SlideShare a Scribd company logo
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
1
POINT SYMMETRIES OF LAGRANGIANS
J. López-Bonilla1
, R. López-Vázquez1
, P. Lam-Estrada2
, G. Ovando3
,
1
ESIME-Zacatenco, Instituto Politécnico Nacional (IPN),
Edif.5, 1er. Piso, Col. Lindavista, CP 07738, México DF,
2
Departamento de Matemáticas, ESFM-IPN, Edif. 9, Zacatenco CP 07738, México DF,
3
CBI-Área de Física-AMA, UAM-A, Av. San Pablo 180, Col. Reynosa-Tamps.,
MéxicoDF
ABSTRACT
We give an elementary exposition of a method to obtain the infinitesimal point symmetries of Lagrangians.
Besides, we exhibit the Lanczos approach to Noether’s theorem to construct the first integral associated
with each symmetry.
MSC 2010:49S05, 58E30, 70H25, 70H33
KEYWORDS
Noether’s theorem, Local symmetries
1. INTRODUCTION
We consider a physical system where the parameters q1, q2 ,…, qn are its generalized
coordinates, that is, there are n degrees of freedom. The action:
ܵ = ‫׬‬ ‫,ݍ(ܮ‬
௧మ
௧భ
‫ݍ‬ሶ, ‫)ݐ‬ ݀‫,ݐ‬ ‫ݍ‬ሶ =
ௗ௤
ௗ௧
, (1)
is fundamental in the dynamical evolution of the system. We can change to new
coordinates via the local transformations:
‫ݐ‬̃ = ‫ݐ‬ + ߝ ߙ଴(‫ݐ‬), ‫ݍ‬෤௜ = ‫ݍ‬௜ + ߝ ߙ௜(‫,ݍ‬ ‫ݐ‬),i = 1, 2, … ,n (2)
where ߝ is an infinitesimal parameter, thus the action takes the value:
ܵሚ = ‫׬‬ ‫ݍ(ܮ‬෤
௧ሚమ
௧ሚభ
,
ௗ௤෤
ௗ௧ሚ
, ‫ݐ‬̃) ݀‫ݐ‬̃. (3)
If ߜܵ = ߜܵሚ, to first order in ߝ, then we say that the action is invariant under the transformations
(2), that is, (2) are local symmetries of the Euler-Lagrange equations of motion.
The principal aim of this work is to show a technique to investigate the existence of point
symmetries for a given action, and to realize the explicit construction of the functions ߙ௥, ‫ݎ‬ =
0, … , ݊. The Sec. 2 contains the method of Emmy Noether [1-4] to achieve this aim. In Sec. 3 the
Noether’s theorem [5-12], in the Lanczos approach [13,14], is used to deduce the first integral
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
2
associated with each point symmetry. We make applications to Lagrangians studied by several
authors [4, 15-19].
2. NOETHER’S METHOD
From (2) it is easy to deduce, to first order in ߝ, that:
‫ܮ‬ ቀ‫ݍ‬෤,
ௗ௤෤
ௗ௧ሚ
, ‫ݐ‬̃ቁ ݀‫ݐ‬̃ = ‫ܮ‬ ቀ‫,ݍ‬
ௗ௤
ௗ௧
, ‫ݐ‬ቁ ݀‫ݐ‬ + ߝ ܰ(‫,ݍ‬ ‫ݍ‬ሶ, ‫,ݐ݀)ݐ‬ (4)
with the Noether’s function [4, 19]:
ܰ =
డ
డ௧
(‫ߙܮ‬଴) +
డ௅
డ௤೔
ߙ௜ +
డ௅
డ௤ሶ೔
(ߙሶ௜ − ‫ݍ‬ሶ௜ߙሶ଴), ߙሶ௜ =
డఈ೔
డ௧
+
డఈ೔
డ௤ೝ
‫ݍ‬ሶ௥, (5)
Where the Dedekind (1868)-Einstein [20,21] summation convention is used for repeated indices.
The condition ߜܵሚ = ߜܵ can be obtained if the variation of the Lagrangian is a total derivative
[3,22], that is, if in (4):
ܰ(‫,ݍ‬ ‫,ݍ‬ ‫)ݐ‬ =
ௗ
ௗ௧
ሶ
‫,ݍ(ܨ‬ ‫)ݐ‬ =
డி
డ௧
+
డி
డ௤ೌ
‫ݍ‬ሶ௔ ,(6)
thus in the left side of (6) the term without velocities is equal to
డி
డ௧
, the coefficient of ‫ݍ‬ሶ௔
coincides with
డி
డ௤ೌ
, and each term nonlinear in the ‫ݍ‬ሶ௝ must be zero, which leads to a set of
partial differential equations [4] called Killing equations [2] for the functions ߙ଴(‫)ݐ‬ and
ߙ௥(‫,ݍ‬ ‫.)ݐ‬
We can apply the Noether’s expressions to Lagrangians employed by several authors:
a). Rothe [17].
‫ܮ‬ =
ଵ
ଶ
‫ݍ‬ሶଵ
ଶ
+ ‫ݍ‬ሶଵ‫ݍ‬ଶ +
ଵ
ଶ
(‫ݍ‬ଵ − ‫ݍ‬ଶ)ଶ
, (7)
then (5) and (6) imply the Killing equations:
డఈభ
డ௤మ
= 0,
ଵ
ଶ
(‫ݍ‬ଵ − ‫ݍ‬ଶ)ଶ
