Groups members
Name(Roll No.)
 Mubashir(13)
 Muhammad nouman(19)
 Rai Amad ud din(27)
Presentation topic: Cramer Rule’s and its Application
What is Cramer rule and it formula
Cramer rule is the mathematical technique to solve the systems of
Linear equations.
In linear algebra, Cramer's rule is an explicit formula for the solution of a
system of linear equations with as many equations as unknowns, valid
whenever the system has a unique solution. It expresses the solution in
terms of the determinants of the (square) coefficient matrix and of
matrices obtained from it by replacing one column by the column vector
of right-hand-sides of the equations.
formula Ax=b
Applications with Example
A B C
37 39 44
?
Example no.1
. . . . . (S)





.
     
          
          
2 3 2 37
3 2 2 39
5 1 1 44
x
y
z
Let x, y and z be the cost/scoop of Pineapple, Strawberry and Vanilla
flavors, respectively. Then according to the given conditions
In matrix form, we can write it as:
.x y z  5 1 1 44
,x y z  2 3 2 37
,3 2 2 39x y z  
.
     
          
          
2 3 2 37
3 2 2 39
5 1 1 44
x
y
z
, , .
x
A x y b
z
     
            
          
2 3 2
3 2 2
5 1 1
37
39
44
Ax b
2 3 2 37
3 2 2 , , 39 .
5 1 1 44
x
A x y b
z
     
            
          
1
3 2
2 2 ,
1
37
39
44 1
A
 
   
  
2
37
39
44
2 2
3 2 ,
5 1
A
 
   
  
3
2 3
3 2
5 1
37
39
44
A
 
   
  
2 3 2
3 2 2
5 1 1
A
 
   
  
, 7A
2 3 2 37
3 2 2 , , 39 .
5 1 1 44
x
A x y b
z
     
            
          
= 2(2x1-1x2) -3(3x1-5x2) +2(3x1-5x2)
,A 1 49 = 37(2x1-1x2) -3(39x1-44x2) +2(39x1-44x2)
A
2 3 2
3 2 2
5 1 1

A1
37
3
3 2
2 29
144 1

,A 2 35 A2
2 2
3 2
37
39
5 144
 = 2(39x1-44x2) -37(3x1-5x2) +2(3x1-5x39)
,3 28A  A3
2 3
3
37
392
45 1 4
 = 2(2x44-1x39) -3(3x44-5x39) +37(3x44-5x2)
One pineapple(x)=7 Rs. One Stawbarry(y)=5Rs. One Vinilla(z)=4Rs.
 A textile industry sells
3 brands: B1, B2 and B3 of yarn,
each of which is a blend of
Pakistani, Egyptian and American
cotton in ratios:
1:2:1, 2:1:1 and 2:0:2.
If cost/kg of B1, B2 and B3 is Rs. 40, 50
and 60 respectively,
Example no.2
find the cost/kg of cotton of each country.
1B 2B B3
P
EA
1:2:1, 2:1:1, 2:0:2
E P P P P
A AEA
40 50 60
Let x, y and z be the cost/kg of Pakistani, Egyptian and American
Cotton respectively. Then according to the given conditions
. . . . . (S )










,x y z  
1 2 1
40
4 4 4
,x y z  
2 1 1
50
4 4 4
.x z 
2 2
60
4 4
. . . . . (S,
.
)
,x y z
x y z
x z
   

   
  
1 2 1 160
2 1 1 200
1 1 120
. . . . . (
,
,
.
S )
x y z
x y z
x z

   


   




 

1 2 1
40
4 4 4
2 1 1
50
4 4 4
2 2
60
4 4
.
x
y
z
     
          
          
1 2 1 160
2 1 1 200
1 0 1 120
In matrix form, we can write it as:
, , .
x
A x y b
z
     
            
          
160
2
1 2 1
2 1 1 00
11 00 1 2
Ax b
.
x
y
z
     
          
          
1 2 1 160
2 1 1 200
1 0 1 120
x
A x y b
z
1 2 1 160
2 1 1 , , 200 .
1 0 1 120
     
            
          
A1
160
200
12
2 1
1 1 ,
0 0 1
 
   
  
A2
160
200
1
1 1
2 1 ,
1 20 1
 
   
  
A3
1 2
2 1
1 0
160
200
120
 
   
  
A
1 2 1
2 1 1
1 0 1
 
   
  
,A  2
,A  1 120
A
1 2 1
2 1 1
1 0 1

A1
160
20
2 1
1 10
1120 0

,A  2 40 A2
160
2
1 1
2 100
1 1120

,A  3 120 A3
1 2
2 1
160
200
01 0 12

x
A x y b
z
1 2 1 160
2 1 1 , , 200 .
1 0 1 120
     
            
          
= 1(1x1-0x1) -2(2x1-1x1) +1(2x1-1x1)
= 160(1x1-0x1) -2(200x1-120x1) +1(200x1-120x1)
= 1(200x1-120x1) -160(2x1-1x1) +1(2x1-1x200)
= 1(1x120-0x200) -2(2x120-1x200) +160(2x120-1x1)
x y z ( , , ) ( , ,2060 60).











