SlideShare a Scribd company logo
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 5 (Jul. - Aug. 2013), PP 01-05
www.iosrjournals.org
www.iosrjournals.org 1 | Page
On Boundedness and Compositions of the Operator
𝑮 𝝆,𝜼,𝜸,𝝎;𝒂+𝜳 𝒙 and the Inversion Formula
Harish Nagar, Naresh Menaria and A. K. Tripathi
Department of Mathematics, Mewar University Chittorgarh,Rajasthan,India
Abstract: In this paper we established Boundedness and Compositions of the Operator 𝐺𝜌 ,𝜂,𝛾,𝜔;𝑎+𝛹 (𝑥) and
the Inversion Formulae on the space L(a,b) and C[a,b] , given by Hartely and Lorenzo[5]
Key words -𝐺𝜌,𝜂,𝑟[𝑎, 𝑧] function, Riemann liouville fractional integral, Riemann liouville fractional
derivative , beta-integral.
I. Introduction and preliminaries
The Riemann-Liouville fractional integral 𝐼𝑎+
𝛼
and fractional derivative 𝐷𝑎+
𝛼
[2], [4] of order 𝛼 > 0 are
given by 𝐼𝑎+
𝛼
𝐹 𝑥 =
1
𝛤(𝛼)
𝐹 𝑡
𝑥−𝑡 1−𝛼
𝑑𝑡
𝑥
0
1.1
where 𝛼 𝜖 C , Re 𝛼 > 0 and
𝐷𝑎+
𝛼
𝐹 𝑥 =
𝑑
𝑑𝑥
𝑛
𝐼𝑎+
𝛼−𝑛
𝐹 𝑥 1.2
where 𝛼 𝜖 C , Re α > 0 (n= Re 𝛼 + 1).
G function introduced by Lorenzo and Hartley[1],[5]
Gρ,η,r[a, z] = zrρ−η−1 (r)n (azρ)n
Γ(ρn+ρr−η)n!
∞
n=0 1.3
where (𝑟) 𝑛 is the Pochhammer symbol and Re(ρr − η)
where q, γ,δ 𝜖 C, Re (𝑞 > 0) and Re (γ > 0) , Re (q𝛾 − δ) > 0
Properties of function  zaG ,,, 
For         0Re,Re,Re,Re,,,,,,,   qCq and Nn there hold the
following properties for the special function  zaG ,,, 
defined in (1.3) are given by H.Nagar et al.[3]
Property-1     zGzG
dz
d
n
n
,, ,,,,   




 1.4
Property-2       xGdttGtxG q
x
q ,,, ,,
0
,,,,    1.5
Property-3          axaxGxatGIa   ,,, ,,,,  
 1.6
Property-4           axaxGxatGDa   ,,, ,,,,  
 1.7
The fractional Integral operators a
G ;,,, 
          
x
a
a
axdtttxGxG ,,,,;,,,
 
1.8
where     0Re,Re,,,,   C
II. Boundedness of Operator 𝐆 𝛒,𝛈,𝛄,𝛚;𝐚+𝚿 𝐱
In the following theorems we prove the boundedness on the space L(a,b) and C[a,b] of the operator
Gρ,η,γ,ω;a+Ψ x defined in (1.8).
On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion
www.iosrjournals.org 2 | Page
Theorem-1 Let     0Re,Re,,,,   C and ab  then the operator aG ;,,,  is bounded
on  baL , and 11;,,,
*
 BG a 
2.1
Where      
     
        







0
Re
ReRe
!ReRe
*
k
k
k
kkk
ab
abB

 

2.2
Theorem-2 Let     0Re,Re,,,,   C and ab  then the operator aG ;,,,  is
bounded on  baC , and CCa BG 
*
;,,, 
where
*
B is given in (2.2)
Proof of Theorems-1, 2
To prove Theorem-1, we denote its left hand side by 4 i.e. .
1;,,,4   aG Now using
the definition of operator aG ;,,,  in (1.8) and definition of the function   txG ,,,  in (1.3) and
then on interchanging the order of integration by the Dirichlet formula we have,
 
    
 
   






b
a
x
a k
k
k
dxdtt
kk
tx
tx
0
1
4
!