ߙሶ଴ + ‫ݍ‬ଶ
డఈభ
డ௧
+ (‫ݍ‬ଵ − ‫ݍ‬ଶ)(ߙଵ − ߙଶ) =
డி
డ௧
,
߲ߙଵ
߲‫ݍ‬ଵ
−
1
2
ߙሶ଴ = 0, ‫ݍ‬ଶ
߲ߙଵ
߲‫ݍ‬ଶ
=
߲‫ܨ‬
߲‫ݍ‬ଶ
, ߙଶ +
߲ߙଵ
߲‫ݐ‬
+ ‫ݍ‬ଶ
߲ߙଵ
߲‫ݍ‬ଵ
=
߲‫ܨ‬
߲‫ݍ‬ଵ
,
whose general solution is:
ߙ଴ = ܿ଴ , ߙଶ = ߙଵ − ߙሶଵ , ‫ܨ‬ = ‫ݍ‬ଵߙଵ , (8)
where ܿ଴ is any constant, ߙଵ(‫)ݐ‬ is an arbitrary function, and we could ask the conditions
ߙଵ൫‫ݐ‬௝൯ = 0, j = 1, 2. Thus (2) gives the local symmetry:
‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ߙଵ , ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ (ߙଵ − ߙሶଵ), (9)
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
3
in according with the relations (2.5) in [17].
b). Henneaux [15, 17].
‫ܮ‬ =
ଵ
ଶ
(‫ݍ‬ሶଶ − ݁௤భ)ଶ
+
ଵ
ଶ
(‫ݍ‬ሶଷ − ‫ݍ‬ଶ)ଶ
, (10)
and from this Noether’s procedure we deduce the system of Killing equations:
డఈమ
డ௤భ
=
డఈయ
డ௤భ
= 0,
డఈమ
డ௤య
+
డఈయ
డ௤మ
= 0, −
ఈሶ బ
ଶ
+
డఈమ
డ௤మ
= 0, −
ఈሶ బ
ଶ
+
డఈయ
డ௤య
= 0,
߲‫ܨ‬
߲‫ݐ‬
=
1
2
(‫ݍ‬ଶ
ଶ
+ ݁ଶ௤భ)ߙሶ଴ − ݁௤భ
߲ߙଶ
߲‫ݐ‬
− ‫ݍ‬ଶ
߲ߙଷ
߲‫ݐ‬
+ ݁ଶ௤భߙଵ + ‫ݍ‬ଶߙଶ,
߲‫ܨ‬
߲‫ݍ‬ଵ
= −݁௤భ
߲ߙଶ
߲‫ݍ‬ଵ
− ‫ݍ‬ଶ
߲ߙଷ
߲‫ݍ‬ଵ
,
డி
డ௤మ
=
డఈమ
డ௧
− ݁௤భ
డఈమ
డ௤మ
− ‫ݍ‬ଶ
డఈయ
డ௤మ
− ݁௤భߙଵ,
డி
డ௤య
= −݁௤భ
డఈమ
డ௤య
+
డఈయ
డ௧
− ‫ݍ‬ଶ
డఈయ
డ௤య
− ߙଶ,
with the general solution:
ߙ଴ = ܿ଴ , ߙଵ = ݁ି௤భߙሷଷ , ߙଶ = ߙሶଷ , ‫ܨ‬ = 0, (11)
and the corresponding point symmetry has the structure:
‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ݁ି௤భߙሷଷ , ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ߙሶଷ , ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ߙଷ , (12)
where ߙଷ(‫)ݐ‬ is arbitrary, which are the expressions (2.7) in [17].
c). Torres del Castillo [18].
‫ܮ‬ =
ଵ
଺
‫ݍ‬ሶଷ
+
ଵ
ଶ
݃‫ݍݐ‬ሶଶ
− ݃ଶ
‫,ݐݍ‬ ݃is a constant, (13)
therefore (5) and (6) imply the partial differential equations:
−
1
3
ߙሶ଴ +
1
2
߲ߙ
߲‫ݍ‬
= 0, ݃‫ݐ‬
߲ߙ
߲‫ݐ‬
=
߲‫ܨ‬
߲‫ݍ‬
, −݃‫ߙݐ‬ሶ଴ +
߲ߙ
߲‫ݐ‬
+ 2݃‫ݐ‬
߲ߙ
߲‫ݍ‬
+ ݃ߙ଴ = 0, ݃ଶ
(‫ߙݐݍ‬ሶ଴ + ‫ߙݍ‬଴ + ‫)ߙݐ‬
= −
߲‫ܨ‬
߲‫ݐ‬
with the solution:
ߙ଴ =
ଷ
ଶ
‫,ݐ‬ ߙ = ‫ݍ‬ − ݃‫ݐ‬ଶ
, ‫ܨ‬ = ݃ଶ
‫ݐ‬ଶ
ቀ
ଵ
ସ
݃‫ݐ‬ଶ
− 2‫ݍ‬ቁ, (14)
in harmony with the transformation (2) in [18] for the infinitesimal case. Thus the local symmetry
is given by:
‫ݐ‬̃ = ‫ݐ‬ +
ଷ
ଶ
ߝ ‫,ݐ‬ ‫ݍ‬෤ = ‫ݍ‬ + ߝ (‫ݍ‬ − ݃‫ݐ‬ଶ). (15)
d). Torres del Castillo [18].
‫ܮ‬ =
ଵ
ଶ
‫ݐ‬ଶ
ቀ‫ݍ‬ሶଶ
−
ଵ
ଷ
‫ݍ‬଺
ቁ, (16)
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
4
and this Noether’s approach permits to obtain the Killing equations:
‫ݐ‬ଶ
߲ߙ
߲‫ݐ‬
=
߲‫ܨ‬
߲‫ݍ‬
, −
1
2
‫ݐ‬ଶ
ߙሶ଴ + ‫ݐ‬ଶ
߲ߙ
߲‫ݍ‬
+ ‫ߙݐ‬଴ = 0, ‫ݐ‬ ‫ݍ‬ହ
൬
1
6
‫ߙݍݐ‬ሶ଴ +
1
3
‫ߙݍ‬଴ + ‫ߙݐ‬൰ = −
߲‫ܨ‬
߲‫ݐ‬
,
with the following solution:
ߙ଴ = 2‫,ݐ‬ ߙ = −‫,ݍ‬ ‫ܨ‬ = 0, (17)
equivalent to infinitesimal version of the transformation (4) in [18], and the point symmetry is:
‫ݐ‬̃ = ‫ݐ‬ + 2 ߝ‫,ݐ‬ ‫ݍ‬෤ = ‫ݍ‬ − ߝ‫.ݍ‬ (18)
e). Havelková [4] – Torres del Castillo [19].
‫ܮ‬ = (‫ݍ‬ሶଵ − ‫ݍ‬ଶ)‫ݍ‬ሶଷ + ‫ݍ‬ଵ‫ݍ‬ଷ , (19)
its associated Noether’s partial differential equations system is:
߲ߙଵ
߲‫ݍ‬ଶ
=
߲ߙଵ
߲‫ݍ‬ଷ
=
߲ߙଷ
߲‫ݍ‬ଵ
=
߲ߙଷ
߲‫ݍ‬ଶ
= 0,
߲ߙଵ
߲‫ݍ‬ଵ
+
߲ߙଷ
߲‫ݍ‬ଷ
− ߙሶ଴ = 0,
߲‫ܨ‬
߲‫ݍ‬ଷ
=
߲ߙଵ
߲‫ݐ‬
− ‫ݍ‬ଶ
߲ߙଷ
߲‫ݍ‬ଷ
− ߙଶ ,
߲‫ܨ‬
߲‫ݐ‬
= ‫ݍ‬ଷ(‫ݍ‬ଵߙሶ଴ + ߙଵ) + ‫ݍ‬ଵߙଷ − ‫ݍ‬ଶ
߲ߙଷ
߲‫ݐ‬
,
߲‫ܨ‬
߲‫ݍ‬ଵ
=
߲ߙଷ
߲‫ݐ‬
− ‫ݍ‬ଶ
߲ߙଷ
߲‫ݍ‬ଵ
,
߲‫ܨ‬
߲‫ݍ‬ଶ
= −‫ݍ‬ଶ
߲ߙଷ
߲‫ݍ‬ଶ
,
and the corresponding general solution is given in [4, 19]:
ߙ଴ = ܿ଴, ߙଵ = −ܿଵ‫ݍ‬ଵ + ܿଶ݁௧
+ ܿଷ݁ି௧
, ߙଶ = −ܿଵ‫ݍ‬ଶ + ݂(‫ݍ‬ଷ), ߙଷ = ܿଵ‫ݍ‬ଷ ,
‫ܨ‬ = (ܿଶ݁௧
− ܿଷ݁ି௧)‫ݍ‬ଷ − ‫׬‬ ݂(‫,ݑ݀)ݑ‬
௤య
(20)
