMrab;kMlaMgrmYl 367
  • 23. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa $> KNnasMrab;karrmYl³ a. RtYtBinitüfaetIm:Um:g;rmYlemKuN Tu begáItm:Um:g;rmYllMnwg (equilibrium torsion) b¤m:Um:g;rmYlRtUvKña (compatibility torsion). sMrab; equilibrium torsion eRbI Tu . sMrab; compatibility torsion m:Um:g;rmYlKNnaKWtMéltUcCageKén Tu BIbnÞúkemKuN nig f 'c ⎛ Acp ⎞ 2 Tu 2 = φ 3 ⎜ ⎜P ⎟ ⎟ ¬!%>!(¦ ⎝ cp ⎠ b. RtYtBinitüfaetITMhMénmuxkat;RKb;RKan;b¤Gt;. vaTTYl)anedayeRbIsmIkar !%>@! sMrab; muxkat;tan; b¤smIkar !%>@@ sMrab;muxkat;Rbehag. RbsinebItMélenAGgÁxageqVgFM Cag φ (Vc / bwd + 2 f 'c / 3) enaHbegáInmuxkat; pÞúymkvijKNnabnþ. sMrab;muxkat; Rbehag RtYtBinitüfaetIkMras;CBa¢aMg t tUcCag Aoh / Ph b¤Gt;. RbsinebIvatUcCageRbI smIkar !%>@# pÞúymkvijeRbIsmIkar !%>@@. c. kMNt;EdkkgbiTCitcaM)ac;BIsmIkar !%>@% At = Tn s 2 A f cot θ ¬!%>@%¦ o yt At / s minRtUvtUcCag 173bw / f yt . ehIy mMu θ Gacsnμt;esμI 45o / Tn = Tu / φ nig φ = 0.75 . snμt; Ao = 0.85 Aoh = 0.85(x1 y1 ) Edl x1 nig y1 CaTTwg nigkMBs;rbs;muxkat;KitBIGkS½eTAGkS½Edkkg ¬emIlrUb TI !%>!!¦. sMrab; θ = 45o nig f y = 400MPa At = s 800 Ao Tn ¬!%>@^¦ KMlatGnuBaØatGtibrma s KWtMéltUcCageKén 300mm b¤ Ph / 8 . d. kMNt;EdkbeNþaybEnßmBIsmIkar !%>@&³ ⎛ A ⎞ ⎛ f yt ⎞ 2 Al = ⎜ t ⎟ Ph ⎜ ⎜ f ⎟ ⎟ cot θ ¬!%>@& a ¦ ⎝ s ⎠ ⎝ y ⎠ EtminRtUvtUcCag ⎛ 5 f 'c Acp ⎞ ⎛ A ⎞ ⎛ f yt ⎞ Al min = ⎜ ⎜ 12 f y ⎟ − ⎜ t ⎟P ⎜ ⎟ ⎝ s ⎠ h⎜ fy ⎟ ⎟ ¬!%>@& b ¦ ⎝ ⎠ ⎝ ⎠ Design for Torsion 368
  • 24. T.Chhay NPIC sMrab; θ = 45o nig f yt = 400MPa enaH Al = ( At / s )Ph ¬!%>@*¦ EdkbeNþayTb;karrmYlKYrmanGgát;p©ity:agticesμIKMlatEdkkgelI 24 b¤ s / 24 b:uEnþ minRtUvtUcCag DB10 . EdkbeNþayRtUvdak;enAkñúgEdkkgbiTCitCamYyKMlatGtibrma esμI 300mm . y:agehaceKRtUvdak;EdkmYyedImenARKb;mMurbs;Edkkg. CaTUeTAmYy PaKbIén Edk Al RtUv)anbEnßmeTAelIEdkTaj mYyPaKbIenABak;kNþalkMBs;rbs; mux kat; nigmYyPaKbIeTotenAEpñksgát;. %> kMNt;RkLaépÞsrubénEdkkgbiTCitEdlbNþalBI Vu nig Tu . Avt = ( Av + 2 At ) ≥ 0.35bw s f ¬!