 

           
 
   






b
a
b
t k
kk
k
dxdtt
kk
tx
tx
0
Re
1ReRe
!


 
 , ;, bxat 
which on putting utx  takes the following form :
      
 
   
 




b
a
tb
k
k
kk
dttdu
kk
u 


0 0
1ReRe
4
!
 
 
    
   












0 0
1ReRe
!k
b
a
ab
k
k
k
dttduu
kk


  , at  .
Now interpreting the inner integral using term-by-term integration and taking into account (2.2), we at
once arrive at the desired result in (2.1).
To prove Theorem-2, we know that the integral operator Gρ,η,γ,ω;a+ is bounded on L(a,b) by Theorem-1,
so it is also bounded in the space C[a,b] of continuous function g on L(a,b) with a finite norm
 xgg
bxaC 
 max
Using this concept and definition of integral operator aG ;,,,  in (1.8) and in view of (1.3) we have for any
 bax , and  baC , ,
          
 
  dtt
kk
tx
txxG
x
a k
k
k
a   













 






0
1
;,,,
!
       
  
 




ab
k
k
kk
C
kk
duu
0 0
1ReRe
! 

  .
The integral on the right hand side is less than or equal to
*
B , which is defined in (2.2).
This completes the proof of Theorem-2.
III. Compositions of the Operator 𝐆 𝛒,𝛈,𝛄,𝛚;𝐚+𝚿 𝐱 and the Inversion Formula
Let         0Re,Re,Re,Re,,,,,,,,   qCq then the following
results hold for  baL , .
Result-1         axGxatG a  

 ,,,
1
;,,,  


3.1
Result-2  


  aaaaa IGGGI ;,,,;,,,;,,, 3.2
Result-3  

  aaa GGD ;,,,;,,, 3.3
holds for any continuous function  baC , .
On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion
www.iosrjournals.org 3 | Page
Result-4     aqaqa GGG ;,,,;,,,;,,, 3.4
Result-5
 
 

q
aaqa IGG 
 ;,,,;,,, 3.5
Result-6 Let aG ;,,,  is invertible in the space  baL , and for  ,, baL
     bxaxfxG a  ,;,,,  3.6
Then      
  xfGDxfG aq
q
aa 



  ;,,
1
;,,, 

 3.7
Proof of (3.1) To prove the result in (3.1), we denote its left hand side by Δ5 i.e.
   xatG a
1
;,,,5

 


Now using the definition of operator in (1.8) we have
   


x
a
dtattxG
1
,,5 ,

 
with the help of definition in (1.3) and then changing the order of integration and summation we have
 
 
    






0
11
5
!n
x
a
n
n
n
dttxat
nn



Evaluating the inner integral with the help of beta integral we have,
          
  






0
1
5
!n
n
n
nn
ax
ax




 .
On interpreting the resulting series with the help of (1.3), we at once arrive at the desired result in (3.1).
Proof of (3.2)
To prove the result in (3.2) we denote its left hand side by Δ6 i.e.
  xGI aa 

 ;,,,6 .
On using the definition of the operator in (1.8) and applying Dirichlet formula for x>a, we have :
         
x
a
a dtttxGI .,,,6 

Now on using the relation (1.6) we at once arrive at the desired result in (3.2) in accordance with the
definition of operator in (1.8). The second relation of (3.2) is proved following similar lines as above.
Proof of (3.3)
To prove the result in (3.3), we denote its left hand side by Δ7 i.e.
  xGD aa 

 ;,,,7
on using the definition of fractional derivative

aD in (3.2) we have,
  xGI
dx
d
a
n
a
n










 ;,,,7 .
which in view of (3.2) takes the following form :
  xG
dx
d
an
n
 





 ;,,,7 .
On applying the definitions in (1.8) and (1.4) we at once arrive at the desired result in (3.3) in accordance with
the definition of the operator in (1.8).
Proof of (3.4)
To prove the result in (3.4), we denote its left hand side by Δ8 i.e.
   xGG aqa   ;,,,;,,,8 .
On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion
www.iosrjournals.org 4 | Page
Now in view of the definition in (1.8) we have :
     
x
a
aq dttGtxG   ;,,,,,8 ,
         






x
a
t
a
q dtduuutGtxG   ,, ,,,,
Now on using the definition of G-function in (3.3) and on changing the order of integration we have,
     