Where ݂(‫ݍ‬ଷ) is an arbitrary function and the ܿ௝ are constants. Thus, we have the local symmetry
([4] p.28, and relations (30) in [19]):
‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ (−ܿଵ ‫ݍ‬ଵ + ܿଶ ݁௧
+ ܿଷ݁ି௧),
‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ൫−ܿଵ ‫ݍ‬ଶ + ݂(‫ݍ‬ଷ)൯, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ܿଵ‫ݍ‬ଷ . (21)
f). Rothe [17].
‫ܮ‬ =
ଵ
ଶ
‫ݍ‬ሶଵ
ଶ
+ (‫ݍ‬ଶ − ‫ݍ‬ଷ)‫ݍ‬ሶଵ +
ଵ
ଶ
(‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ)ଶ
, (22)
with the set of Killing equations:
డఈభ
డ௤మ
=
డఈభ
డ௤య
= 0,
డఈభ
డ௤భ
=
ଵ
ଶ
ߙሶ଴ ,
డி
డ௤ೝ
= (‫ݍ‬ଶ − ‫ݍ‬ଷ)
డఈభ
డ௤ೝ
, ‫ݎ‬ = 2, 3
߲‫ܨ‬
߲‫ݐ‬
= (‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ) ൤
1
2
ߙሶ଴(‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ) + ߙଵ − ߙଶ + ߙଷ൨ + (‫ݍ‬ଶ − ‫ݍ‬ଷ)
߲ߙଵ
߲‫ݐ‬
,
߲‫ܨ‬
߲‫ݍ‬ଵ
= ൬
߲ߙଵ
߲‫ݍ‬ଵ
+ ߙሶ଴൰ (‫ݍ‬ଶ − ‫ݍ‬ଷ) +
߲ߙଵ
߲‫ݐ‬
+ ߙଶ − ߙଷ ,
which implies that ‫ܨ‬ = ‫ݍ‬ଵߙଵ with the point symmetry:
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
5
‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ߙଵ , ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ (ߙଵ − ߙሶଵ + ߙଷ), ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ߙଷ ,
(23)
where ߙଵ(‫)ݐ‬ and ߙଷ(‫)ݐ‬ are arbitrary functions, in according with the expressions (2.36) in [17].
In this Section the Noether’s technique was applied to several Lagrangians to exhibit that the
explicit construction of local symmetries it is equivalent to solve a set of partial differential
equations named Killing equations. Local symmetries of the action are not always easily detected;
it is however crucial to unravel them since their knowledge is required for the quantization [17] of
such singular systems.In Sec. 3 we use the Lanczos technique [13, 14] to deduce the conservation
laws [8, 23] associated with point symmetries.
3. LANCZOS APPROACH TO NOETHER’S THEOREM
Noether [1-3, 8] proved that in a variational principle the existence of symmetries implies
the presence of conservation laws. Lanczos [13, 14] employs this Noether’s result in the
following manner:
1). We consider a global symmetry with constant parameters.
2). After we accept that the parameters are functions of t, that is, now the transformation
is a local symmetry.
3). Into Lagrangian we substitute this local mapping to first order in ߝ, and the parameters
are new degrees of freedom.
4). Then the Euler-Lagrange equations for these parameters give the conservation laws.
Now we apply this Lanczos approach to Lagrangians from Sec. 2:
A). Lagrangian (7):
‫ܮ‬ =
ଵ
ଶ
‫ݍ‬ሶଵ
ଶ
+ ‫ݍ‬ሶଵ‫ݍ‬ଶ +
ଵ
ଶ
(‫ݍ‬ଵ − ‫ݍ‬ଶ)ଶ
, (24)
First, in the transformation (9) we employ ܿ଴ = 0 with the constant ߙଵ = ܽ, thus we have
the global symmetry ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ܽ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ. Now we change the
parameter ܽ by the function ߚ(‫,)ݐ‬our new degree of freedom, to obtain the local
symmetry ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ߚ(‫ݐ‬), ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ߚ(‫ݐ‬), therefore ‫ܮ‬෪ = ‫ܮ‬ +
ߝ ൣߚ ‫ݍ‬ሶଵ + ߚሶ(‫ݍ‬ሶଵ + ‫ݍ‬ଶ)൧, and from the Euler-Lagrange equation forߚ,
ௗ
ௗ௧
ቀ
డ௅෨
డఉሶ ቁ −
డ௅෨
డఉ
= 0,
we deduce that:
ௗ
ௗ௧
(‫ݍ‬ሶଵ + ‫ݍ‬ଶ − ‫ݍ‬ଵ) = 0, (25)