%>@(¦ yt eRCIserIsEdkkgbiTCitsmrmüCamYyKMlat s EdlmantMéltUcCageKkñúgcMeNam 300mm nig Ph / 8 . EdkkgKYrRtUv)andak;enAcMgay (bt + d ) eRkaycMnucEdlRTwsþIRtUvkar Edl bt = TTwgén muxkat;EdlTb;nwgkMlaMgrmYl. ]TahrN_15>3³ (Equilibrium Torsion) kMNt;brimaNEdkRTnugcaM)ac;sMrab;muxkat;ctuekaNEkgdUcbgðajenAkñúgrUbTI 15>15. muxkat;rgnUvkM laMgkat;emKuN Vu = 213.5kN nigkMlaMgrmYllMnwg (equilibrium torsion) Tu = 41kN .m enATItaMg EdlmancMgay d BIépÞénTMr. eKeGay f 'c = 28MPa nig f y = 400MPa . karKNnasMrab;kMlaMgrmYl 369
  • 25. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa dMeNaHRsay³ CMhanxageRkambgðajBIviFIsaRsþkñúgkarKNna 1> kMlaMgKNnaKW Vu = 213.5kN nig Tu = 41kN .m 2> a. EdkTb;kMlaMgkat;RtUvkarenAeBl Vu > φVc / 2 . φ 28 (400 )(520) ⋅10 − 3 = 137.6kN 0.75 φVc = f 'c bd = 6 6 φV Vu = 213.5kN > c = 68.8kN 2 eKRtUvkarEdkTb;kMlaMgkat;. b. eKRtUvkarEdkTb;karrmYlenAeBl f 'c ⎛ Acp ⎞ 2 Tu > φ ⎜ ⎟ =T 12 ⎜ Pcp ⎟ a ⎝ ⎠ Acp = xo yo = 400 × 580 = 232000mm 2 Pcp = 2( xo yo ) = 2(400 + 520) = 1840mm 0.75 28 (232000 )2 − 6 Ta = 10 = 9.7 kN .m 12 × 1840 Tu = 41kN .m > 9.7kN .m EdkTb;kMlaMgrmYlRtUvkarcaM)ac;. cMNaMfa RbsinebI Tu tUcCag 9.7kN.m enaHEdkTb;kar rmYlnwgminRtUvkar b:uEnþEdkTb;kMlaMgkat;RtUvkar. 3> KNnakMlaMgkat;TTwg³ a. Vu = φVc + φVs / Vs = 101.2kN 28 (400)(520 ) = 733.8kN > Vs 2 2 b. Vs (max) = f 'c bd = 3 3 101.2 ⋅10 3 c. Av s V = s = f y d 400 × 520 = 0.5mm 2 / m ¬eCIgBIr¦ Av 2s = 0.25mm 2 / m ¬eCIgmYy¦ 4> KNnasMrab;karrmYl a. kMlaMgrmYlKNna Tu = 41kN .m . KNnalkçN³muxkat; edaysnμt;kMras;ebtugkarBar Edk 40mm nigeRbIEdkkg DB12 ³ x1 = 400 − 2(40 + 6 ) = 308mm Design for Torsion 370
  • 26. T.Chhay NPIC y1 = 580 − 2(40 + 6 ) = 488mm CakarGnuvtþn_ eKGacsnμt; x1 = b − 90mm nig y1 = h − 90mm Aoh = x1 y1 = 308 × 488 = 150304mm 2 Ao = 0.85 Aoh = 127758.4mm 2 Ph = 2(x1 + y1 ) = 2(308 + 488) = 1592mm θ = 45o nig cot θ = 1.0 b. RtYtBinitüPaBRKb;RKan;rbs;muxkat;edayeRbIsmIkar !%>@!³ 2 2 ⎛ Vu ⎞ ⎛ Tu Ph ⎞ ⎡⎛ ⎞ ⎤ ⎜ ⎜ ⎟ ≤ φ ⎢⎜ Vc ⎟ + 2 ⎜b d ⎟ +⎜ ⎟ 2 ⎟ ⎜b d ⎟ 3 f 'c ⎥ ⎝ w ⎠ ⎝ 1.7 Aoh ⎠ ⎣⎝ w ⎠ ⎦ φVc = 137.6kN nig Vc = 183.5kN 2 2 ⎛ 137600 ⎞ ⎛ 41000000 × 1592 ⎞ Left − hand side = ⎜ ⎟ +⎜ ⎟ = 1.82 MPa ⎝ 400 × 520 ⎠ ⎝ 1.7 × 150304 2 ⎠ ⎛ 183500 2 ⎞ Right − hand side = 0.75⎜ + 28 ⎟ = 3.3MPa > 1.82MPa ⎝ 400 × 520 3 ⎠ muxkat;RKb;RKan; c. kMNt;EdkkgbiTCitcaM)ac;EdlbNþalBIkarrmYlBIsmIkar !