    








t
a ll
ll
ll
qllll0, 2121
8
21
21
21
!! 

      duudtuttx
x
a
qll





 11 21
. .
Now on evaluating the inner integral with the help of beta-integral we have
             
      
  













t
a ll
qllll
ll
duu
qllll
ux


 
0, 2121
1
8
21
2121
21
!!
,
          
    
   













t
a l
l
lq
duu
qll
ux
ux 

 

0
1
8
!
Now on interpreting the resulting series with the help of (3.2) and then in view of (1.8), we at once
arrive at the desired result in (3.4).
Proof of (3.5)
To prove the result in (3.5), we denote its left hand side by 9 i.e.
  xGG aqa   ;,,,;,,,9
Now in view of the definition in (1.8) we have :
     
x
a
aq dttGtxG   ;,,,,,9 ,
         





 
x
a
t
a
q dtduuutGtxG   ,, ,,,,
.
Now on using the definition of G-function in (1.3) and on changing the order of integration we have
     
     









t
a ll
ll
ll
qllll0, 2121
9
21
21
21
!! 

     duudtuttx
x
a
qll





 11 21
. .
Now on evaluating the inner integral with the help of beta-integral we have
           
    
  duu
qllll
uxt
a ll
qllll
ll


 
 














0, 2121
1
9
21
2121
21
!!
which on making use of the series identify we have :
 
   
 




t
a
q
duuux
q


 1
9
1
Now with the help of the definition of the operator in (1.1), we at once arrive at the desired result in (3.5).
Proof of (3.6,3.7)
To prove the result in (3.7), let     xfxG a  ;,,, .
Now on operating  aqG ;,,,  on both the sides we have
On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion
www.iosrjournals.org 5 | Page
      xfGxGG aqaaq   ;,,,;,,,;,,,  
which in view of (3.5) gives
 
       xfGxI aq
q
a 

  ;,,, 

 .
Now on operating
 q
aD 


on both the sides it gives :
   
    
   xfGDxID aq
q
a
q
a
q
a 





  ;,,, 


   
   xfGDx aq
q
a 

 ;,,, 


which is the result in (3.7).
Now let      
   xfGDxfG aq
q
aa 



  ;,,,
1
;,,, 


on operating aG ;,,,  both the sides, we have
      xfGG aa 

 ;,,,
1
;,,, 
 
   xfGGD aaq
q
a 

 ;,,,;,,, 

which in view of (3.5) gives
          
 xfIDxfGG q
a
q
aaa





  
 ;,,,
1
;,,,
References
[1]. Carl F. Lorenzo, Tom T. Hartley: Generalized Functions for the Fractional Calculus, NASA/TP—1999-209424/REV1(1999)
[2]. Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. : Tables of Integral Transforms, Vol.-II, McGraw-Hill, New York
Toronto & London (1954).
[3]. H.Nagar and A.K.Menaria, J. Comp. & Math. Sci. Vol.3 (5), 536-541 (2012)
[4]. Kober, H.: On fractional integrals and derivatives. Quart. J. Math. Oxford 11,193(1940)
[5]. Lorenzo, C.F. and Hartely, T.T. : R-function relationships for application in the fractional calculus, NASA Tech. Mem. 210361, 1-22,
(2000)

More Related Content

What's hot

Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...
Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...
Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...
International Journal of Engineering Inventions www.ijeijournal.com
 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
foxtrot jp R
 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
foxtrot jp R
 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
foxtrot jp R
 
Stringhighlights2015
Stringhighlights2015Stringhighlights2015
Stringhighlights2015
foxtrot jp R
 
Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...
Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...
Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...
IJERD Editor
 
On a Deterministic Property of the Category of k-almost Primes: A Determinist...
On a Deterministic Property of the Category of k-almost Primes: A Determinist...On a Deterministic Property of the Category of k-almost Primes: A Determinist...
On a Deterministic Property of the Category of k-almost Primes: A Determinist...
Ramin (A.) Zahedi
 
LeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdfLeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdf
zupsezekno
 
J256979
J256979J256979
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence of
eSAT Publishing House
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangians
orajjournal
 
Numerical analysis m3 l6slides
Numerical analysis m3 l6slidesNumerical analysis m3 l6slides
Numerical analysis m3 l6slides
SHAMJITH KM
 