and it is the conserved quantity associated with (9) for ܿ଴ = 0.
The transformation (9) for ߙଵ = 0 is the global symmetry ‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴, ‫ݍ‬෤ଵ = ‫ݍ‬ଵ,
‫ݍ‬෤ଶ = ‫ݍ‬ଶ, and now we consider that ܿ଴ is the function ߚ(‫,)ݐ‬
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
6
then ‫ܮ‬෩ ݀‫ݐ‬̃ = ൣ‫ܮ‬ + ߚሶ(‫ܮ‬ − ‫ݍ‬ሶଵ
ଶ
− ‫ݍ‬ሶଵ‫ݍ‬ଶ)൧ ݀‫ݐ‬and the Euler-Lagrange equation for ߚ implies
the conservation of the Hamiltonian function ‫ܪ‬ = ‫ݍ‬ሶଵ(‫ݍ‬ሶଵ + ‫ݍ‬ଶ) − ‫,ܮ‬ because t is
ignorable in (24).
B). Lagrangian (10):
‫ܮ‬ =
ଵ
ଶ
(‫ݍ‬ሶଶ − ݁௤భ)ଶ
+
ଵ
ଶ
(‫ݍ‬ሶଷ − ‫ݍ‬ଶ)ଶ
. (26)
In the transformation (12) we utilize ܿ଴ = 0 and ߙଷ = ܽ = constant, to obtain the
global symmetry ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ܽ. Into (25) we apply this
symmetry whenܽ → ߚ(‫:)ݐ‬
‫ܮ‬෨ = ‫ܮ‬ + ߝ ߚሶ (‫ݍ‬ሶଷ − ‫ݍ‬ଶ) ∴
ௗ
ௗ௧
(‫ݍ‬ሶଷ − ‫ݍ‬ଶ) = 0, (27)
on the subspace of physical paths. If it is necessary, in (12) we can use ߙଷ = 0 with
ܿ଴ ≠ 0 to deduce the conservation of the corresponding Hamiltonian because (26) has
not explicit dependence of t.
C). Lagrangian (19):
‫ܮ‬ = (‫ݍ‬ሶଵ − ‫ݍ‬ଶ)‫ݍ‬ሶଷ + ‫ݍ‬ଵ‫ݍ‬ଷ , (28)
the transformations (20) permit several situations, in fact:
C1). ܿ଴ = ܿଶ = ܿଷ = ݂ = 0, ܿଵ ≠ 0,then ‫ܮ‬෨ = ‫ܮ‬ + ߝ ߚሶ (‫ݍ‬ଷ‫ݍ‬ሶଵ − ‫ݍ‬ଷ‫ݍ‬ଶ − ‫ݍ‬ሶଷ‫ݍ‬ଵ)and the
Lanczos procedure implies:
Constant = ‫ݍ‬ଵ ‫ݍ‬ሶଷ − (‫ݍ‬ሶଵ − ‫ݍ‬ଶ)‫ݍ‬ଷ , (29)
whose value is zero on-shell.
C2).ܿ௥ = 0, r = 0,…, 3 and ݂ = ܽ, therefore ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ, ‫ݍ‬෤ଷ =
‫ݍ‬ଷ. If ܽ → ߚ(‫,)ݐ‬ from (28) we have that ‫ܮ‬෨ = ‫ܮ‬ − ߝ ߚ ‫ݍ‬ሶଷand the Euler-Lagrange
equation for ߚ leads to:
‫ݍ‬ሶଷ = 0, (30)
on the subspace of physical trajectories.
C3). ܿ଴ = ܿଵ = ܿଷ = ݂ = 0, ܿଶ ≠ 0,then ‫ܮ‬෨ = ‫ܮ‬ + ߝ ൣߚሶ‫ݍ‬ሶଷ + ߚ (‫ݍ‬ଷ + ‫ݍ‬ሶଷ)൧݁௧
and the
Lanczos approach gives
‫ݍ‬ሷଷ − ‫ݍ‬ሶଷ − ‫ݍ‬ଷ = 0. (31)
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
7
D). Lagrangian (22):
‫ܮ‬ =
ଵ
ଶ
‫ݍ‬ሶଵ
ଶ
+ (‫ݍ‬ଶ − ‫ݍ‬ଷ)‫ݍ‬ሶଵ +
ଵ
ଶ
(‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ)ଶ
. (32)
In (23) the first option is ܿ଴ = ߙଷ = 0 ∴ ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ܽ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ, ‫ݍ‬෤ଷ =
‫ݍ‬ଷ. If ܽ → ߚ(‫ݐ‬),
then from (32) ‫ܮ‬෨ = ‫ܮ‬ + ߝ ൣߚሶ(‫ݍ‬ሶଵ + ‫ݍ‬ଶ − ‫ݍ‬ଷ) + ߚ ‫ݍ‬ሶଵ൧, thus:
ௗ
ௗ௧
(‫ݍ‬ሶଵ + ‫ݍ‬ଶ − ‫ݍ‬ଷ − ‫ݍ‬ଵ) = 0. (33)
The second case is ܿ଴ = ߙଵ = 0, ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ܽ,
and if ܽ → ߚ(‫)ݐ‬ we
obtain ‫ܮ‬෨ = ‫ܮ‬ ∴ the Euler-Lagrange equation for ߚ gives 0 = 0.
Our process show that with the Lanczos technique is easy to deduce the conservation
laws (on the subspace on physical paths) associated with point symmetries. On this topic
we recommend the interesting papers indicated in [24-27].
REFERENCES
[1] E. Noether, Invariantevariationsprobleme, Nachr. Ges.Wiss.Göttingen2 (1918) 235-257
[2] D. E. Neuenschwander, Emmy Noether’s wonderful theorem, The Johns Hopkins University Press,
Baltimore, USA (2011)
[3] Y. Kosmann-Schwarzbach, The Noether theorems, Springer, New York (2011)
[4] Monika Havelková, Symmetries of a dynamical system represented by singular Lagrangians, Comm.
in Maths.20, No. 1 (2012) 23-32
[5] H. Rund, The Hamilton-Jacobi theory in the calculus of variations. Its role in Mathematics and