%>@%³ At Tn = s 2 Ao f yt cot θ Tu 41 Tn = = = 54.7 kN .m cot θ = 1.0 Ao = 127758.4mm 2 φ 0.75 54.7 ⋅10 6 At = s 2 × 127758.4 × 400 = 0.535mm 2 / m ¬eCIgmYy¦ d. kMNt;EdkbeNþaybEnßmBIsmIkarTI !%>@&³ ⎛A ⎞ ⎛ f yt ⎞ 2 Al = ⎜ t ⎟ Ph ⎜ ⎟ cot θ ⎝ s ⎠ ⎜ fy ⎝ ⎟ ⎠ At = 0.535 Ph = 1592mm f yt = f y = 400MPa cot θ = 1.0 s Al = 0.535 × 1592 = 851.72mm 2 5 f 'c Acp ⎛ A ⎞ ⎛ f yt ⎞ Al (min) = − ⎜ t ⎟ Ph ⎜ ⎟ 12 f y ⎝ s ⎠ ⎜ fy ⎟ ⎝ ⎠ At Acp = 232000mm 2 = 0.535 f yt = f y = 400MPa s karKNnasMrab;kMlaMgrmYl 371
  • 27. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 5 28 (232000) Al (min) = − (0.535)(1592) = 427mm 2 12 × 400 Al = 851.72mm 2 lb; 5> kMNt;RkLaépÞEdkkgsrub a. sMrab;eCIgmYyrbs;Edkkg Avt At Av = + s s 2s EdkkgEdlcaM)ac; Avt = 0.535 + 0.25 = 0.785mm 2 / m ¬eCIgmYy¦ eRbIEdk DB12 RkLaépÞmuxkat;rbs;EdkkgsMrab;eCIgmYyKW 113mm 2 = 144mm yk 140mm 113 spacing of stirrups = 0.785 b. KMlatGtibrma s = h = = 199mm b¤ 300mm mYyNaEdltUcCag. P 1592 8 8 KMlatEdleRbIKW 140mm < 199mm 0.35bw 0.35 × 400 c. Avt / s Gb,brma = = = 0.35mm 2 / m < 0.785mm 2 / m f yt 400 6> edIm,IrkkarBRgayEdkbeNþay cMNaMfa Al srub = 851.72mm 2 . eRbImYyPaKbIenAEpñkxag elI b¤ 851.72 / 3 = 283.9mm 2 edIm,IbEnßmenAkñúgEdkrgkarsgát; A's . eRbImYyPaKbIdak;enA EpñkxageRkam edIm,IbEnßmBIelIEdkrgkarTaj nigEdkmYyPaKbIeTotdak;enAkMBs;Bak;kNþal. a. RkLaépÞEdksrubenAEpñkxagelIesμI 226 + 283.9 = 509.9mm 2 . eRbI 3DB16 ¬ As = 603mm 2 ¦ b. RkLaépÞEdksrubenAEpñkxageRkamesμI 3078.8 + 283.9 = 3362.7 mm 2 . eRbI 3DB 28 nig 2DB32 enARCugmMu ¬ As srub = 3455.8mm 2 ¦ Al srubEdleRbI = (603 − 226 ) + (3455.8 − 3078.8) = 754mm 2 c. enAkMBs;Bak;kNþal eRbIEdk 2DB12 ¬ As = 226mm 2 ¦ bøg;srésEdklMGitRtUv)anbgðajenAkñúgrUbTI 15>15. KMlatEdkbeNþayesμInwg 230mm EdltUcCagKMlatEdkGtibrmaEdlRtUvkar 300mm 2 . Ggát;p©itEdkkg DB12 Edl eRbIFMCagGgát;p©itGb,brma DB10 b¤KMlatEdkkgelI 24 ¬ s / 24 = 5.8mm ¦. ]TahrN_15>4³ (Compatibility Torsion) edaHRsay]TahrN_TI 15>3 eLIgvij RbsinebIkMlaMgrmYlemKuNCa compatibility torsion. dMeNaHRsay³ Design for Torsion 372