Indefinite Integrals 11
Indefinite Integrals 11Indefinite Integrals 11
Indefinite Integrals 11
Lakshmikanta Satapathy
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
IJERD Editor
 
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
Fast Algorithm for Computing the Discrete Hartley Transform of Type-IIFast Algorithm for Computing the Discrete Hartley Transform of Type-II
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
ijeei-iaes
 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
foxtrot jp R
 
D024025032
D024025032D024025032
D024025032
inventionjournals
 
Computer aided design
Computer aided designComputer aided design
Computer aided design
Abhi23396
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
Tony Yen
 
EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...
EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...
EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...
cscpconf
 

What's hot (20)

Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...
Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...
Ramanujan Integral involving the Product of Generalized Zetafunction and - fu...
 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
 
Stringhighlights2015
Stringhighlights2015Stringhighlights2015
Stringhighlights2015
 
Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...
Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...
Some Mixed Quadrature Rules for Approximate Evaluation of Real Cauchy Princip...
 
On a Deterministic Property of the Category of k-almost Primes: A Determinist...
On a Deterministic Property of the Category of k-almost Primes: A Determinist...On a Deterministic Property of the Category of k-almost Primes: A Determinist...
On a Deterministic Property of the Category of k-almost Primes: A Determinist...
 
LeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdfLeetCode Solutions In Java .pdf
LeetCode Solutions In Java .pdf
 
J256979
J256979J256979
J256979
 
A new non symmetric information divergence of
A new non symmetric information divergence ofA new non symmetric information divergence of
A new non symmetric information divergence of
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangians
 
Numerical analysis m3 l6slides
Numerical analysis m3 l6slidesNumerical analysis m3 l6slides
Numerical analysis m3 l6slides
 
Indefinite Integrals 11
Indefinite Integrals 11Indefinite Integrals 11
Indefinite Integrals 11
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
Fast Algorithm for Computing the Discrete Hartley Transform of Type-IIFast Algorithm for Computing the Discrete Hartley Transform of Type-II
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
 
D024025032
D024025032D024025032
D024025032
 
Computer aided design
Computer aided designComputer aided design
Computer aided design
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...
EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...
EXACT SOLUTIONS OF A FAMILY OF HIGHER-DIMENSIONAL SPACE-TIME FRACTIONAL KDV-T...
 

Viewers also liked

Flyer listo
Flyer listoFlyer listo
Flyer listo
Erick Pinargote
 
Εχθρός εν όψει
Εχθρός εν όψειΕχθρός εν όψει
Εχθρός εν όψει
hmmuseum1
 
Mamiferos 2
Mamiferos 2Mamiferos 2
Mamiferos 2
Star Butterfly
 
D1303062327
D1303062327D1303062327
D1303062327
IOSR Journals
 
Bomba de vacio
Bomba de vacioBomba de vacio
Bomba de vacio
Eduardo Vr
 
Permen tahun2014 nomor045_lampiran2(1)
Permen tahun2014 nomor045_lampiran2(1)Permen tahun2014 nomor045_lampiran2(1)
Permen tahun2014 nomor045_lampiran2(1)
Lizar Nita
 
C012641821
C012641821C012641821
C012641821
IOSR Journals
 
9-22-15-Daily-1 HUNTER-1B-Sports
9-22-15-Daily-1 HUNTER-1B-Sports9-22-15-Daily-1 HUNTER-1B-Sports
9-22-15-Daily-1 HUNTER-1B-Sports
Mike Hopp
 
Costi per commessa: 1.Job-order costing
Costi per commessa: 1.Job-order costingCosti per commessa: 1.Job-order costing
Costi per commessa: 1.Job-order costing
Manager.it
 
Modul 3 kb 4 keperawatan bencana pada penyakit kronik
Modul 3 kb 4 keperawatan bencana pada penyakit kronikModul 3 kb 4 keperawatan bencana pada penyakit kronik
Modul 3 kb 4 keperawatan bencana pada penyakit kronik
Uwes Chaeruman
 
กิจกรรมที่ข้าพเจ้าได้เข้าร่วม
กิจกรรมที่ข้าพเจ้าได้เข้าร่วมกิจกรรมที่ข้าพเจ้าได้เข้าร่วม
กิจกรรมที่ข้าพเจ้าได้เข้าร่วม
Pawarin Ja
 