Physics, D. Van Nostrand, London (1966)
[6] H. Rund, A direct approach to Noether’s theorem in the calculus of variations, Utilitas Math. 2 (1972)
205-214
[7] D. Lovelock, H. Rund, Tensors, differential forms and variational principles, Dover, New York
(1989)
[8] Nina Byers, EmmyNoether’s discoveryof the deep connection between symmetries and conservation
laws, Proc. Symp. Heritage E. Noether, Bar Ilan University, Tel Aviv, Israel, Dec. 2-3, 1996
[9] D. E. Neuenschwander, Symmetries, conservation laws and Noether’s theorem, Soc. of Phys.
Newsletter, Jan 1996, 14-16
[10] István Hargittai, Magdolna Hargittai, Homage to Emmy Noether, Mathematical Intelligencer 24, No.
1 (2002) 48-49
[11] K. A. Brading, H. Brown, Symmetries and Noether’s theorems, in ‘Symmetries in Physics,
Philosophical Reflections’, Cambridge University Press (2003) 89-109
[12] L. M. Lederman, Ch. T. Hill, Symmetry and the beautiful universe, Prometheus Books, Amherst,
New York (2004) Chaps. 3 and 5
[13] C. Lanczos, The variational principles of mechanics, University of Toronto Press (1970) Chap. 11
[14] C. Lanczos, Emmy Noether and calculus of variations, Bull. Inst. Math. Appl. 9, No.8 (1973) 253-258
[15] M. Henneaux, C. Teitelboim, J. Zanelli, Gauge invariance and degree of freedom count, Nucl. Phys.
B 332, No. 1 (1990) 169-188
[16] M. Henneaux, C. Teitelboim, Quantization of gauges systems, Princeton University Press, NJ (1994)
Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015
8
[17] H. J. Rothe, K. D. Rothe, Classical and quantum dynamics of constrained Hamiltonian systems,
World Scientific Lecture Notes in Physics 81, Singapore (2010)
[18] G. F. Torres del Castillo, C. Andrade-Mirón, R. Bravo-Rojas, Variational symmetries of Lagrangians,
Rev. Mex. Fís. E59 (2013) 140-147
[19] G. F. Torres del Castillo, Point symmetries of the Euler-Lagrange equations, Rev. Mex. Fís. 60 (2014)
129-135
[20] M. A. Sinaceur, Dedekind et le programme de Riemann, Rev. Hist. Sci. 43 (1990) 221-294
[21] D. Laugwitz, Bernhard Riemann 1826-1866. Turning points in the conception of mathematics,
Birkhäuser, Boston, USA (2008)
[22] E. Bessel-Hagen, Über die Erhaltungssätze der Elektrodynamik, MathematischeAnnalen84 (1921)
258-276
[23] J. López-Bonilla, J. Morales, G. Ovando, Conservation laws for energy and momentum in curved
spaces, J. Zhejiang Univ. Sci. A8, No. 4 (2007) 665-668
[24] V. N. Mishra, Some problems on approximations of functions in Banach spaces, Ph. D. Thesis, Indian
Institute of Technology, Roorkee, Uttarakhand 247 667, India (2007)
[25] Deepmala, H. K. Pathak, A study on some problems on existence of solutions for nonlinear
functional- integral equations, Acta Mathematica Scientia B33, No. 5 (2013) 1305-1313
[26] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, Inverse result in simultaneous approximation by
Baskakov-Durrmeyer-Stancu operators, J. of Inequalities and Applications (2013) 2013:586, doi:
10.1186/1029-242X-2013-586
[27] Deepmala, A study on fixed point theorems for nonlinear contractions and its applications, Ph. D.
Thesis, Pt. Ravishankar Shukla University, Raipur (Chhatisgarh) 492 010, India (2014)