  • 28. T.Chhay NPIC eyagtamdMeNaHRsaykñúg]TahrNITI 15>3 !> kMlaMgKNnaKW V u = 213.5kN nig compatibility torsion Tu = 41kN .m @> CMhan (a) nig (b) dUcKñaenAkñúg]TahrN_TI 15>3. eKRtUvkarEdkRTnug. #> CMhan (c) KWdUcKña. $> KNnasMrab;kMlaMgrmYl³ edaysar compatibility torsion Tu = 41kN .m enaH Tu KNnaRtUvtUvCag 41kN .m b¤ φTcr RtUv)aneGayenAkñúgsmIkar !%>!( f 'c ⎛ Acp ⎞ 0.75 28 ⎛ 232000 2 ⎞ − 6 2 φTcr = φ ⎜ ⎟= ⎜ ⎟ ⋅10 = 38.7 kN .m 3 ⎜ Pcp ⎟ 3 ⎜ 1840 ⎟ ⎝ ⎠ ⎝ ⎠ edaysarEt φTcr < Tu / eRbI Tu = 38.7kN .m . GnuvtþeLIgvijRKb;CMhanenAkñúg]TahrN_TI 15>3 edayeRbI Tu = 38.7kN .m edIm,IkMNt;famuxkat;RKb;RKan;. At s = 0.5mm 2 / m ¬eCIgmYy¦ Al = 0.5 × 1592 = 796mm 2 eRbI Al = 852mm 2 > Al (min) %> Avt caM)ac; = 025 + 0.5 = 0.75mm 2 / m ¬eCIgmYy¦ . 113 s= = 150.6mm 0.75 eRbI 150mm . eRCIserIsEdkbeNþay nigEdkkgdUckñúg]TahrN_TI 15>3. ]TahrN_15>5³ (L-section with Equilibrium Torsion) FñwmxagénRbBn§½kMralxNнrbs;GKardUcbgðajenAkñúgrUbTI 15>16. muxkat;enAcMgay d BIépÞénTMrrg nUv Vu = 235kN nig equilibrium torque Tu = 27kN .m . KNnaEdkRTnugcaM)ac;edayeRbI f 'c = 28MPa nig f y = 400MPa sMrab;RKb;EdkEdleRbIenAkñúgFñwm. dMeNaHRsay³ 1> kMlaMgKNnaKW Vu = 235kN nig Tu = 27kN .m 2> a. EdkTb;kMlaMgkat;RtUvkarenAeBl Vu > φVc / 2 φ f 'c 0.75 28 φVc = bw d = 350 × 455 ⋅10 − 3 = 105.3kN 6 6 φVc Vu > = 52.65kN 2 karKNnasMrab;kMlaMgrmYl 373
  • 29. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa eKRtUvkarEdkkMlaMgkat;TTwg b. RtYtBinitüfaetIEdkTb;karrmYlRtUvkarb¤Gt;. snμt;fasøabcUlrYmkñúgkarTb;karrmYl RbEvg søabRbsiT§PaBKW hw = 380mm < 150 × 4 = 600mm . xo = 350mm nig yo = 530mm Acp = (350 × 530) + (150 × 380 ) = 242500mm 2 Pcp = 2(730 + 530) = 2520mm ⎛ 242500 2 ⎞ − 6 BIsmIkar !%>@0 Ta = 0.75 12 28 ⎜ ⎜ 2520 ⎟ ⎟ ⋅10 = 7.7kN .m ⎝ ⎠ Tu > Ta muxkat;RtUvkarEdkTb;karrmYl. 3> KNnaEdkTb;kMlaMgkat;TTwg³ a. Vu = φVc + φVs 235 = 105.3 + 0.75Vs Vs = 173kN 2 b. Vs (max) = f 'c bw d = 561.8kN > Vs 3 c. Av s V = s = 173000 f y d 400 × 455 = 0.95mm 2 / m ¬eCIgBIr¦ Av 0.95 = = 0.475mm 2 / m 2s 2 4> KNnaEdkTb;karrmYl³ Tu = 27kN .m a. KNnalkçN³muxkat;edaysnμt; kMras;ebtugkarBarEdk 40mm nigEdkkg DB12 . RTnug x1 = 350 − (2 × 40) − 12 = 258mm y1 = 530 − (2 × 40) − 12 = 438mm søab x1 = 380mm ¬EdkkghYscUleTAkñúgRTnug¦ y1 = 150 − 92 = 58mm Aoh = (58 × 380) + (258 × 438) = 135044mm 2 Ao = 0.85 Aoh = 114787.4mm 2 Ph = 2(58 + 380) + 2(258 + 438) = 2268mm θ = 45o cot θ = 1.0 Design for Torsion 374