มีน้ำใจ
มีน้ำใจมีน้ำใจ
มีน้ำใจ
Pawarin Ja
 
Зона лісостепу
Зона лісостепуЗона лісостепу
Зона лісостепу
Вікторія Тихомирова
 

Viewers also liked (13)

Flyer listo
Flyer listoFlyer listo
Flyer listo
 
Εχθρός εν όψει
Εχθρός εν όψειΕχθρός εν όψει
Εχθρός εν όψει
 
Mamiferos 2
Mamiferos 2Mamiferos 2
Mamiferos 2
 
D1303062327
D1303062327D1303062327
D1303062327
 
Bomba de vacio
Bomba de vacioBomba de vacio
Bomba de vacio
 
Permen tahun2014 nomor045_lampiran2(1)
Permen tahun2014 nomor045_lampiran2(1)Permen tahun2014 nomor045_lampiran2(1)
Permen tahun2014 nomor045_lampiran2(1)
 
C012641821
C012641821C012641821
C012641821
 
9-22-15-Daily-1 HUNTER-1B-Sports
9-22-15-Daily-1 HUNTER-1B-Sports9-22-15-Daily-1 HUNTER-1B-Sports
9-22-15-Daily-1 HUNTER-1B-Sports
 
Costi per commessa: 1.Job-order costing
Costi per commessa: 1.Job-order costingCosti per commessa: 1.Job-order costing
Costi per commessa: 1.Job-order costing
 
Modul 3 kb 4 keperawatan bencana pada penyakit kronik
Modul 3 kb 4 keperawatan bencana pada penyakit kronikModul 3 kb 4 keperawatan bencana pada penyakit kronik
Modul 3 kb 4 keperawatan bencana pada penyakit kronik
 
กิจกรรมที่ข้าพเจ้าได้เข้าร่วม
กิจกรรมที่ข้าพเจ้าได้เข้าร่วมกิจกรรมที่ข้าพเจ้าได้เข้าร่วม
กิจกรรมที่ข้าพเจ้าได้เข้าร่วม
 
มีน้ำใจ
มีน้ำใจมีน้ำใจ
มีน้ำใจ
 
Зона лісостепу
Зона лісостепуЗона лісостепу
Зона лісостепу
 

Similar to A0750105

E0561719
E0561719E0561719
E0561719
IOSR Journals
 
02_AJMS_326_21.pdf
02_AJMS_326_21.pdf02_AJMS_326_21.pdf
02_AJMS_326_21.pdf
BRNSS Publication Hub
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
Alexander Decker
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
BRNSS Publication Hub
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
Alexander Decker
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
IJERA Editor
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdf
aciijournal
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
aciijournal
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
aciijournal
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
aciijournal
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
aciijournal
 
A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02
IJERA Editor
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
toukaigi
 
On solving fuzzy delay differential equationusing bezier curves
On solving fuzzy delay differential equationusing bezier curves  On solving fuzzy delay differential equationusing bezier curves
On solving fuzzy delay differential equationusing bezier curves
IJECEIAES
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
Alexander Decker
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
IOSR Journals
 
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINRESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
Wireilla
 
F023064072
F023064072F023064072
F023064072
inventionjournals
 
F023064072
F023064072F023064072
F023064072
inventionjournals
 
A02402001011
A02402001011A02402001011
A02402001011
inventionjournals
 

Similar to A0750105 (20)

E0561719
E0561719E0561719
E0561719
 
02_AJMS_326_21.pdf
02_AJMS_326_21.pdf02_AJMS_326_21.pdf
02_AJMS_326_21.pdf
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 
paper acii sm.pdf
paper acii sm.pdfpaper acii sm.pdf
paper acii sm.pdf
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMSACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
ACCURATE NUMERICAL METHOD FOR SINGULAR INITIAL-VALUE PROBLEMS
 
Accurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value ProblemsAccurate Numerical Method for Singular Initial-Value Problems
Accurate Numerical Method for Singular Initial-Value Problems
 
A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02
 
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
Adaptive Control Scheme with Parameter Adaptation - From Human Motor Control ...
 