More Related Content

What's hot

Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqdfoxtrot jp R
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbfoxtrot jp R
 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...arj_online
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrdfoxtrot jp R
 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolftfoxtrot jp R
 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)foxtrot jp R
 
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODELSCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODELijrap
 
The inverse scattering series for tasks associated with primaries: direct non...
The inverse scattering series for tasks associated with primaries: direct non...The inverse scattering series for tasks associated with primaries: direct non...
The inverse scattering series for tasks associated with primaries: direct non...Arthur Weglein
 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1foxtrot jp R
 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsAlexander Decker
 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016foxtrot jp R
 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2foxtrot jp R
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqwRene Kotze
 
Significance of Mathematical Analysis in Operational Methods [2014]
Significance of Mathematical Analysis in Operational Methods [2014]Significance of Mathematical Analysis in Operational Methods [2014]
Significance of Mathematical Analysis in Operational Methods [2014]SanjayKumar Patel
 
Sweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedSweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedfoxtrot jp R
 

What's hot (18)

Summerp62016update3 slideshare sqd
Summerp62016update3 slideshare   sqdSummerp62016update3 slideshare   sqd
Summerp62016update3 slideshare sqd
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
 
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
Chebyshev Polynomial Based Numerical Inverse Laplace Transform Solutions of L...
 
Sweeping discussions on dirac field1 update3 sqrd
Sweeping discussions on dirac field1 update3   sqrdSweeping discussions on dirac field1 update3   sqrd
Sweeping discussions on dirac field1 update3 sqrd
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Dealinggreensfncsolft
DealinggreensfncsolftDealinggreensfncsolft
Dealinggreensfncsolft
 
Dealinggreensfncsolft sqrd(10 5-2k16)
Dealinggreensfncsolft   sqrd(10 5-2k16)Dealinggreensfncsolft   sqrd(10 5-2k16)
Dealinggreensfncsolft sqrd(10 5-2k16)
 
Sw2gr1 sqrd
Sw2gr1   sqrdSw2gr1   sqrd
Sw2gr1 sqrd
 
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODELSCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
 
The inverse scattering series for tasks associated with primaries: direct non...
The inverse scattering series for tasks associated with primaries: direct non...The inverse scattering series for tasks associated with primaries: direct non...
The inverse scattering series for tasks associated with primaries: direct non...
 
Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
 
A02402001011
A02402001011A02402001011
A02402001011
 
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
 
Very brief highlights on some key details 2
Very brief highlights on some key details 2Very brief highlights on some key details 2
Very brief highlights on some key details 2
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
Significance of Mathematical Analysis in Operational Methods [2014]
Significance of Mathematical Analysis in Operational Methods [2014]Significance of Mathematical Analysis in Operational Methods [2014]
Significance of Mathematical Analysis in Operational Methods [2014]
 
Sweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedSweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_secured
 

Viewers also liked

Ventajas para el Franquiciador y el Franquiciado.
Ventajas para el Franquiciador y el Franquiciado.Ventajas para el Franquiciador y el Franquiciado.
Ventajas para el Franquiciador y el Franquiciado.Daideth
 
Calendario tubriturario 2015
Calendario tubriturario 2015Calendario tubriturario 2015
Calendario tubriturario 2015Carlos Silva
 
NostalgicOutdoors™- Everglades National Park- Trip Planner
NostalgicOutdoors™- Everglades National Park- Trip PlannerNostalgicOutdoors™- Everglades National Park- Trip Planner
NostalgicOutdoors™- Everglades National Park- Trip PlannerNostalgicOutdoors™
 
Toma de decisiones
Toma de decisionesToma de decisiones
Toma de decisionesFREDY CAÑAR
 
Sistemas de informacion
Sistemas de informacionSistemas de informacion
Sistemas de informacionjessyroxana
 
Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...
Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...
Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...Diego Broseta
 