  • 30. T.Chhay NPIC b. RtYtBinitüPaBRKb;RKan;rbs;muxkat;edayeRbIsmIkarTI !%>@!³ Vu = 235kN / φVc = 105.3kN / Vc = 140.4kN / Tu = 27kN .m ⎛ 235000 ⎞ ⎛ 27 ⋅10 × 2268 ⎞ 2 6 Left − hand side = ⎜ ⎟ +⎜ ⎟ = 2.47 MPa ⎝ 350 × 455 ⎠ ⎜ 1.7 × 135044 2 ⎟ ⎝ ⎠ ⎛ 140400 2 ⎞ Right − hand side = 0.75⎜ + 28 ⎟ = 3.3MPa ⎝ 350 × 455 3 ⎠ muxkat;manlkçN³RKb;RKan; c. kMNt;EdkkgbiTCitedIm,ITb;karrmYl At / s BIsmIkar !%>@%³ 27 ⋅ 10 6 At s = Tn = 2 Ao f yt cot θ 0.75 × 2 × 114787.4 × 400 = 0.392mm 2 / m ¬eCIgmYy¦ d. KNnaEdkbeNþaybEnßmBIsmIkar !%>@* ¬sMrab; f 'c = 400 MPa nig cot θ = 1.0 ¦ ⎛A ⎞ Al = ⎜ t ⎟ Ph = 0.392 × 2268 = 889mm 2 ⎝ s ⎠ Al min ¬BIsmIkar !%>#0¦ KW 5 28 × 242500 Al min = − 889 = 447.7mm 2 12 × 400 karcUlrYmrbs;søabRtUv)anecaledaysarTTYl)anlT§plxusKñatictYc nigtMélBlkmμ ticCag. 5> kMNt;RkLaépÞmuxkat;EdkkgbiTCit a. sMrab;eCIgmYy vt = t + v A A A s s 2s muxkat;cM)ac; Avt = 0.392 + 0.475 = 0.867mm 2 / m ¬eCIgmYy¦ eRCIserIsEdk DB12 ¬ As = 113mm 2 ¦ KMlatEdkkg = 0113 = 130mm eRbI 125mm .867 b. KMlatEdkGtibrma s max = h = = 283.5mm . eRbI s = 125mm dUckarKNna. P 2268 8 8 Avt 0.35bw 0.35 × 350 c. = = = 0.31mm 2 / m < 0.867mm 2 / m dUcenHeRbI s f yt 400 DB12 @125 6> kMNt;karBRgayrbs;EdkbeNþay. Al srubKW 889mm 2 . eRbImYyPaKbI b¤ 889 / 3 = 296.3mm 2 enAEpñkxagelI EpñkkNþal nigEpñkxageRkam. karKNnasMrab;kMlaMgrmYl 375
  • 31. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa a. brimaNEdksrubenAEpñkxagelI = 628.3 + 296.3 = 924.6mm 2 eRbI 3DB20 ¬ As = 942.5mm 2 ¦ b. brimaNEdksrubenAEpñkxagelI = 2463 + 296.3 = 2759.3mm 2 eRbI 5DB28 ¬ As = 3078.8mm 2 ¦ Al srubEdleRbI = (942.5 − 628.3) + (3078.8 − 2463) = 930mm 2 c. eRbIEdk 2DB12 enABak;kNþalkMBs; ¬ As = 226mm 2 ¦. bøg;EdklMGitRtUv)anbgðajenA kñúgrUbTI 15>16. KMlatEdkbeNþayKW 190mm < 300mm . Ggát;p©itrbs;EdkkgKW 12mm EdlFMCagGgát;p©itEdk DB10 b¤KMlatEdkkgelI 24 ¬ s / 24 = 5.2mm ¦. bEnßmEdkbeNþay DB12 enARKb;mMurbs;EdkkgenAkñúgRTnugFñwm nigsøabFñwm. Design for Torsion 376
  • 32. T.Chhay NPIC karKNnasMrab;kMlaMgrmYl 377