On solving fuzzy delay differential equationusing bezier curves
On solving fuzzy delay differential equationusing bezier curves  On solving fuzzy delay differential equationusing bezier curves
On solving fuzzy delay differential equationusing bezier curves
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
 
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILINRESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
 
F023064072
F023064072F023064072
F023064072
 
F023064072
F023064072F023064072
F023064072
 
A02402001011
A02402001011A02402001011
A02402001011
 

More from IOSR Journals

A011140104
A011140104A011140104
A011140104
IOSR Journals
 
M0111397100
M0111397100M0111397100
M0111397100
IOSR Journals
 
L011138596
L011138596L011138596
L011138596
IOSR Journals
 
K011138084
K011138084K011138084
K011138084
IOSR Journals
 
J011137479
J011137479J011137479
J011137479
IOSR Journals
 
I011136673
I011136673I011136673
I011136673
IOSR Journals
 
G011134454
G011134454G011134454
G011134454
IOSR Journals
 
H011135565
H011135565H011135565
H011135565
IOSR Journals
 
F011134043
F011134043F011134043
F011134043
IOSR Journals
 
E011133639
E011133639E011133639
E011133639
IOSR Journals
 
D011132635
D011132635D011132635
D011132635
IOSR Journals
 
C011131925
C011131925C011131925
C011131925
IOSR Journals
 
B011130918
B011130918B011130918
B011130918
IOSR Journals
 
A011130108
A011130108A011130108
A011130108
IOSR Journals
 
I011125160
I011125160I011125160
I011125160
IOSR Journals
 
H011124050
H011124050H011124050
H011124050
IOSR Journals
 
G011123539
G011123539G011123539
G011123539
IOSR Journals
 
F011123134
F011123134F011123134
F011123134
IOSR Journals
 
E011122530
E011122530E011122530
E011122530
IOSR Journals
 
D011121524
D011121524D011121524
D011121524
IOSR Journals
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