El rol del profesor
El rol del profesorEl rol del profesor
El rol del profesorRosi87
 
God the Holy Trinity: The Lover of Mankind
God the Holy Trinity: The Lover of MankindGod the Holy Trinity: The Lover of Mankind
God the Holy Trinity: The Lover of Mankindlife101series
 
Derecho constitucional y derecho procesal
Derecho constitucional y derecho procesalDerecho constitucional y derecho procesal
Derecho constitucional y derecho procesalchunchi2486
 
6 teoría triárquica
6 teoría triárquica6 teoría triárquica
6 teoría triárquicacrownred
 
Geologia gral el universo 2006
Geologia gral el universo 2006Geologia gral el universo 2006
Geologia gral el universo 2006Joe Arroyo Suárez
 
2005 Pfizer Annual Report to Shareholders
2005 Pfizer Annual Report to Shareholders 2005 Pfizer Annual Report to Shareholders
2005 Pfizer Annual Report to Shareholders finance5
 
Opinión: Proyecto de Ley Fortalecimiento de la Gestión Tributaria
Opinión: Proyecto de Ley Fortalecimiento de la Gestión TributariaOpinión: Proyecto de Ley Fortalecimiento de la Gestión Tributaria
Opinión: Proyecto de Ley Fortalecimiento de la Gestión TributariaMultimodal
 
Ppa.con tic. servicios y aplicaciones
Ppa.con tic. servicios y aplicacionesPpa.con tic. servicios y aplicaciones
Ppa.con tic. servicios y aplicacionesdplimado
 
Eduardo sánchez villegas tlcuem
Eduardo sánchez villegas tlcuemEduardo sánchez villegas tlcuem
Eduardo sánchez villegas tlcuemEduardo Sanchez
 

Viewers also liked (20)

Ventajas para el Franquiciador y el Franquiciado.
Ventajas para el Franquiciador y el Franquiciado.Ventajas para el Franquiciador y el Franquiciado.
Ventajas para el Franquiciador y el Franquiciado.
 
Matematica (1)
Matematica (1)Matematica (1)
Matematica (1)
 
Calendario tubriturario 2015
Calendario tubriturario 2015Calendario tubriturario 2015
Calendario tubriturario 2015
 
NostalgicOutdoors™- Everglades National Park- Trip Planner
NostalgicOutdoors™- Everglades National Park- Trip PlannerNostalgicOutdoors™- Everglades National Park- Trip Planner
NostalgicOutdoors™- Everglades National Park- Trip Planner
 
Toma de decisiones
Toma de decisionesToma de decisiones
Toma de decisiones
 
Sistemas de informacion
Sistemas de informacionSistemas de informacion
Sistemas de informacion
 
Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...
Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...
Espacio geográfico español (1ºES Diego Broseta, Pedro Risquez, Pedro García, ...
 
DystopiaGroupProject
DystopiaGroupProjectDystopiaGroupProject
DystopiaGroupProject
 
Organizações
OrganizaçõesOrganizações
Organizações
 
El rol del profesor
El rol del profesorEl rol del profesor
El rol del profesor
 
God the Holy Trinity: The Lover of Mankind
God the Holy Trinity: The Lover of MankindGod the Holy Trinity: The Lover of Mankind
God the Holy Trinity: The Lover of Mankind
 
Derecho constitucional y derecho procesal
Derecho constitucional y derecho procesalDerecho constitucional y derecho procesal
Derecho constitucional y derecho procesal
 
6 teoría triárquica
6 teoría triárquica6 teoría triárquica
6 teoría triárquica
 
Geologia gral el universo 2006
Geologia gral el universo 2006Geologia gral el universo 2006
Geologia gral el universo 2006
 
2005 Pfizer Annual Report to Shareholders
2005 Pfizer Annual Report to Shareholders 2005 Pfizer Annual Report to Shareholders
2005 Pfizer Annual Report to Shareholders
 
El carreño m
El carreño mEl carreño m
El carreño m
 
Opinión: Proyecto de Ley Fortalecimiento de la Gestión Tributaria
Opinión: Proyecto de Ley Fortalecimiento de la Gestión TributariaOpinión: Proyecto de Ley Fortalecimiento de la Gestión Tributaria
Opinión: Proyecto de Ley Fortalecimiento de la Gestión Tributaria
 
Ppa.con tic. servicios y aplicaciones
Ppa.con tic. servicios y aplicacionesPpa.con tic. servicios y aplicaciones
Ppa.con tic. servicios y aplicaciones
 
Eduardo sánchez villegas tlcuem
Eduardo sánchez villegas tlcuemEduardo sánchez villegas tlcuem
Eduardo sánchez villegas tlcuem
 
SISTEMAS OPERATIVOS
SISTEMAS OPERATIVOSSISTEMAS OPERATIVOS
SISTEMAS OPERATIVOS
 

Similar to Point symmetries of lagrangians

On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...IJERA Editor
 
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems IJECEIAES
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...ijistjournal
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...ijistjournal
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionIJMERJOURNAL
 
The Generalized Difference Operator of the 퐧 퐭퐡 Kind
The Generalized Difference Operator of the 퐧 퐭퐡 KindThe Generalized Difference Operator of the 퐧 퐭퐡 Kind
The Generalized Difference Operator of the 퐧 퐭퐡 KindDr. Amarjeet Singh
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model irjes
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equationsinventionjournals
 
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...ijcsa
 
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...ijcsa
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...IOSR Journals
 