,A  2
, ,A A A     1 3 3120 40 120
According to
Cramer’s Rule
.z
A
A 
  

3 120
60
2
,y
A
A 
  

2 40
20
2
,x
A
A 
  

1 120
60
2
x
A x y b
z
1 2 1 160
2 1 1 , , 200 .
1 0 1 120
     
            
          
Application of Cramer rule in daily life best example

Application of Cramer rule in daily life best example

  • 2.
    Groups members Name(Roll No.) Mubashir(13)  Muhammad nouman(19)  Rai Amad ud din(27) Presentation topic: Cramer Rule’s and its Application
  • 3.
    What is Cramerrule and it formula Cramer rule is the mathematical technique to solve the systems of Linear equations. In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand-sides of the equations. formula Ax=b
  • 4.
  • 5.
    A B C 3739 44 ? Example no.1
  • 6.
    . . .. . (S)      .                             2 3 2 37 3 2 2 39 5 1 1 44 x y z Let x, y and z be the cost/scoop of Pineapple, Strawberry and Vanilla flavors, respectively. Then according to the given conditions In matrix form, we can write it as: .x y z  5 1 1 44 ,x y z  2 3 2 37 ,3 2 2 39x y z  
  • 7.
    .                            2 3 2 37 3 2 2 39 5 1 1 44 x y z , , . x A x y b z                               2 3 2 3 2 2 5 1 1 37 39 44 Ax b
  • 8.
    2 3 237 3 2 2 , , 39 . 5 1 1 44 x A x y b z                               1 3 2 2 2 , 1 37 39 44 1 A          2 37 39 44 2 2 3 2 , 5 1 A          3 2 3 3 2 5 1 37 39 44 A          2 3 2 3 2 2 5 1 1 A         
  • 9.
    , 7A 2 32 37 3 2 2 , , 39 . 5 1 1 44 x A x y b z                               = 2(2x1-1x2) -3(3x1-5x2) +2(3x1-5x2) ,A 1 49 = 37(2x1-1x2) -3(39x1-44x2) +2(39x1-44x2) A 2 3 2 3 2 2 5 1 1  A1 37 3 3 2 2 29 144 1  ,A 2 35 A2 2 2 3 2 37 39 5 144  = 2(39x1-44x2) -37(3x1-5x2) +2(3x1-5x39) ,3 28A  A3 2 3 3 37 392 45 1 4  = 2(2x44-1x39) -3(3x44-5x39) +37(3x44-5x2) One pineapple(x)=7 Rs. One Stawbarry(y)=5Rs. One Vinilla(z)=4Rs.
  • 10.
     A textileindustry sells 3 brands: B1, B2 and B3 of yarn, each of which is a blend of Pakistani, Egyptian and American cotton in ratios: 1:2:1, 2:1:1 and 2:0:2. If cost/kg of B1, B2 and B3 is Rs. 40, 50 and 60 respectively, Example no.2 find the cost/kg of cotton of each country.
  • 11.
    1B 2B B3 P EA 1:2:1,2:1:1, 2:0:2 E P P P P A AEA 40 50 60 Let x, y and z be the cost/kg of Pakistani, Egyptian and American Cotton respectively. Then according to the given conditions . . . . . (S )           ,x y z   1 2 1 40 4 4 4 ,x y z   2 1 1 50 4 4 4 .x z  2 2 60 4 4
  • 12.
    . . .. . (S, . ) ,x y z x y z x z             1 2 1 160 2 1 1 200 1 1 120 . . . . . ( , , . S ) x y z x y z x z                   1 2 1 40 4 4 4 2 1 1 50 4 4 4 2 2 60 4 4 . x y z                             1 2 1 160 2 1 1 200 1 0 1 120 In matrix form, we can write it as:
  • 13.
    , , . x Ax y b z                               160 2 1 2 1 2 1 1 00 11 00 1 2 Ax b . x y z                             1 2 1 160 2 1 1 200 1 0 1 120
  • 14.
    x A x yb z 1 2 1 160 2 1 1 , , 200 . 1 0 1 120                               A1 160 200 12 2 1 1 1 , 0 0 1          A2 160 200 1 1 1 2 1 , 1 20 1          A3 1 2 2 1 1 0 160 200 120          A 1 2 1 2 1 1 1 0 1         
  • 15.
    ,A  2 ,A 1 120 A 1 2 1 2 1 1 1 0 1  A1 160 20 2 1 1 10 1120 0  ,A  2 40 A2 160 2 1 1 2 100 1 1120  ,A  3 120 A3 1 2 2 1 160 200 01 0 12  x A x y b z 1 2 1 160 2 1 1 , , 200 . 1 0 1 120                               = 1(1x1-0x1) -2(2x1-1x1) +1(2x1-1x1) = 160(1x1-0x1) -2(200x1-120x1) +1(200x1-120x1) = 1(200x1-120x1) -160(2x1-1x1) +1(2x1-1x200) = 1(1x120-0x200) -2(2x120-1x200) +160(2x120-1x1)
  • 16.
    x y z( , , ) ( , ,2060 60).            ,A  2 , ,A A A     1 3 3120 40 120 According to Cramer’s Rule .z A A      3 120 60 2 ,y A A      2 40 20 2 ,x A A      1 120 60 2 x A x y b z 1 2 1 160 2 1 1 , , 200 . 1 0 1 120                              