A0750105

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 5 (Jul. - Aug. 2013), PP 01-05 www.iosrjournals.org www.iosrjournals.org 1 | Page On Boundedness and Compositions of the Operator 𝑮 𝝆,𝜼,𝜸,𝝎;𝒂+𝜳 𝒙 and the Inversion Formula Harish Nagar, Naresh Menaria and A. K. Tripathi Department of Mathematics, Mewar University Chittorgarh,Rajasthan,India Abstract: In this paper we established Boundedness and Compositions of the Operator 𝐺𝜌 ,𝜂,𝛾,𝜔;𝑎+𝛹 (𝑥) and the Inversion Formulae on the space L(a,b) and C[a,b] , given by Hartely and Lorenzo[5] Key words -𝐺𝜌,𝜂,𝑟[𝑎, 𝑧] function, Riemann liouville fractional integral, Riemann liouville fractional derivative , beta-integral. I. Introduction and preliminaries The Riemann-Liouville fractional integral 𝐼𝑎+ 𝛼 and fractional derivative 𝐷𝑎+ 𝛼 [2], [4] of order 𝛼 > 0 are given by 𝐼𝑎+ 𝛼 𝐹 𝑥 = 1 𝛤(𝛼) 𝐹 𝑡 𝑥−𝑡 1−𝛼 𝑑𝑡 𝑥 0 1.1 where 𝛼 𝜖 C , Re 𝛼 > 0 and 𝐷𝑎+ 𝛼 𝐹 𝑥 = 𝑑 𝑑𝑥 𝑛 𝐼𝑎+ 𝛼−𝑛 𝐹 𝑥 1.2 where 𝛼 𝜖 C , Re α > 0 (n= Re 𝛼 + 1). G function introduced by Lorenzo and Hartley[1],[5] Gρ,η,r[a, z] = zrρ−η−1 (r)n (azρ)n Γ(ρn+ρr−η)n! ∞ n=0 1.3 where (𝑟) 𝑛 is the Pochhammer symbol and Re(ρr − η) where q, γ,δ 𝜖 C, Re (𝑞 > 0) and Re (γ > 0) , Re (q𝛾 − δ) > 0 Properties of function  zaG ,,,  For         0Re,Re,Re,Re,,,,,,,   qCq and Nn there hold the following properties for the special function  zaG ,,,  defined in (1.3) are given by H.Nagar et al.[3] Property-1     zGzG dz d n n ,, ,,,,         1.4 Property-2       xGdttGtxG q x q ,,, ,, 0 ,,,,    1.5 Property-3          axaxGxatGIa   ,,, ,,,,    1.6 Property-4           axaxGxatGDa   ,,, ,,,,    1.7 The fractional Integral operators a G ;,,,             x a a axdtttxGxG ,,,,;,,,   1.8 where     0Re,Re,,,,   C II. Boundedness of Operator 𝐆 𝛒,𝛈,𝛄,𝛚;𝐚+𝚿 𝐱 In the following theorems we prove the boundedness on the space L(a,b) and C[a,b] of the operator Gρ,η,γ,ω;a+Ψ x defined in (1.8).
  • 2. On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion www.iosrjournals.org 2 | Page Theorem-1 Let     0Re,Re,,,,   C and ab  then the operator aG ;,,,  is bounded on  baL , and 11;,,, *  BG a  2.1 Where                             0 Re ReRe !ReRe * k k k kkk ab abB     2.2 Theorem-2 Let     0Re,Re,,,,   C and ab  then the operator aG ;,,,  is bounded on  baC , and CCa BG  * ;,,,  where * B is given in (2.2) Proof of Theorems-1, 2 To prove Theorem-1, we denote its left hand side by 4 i.e. . 1;,,,4   aG Now using the definition of operator aG ;,,,  in (1.8) and definition of the function   txG ,,,  in (1.3) and then on interchanging the order of integration by the Dirichlet formula we have,                    b a x a k k k dxdtt kk tx tx 0 1 4 !                              b a b t k kk k dxdtt kk tx tx 0 Re 1ReRe !      , ;, bxat  which on putting utx  takes the following form :                    b a tb k k kk dttdu kk u    0 0 1ReRe 4 !                          0 0 1ReRe !k b a ab k k k dttduu kk     , at  . Now interpreting the inner integral using term-by-term integration and taking into account (2.2), we at once arrive at the desired result in (2.1). To prove Theorem-2, we know that the integral operator Gρ,η,γ,ω;a+ is bounded on L(a,b) by Theorem-1, so it is also bounded in the space C[a,b] of continuous function g on L(a,b) with a finite norm  xgg bxaC   max Using this concept and definition of integral operator aG ;,,,  in (1.8) and in view of (1.3) we have for any  bax , and  baC , ,                dtt kk tx txxG x a k k k a                         0 1 ;,,, !                  ab k k kk C kk duu 0 0 1ReRe !     . The integral on the right hand side is less than or equal to * B , which is defined in (2.2). This completes the proof of Theorem-2. III. Compositions of the Operator 𝐆 𝛒,𝛈,𝛄,𝛚;𝐚+𝚿 𝐱 and the Inversion Formula Let         0Re,Re,Re,Re,,,,,,,,   qCq then the following results hold for  baL , . Result-1         axGxatG a     ,,, 1 ;,,,     3.1 Result-2       aaaaa IGGGI ;,,,;,,,;,,, 3.2 Result-3      aaa GGD ;,,,;,,, 3.3 holds for any continuous function  baC , .
  • 3. On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion www.iosrjournals.org 3 | Page Result-4     aqaqa GGG ;,,,;,,,;,,, 3.4 Result-5      q aaqa IGG   ;,,,;,,, 3.5 Result-6 Let aG ;,,,  is invertible in the space  baL , and for  ,, baL      bxaxfxG a  ,;,,,  3.6 Then         xfGDxfG aq q aa       ;,, 1 ;,,,    3.7 Proof of (3.1) To prove the result in (3.1), we denote its left hand side by Δ5 i.e.    xatG a 1 ;,,,5      Now using the definition of operator in (1.8) we have       x a dtattxG 1 ,,5 ,    with the help of definition in (1.3) and then changing the order of integration and summation we have                0 11 5 !n x a n n n dttxat nn    Evaluating the inner integral with the help of beta integral we have,                     0 1 5 !n n n nn ax ax      . On interpreting the resulting series with the help of (1.3), we at once arrive at the desired result in (3.1). Proof of (3.2) To prove the result in (3.2) we denote its left hand side by Δ6 i.e.   xGI aa    ;,,,6 . On using the definition of the operator in (1.8) and applying Dirichlet formula for x>a, we have :           x a a dtttxGI .,,,6   Now on using the relation (1.6) we at once arrive at the desired result in (3.2) in accordance with the definition of operator in (1.8). The second relation of (3.2) is proved following similar lines as above. Proof of (3.3) To prove the result in (3.3), we denote its left hand side by Δ7 i.e.   xGD aa    ;,,,7 on using the definition of fractional derivative  aD in (3.2) we have,   xGI dx d a n a n            ;,,,7 . which in view of (3.2) takes the following form :   xG dx d an n         ;,,,7 . On applying the definitions in (1.8) and (1.4) we at once arrive at the desired result in (3.3) in accordance with the definition of the operator in (1.8). Proof of (3.4) To prove the result in (3.4), we denote its left hand side by Δ8 i.e.    xGG aqa   ;,,,;,,,8 .
  • 4. On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion www.iosrjournals.org 4 | Page Now in view of the definition in (1.8) we have :       x a aq dttGtxG   ;,,,,,8 ,                 x a t a q dtduuutGtxG   ,, ,,,, Now on using the definition of G-function in (3.3) and on changing the order of integration we have,                    t a ll ll ll qllll0, 2121 8 21 21 21 !!         duudtuttx x a qll       11 21 . . Now on evaluating the inner integral with the help of beta-integral we have                                      t a ll qllll ll duu qllll ux     0, 2121 1 8 21 2121 21 !! ,                                  t a l l lq duu qll ux ux      0 1 8 ! Now on interpreting the resulting series with the help of (3.2) and then in view of (1.8), we at once arrive at the desired result in (3.4). Proof of (3.5) To prove the result in (3.5), we denote its left hand side by 9 i.e.   xGG aqa   ;,,,;,,,9 Now in view of the definition in (1.8) we have :       x a aq dttGtxG   ;,,,,,9 ,                  x a t a q dtduuutGtxG   ,, ,,,, . Now on using the definition of G-function in (1.3) and on changing the order of integration we have                      t a ll ll ll qllll0, 2121 9 21 21 21 !!        duudtuttx x a qll       11 21 . . Now on evaluating the inner integral with the help of beta-integral we have                    duu qllll uxt a ll qllll ll                     0, 2121 1 9 21 2121 21 !! which on making use of the series identify we have :             t a q duuux q    1 9 1 Now with the help of the definition of the operator in (1.1), we at once arrive at the desired result in (3.5). Proof of (3.6,3.7) To prove the result in (3.7), let     xfxG a  ;,,, . Now on operating  aqG ;,,,  on both the sides we have
  • 5. On Boundedness and Compositions of the Operator 𝐺𝜌,𝜂,𝛾,𝜔;𝑎+𝛹 𝑥 and the Inversion www.iosrjournals.org 5 | Page       xfGxGG aqaaq   ;,,,;,,,;,,,   which in view of (3.5) gives          xfGxI aq q a     ;,,,    . Now on operating  q aD    on both the sides it gives :             xfGDxID aq q a q a q a         ;,,,           xfGDx aq q a    ;,,,    which is the result in (3.7). Now let          xfGDxfG aq q aa       ;,,, 1 ;,,,    on operating aG ;,,,  both the sides, we have       xfGG aa    ;,,, 1 ;,,,       xfGGD aaq q a    ;,,,;,,,   which in view of (3.5) gives             xfIDxfGG q a q aaa          ;,,, 1 ;,,, References [1]. Carl F. Lorenzo, Tom T. Hartley: Generalized Functions for the Fractional Calculus, NASA/TP—1999-209424/REV1(1999) [2]. Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. : Tables of Integral Transforms, Vol.-II, McGraw-Hill, New York Toronto & London (1954). [3]. H.Nagar and A.K.Menaria, J. Comp. & Math. Sci. Vol.3 (5), 536-541 (2012) [4]. Kober, H.: On fractional integrals and derivatives. Quart. J. Math. Oxford 11,193(1940) [5]. Lorenzo, C.F. and Hartely, T.T. : R-function relationships for application in the fractional calculus, NASA Tech. Mem. 210361, 1-22, (2000)