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...ijitcs
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...ijscai
 

Similar to Point symmetries of lagrangians (20)

A0280106
A0280106A0280106
A0280106
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag – Leffler Funct...
 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
 
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems Adaptive Projective Lag Synchronization of T and Lu  Chaotic Systems
Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
 
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
 
The Generalized Difference Operator of the 퐧 퐭퐡 Kind
The Generalized Difference Operator of the 퐧 퐭퐡 KindThe Generalized Difference Operator of the 퐧 퐭퐡 Kind
The Generalized Difference Operator of the 퐧 퐭퐡 Kind
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model Flip bifurcation and chaos control in discrete-time Prey-predator model
Flip bifurcation and chaos control in discrete-time Prey-predator model
 
A Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear EquationsA Fifth-Order Iterative Method for Solving Nonlinear Equations
A Fifth-Order Iterative Method for Solving Nonlinear Equations
 
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
 
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
A05330107
A05330107A05330107
A05330107
 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
 
E0561719
E0561719E0561719
E0561719
 
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
 
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...ACTIVE CONTROLLER DESIGN FOR THE HYBRID  SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
ACTIVE CONTROLLER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZHEN...
 

Recently uploaded

IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoTAnalytics
 
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀DianaGray10
 
The architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfThe architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfalexjohnson7307
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekCzechDreamin
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfChristopherTHyatt
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxDavid Michel
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka DoktorováCzechDreamin
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1DianaGray10
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationZilliz
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlPeter Udo Diehl
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxAbida Shariff
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Thierry Lestable
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsPaul Groth
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...Product School
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersSafe Software
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfCheryl Hung
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Alison B. Lowndes
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backElena Simperl
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsStefano
 

Recently uploaded (20)

IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
Exploring UiPath Orchestrator API: updates and limits in 2024 🚀
 
The architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfThe architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdf
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdf
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová10 Differences between Sales Cloud and CPQ, Blanka Doktorová
10 Differences between Sales Cloud and CPQ, Blanka Doktorová
 
UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1UiPath Test Automation using UiPath Test Suite series, part 1
UiPath Test Automation using UiPath Test Suite series, part 1
 
Introduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG EvaluationIntroduction to Open Source RAG and RAG Evaluation
Introduction to Open Source RAG and RAG Evaluation
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 

Point symmetries of lagrangians

  • 1. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 1 POINT SYMMETRIES OF LAGRANGIANS J. López-Bonilla1 , R. López-Vázquez1 , P. Lam-Estrada2 , G. Ovando3 , 1 ESIME-Zacatenco, Instituto Politécnico Nacional (IPN), Edif.5, 1er. Piso, Col. Lindavista, CP 07738, México DF, 2 Departamento de Matemáticas, ESFM-IPN, Edif. 9, Zacatenco CP 07738, México DF, 3 CBI-Área de Física-AMA, UAM-A, Av. San Pablo 180, Col. Reynosa-Tamps., MéxicoDF ABSTRACT We give an elementary exposition of a method to obtain the infinitesimal point symmetries of Lagrangians. Besides, we exhibit the Lanczos approach to Noether’s theorem to construct the first integral associated with each symmetry. MSC 2010:49S05, 58E30, 70H25, 70H33 KEYWORDS Noether’s theorem, Local symmetries 1. INTRODUCTION We consider a physical system where the parameters q1, q2 ,…, qn are its generalized coordinates, that is, there are n degrees of freedom. The action: ܵ = ‫׬‬ ‫,ݍ(ܮ‬ ௧మ ௧భ ‫ݍ‬ሶ, ‫)ݐ‬ ݀‫,ݐ‬ ‫ݍ‬ሶ = ௗ௤ ௗ௧ , (1) is fundamental in the dynamical evolution of the system. We can change to new coordinates via the local transformations: ‫ݐ‬̃ = ‫ݐ‬ + ߝ ߙ଴(‫ݐ‬), ‫ݍ‬෤௜ = ‫ݍ‬௜ + ߝ ߙ௜(‫,ݍ‬ ‫ݐ‬),i = 1, 2, … ,n (2) where ߝ is an infinitesimal parameter, thus the action takes the value: ܵሚ = ‫׬‬ ‫ݍ(ܮ‬෤ ௧ሚమ ௧ሚభ , ௗ௤෤ ௗ௧ሚ , ‫ݐ‬̃) ݀‫ݐ‬̃. (3) If ߜܵ = ߜܵሚ, to first order in ߝ, then we say that the action is invariant under the transformations (2), that is, (2) are local symmetries of the Euler-Lagrange equations of motion. The principal aim of this work is to show a technique to investigate the existence of point symmetries for a given action, and to realize the explicit construction of the functions ߙ௥, ‫ݎ‬ = 0, … , ݊. The Sec. 2 contains the method of Emmy Noether [1-4] to achieve this aim. In Sec. 3 the Noether’s theorem [5-12], in the Lanczos approach [13,14], is used to deduce the first integral
  • 2. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 2 associated with each point symmetry. We make applications to Lagrangians studied by several authors [4, 15-19]. 2. NOETHER’S METHOD From (2) it is easy to deduce, to first order in ߝ, that: ‫ܮ‬ ቀ‫ݍ‬෤, ௗ௤෤ ௗ௧ሚ , ‫ݐ‬̃ቁ ݀‫ݐ‬̃ = ‫ܮ‬ ቀ‫,ݍ‬ ௗ௤ ௗ௧ , ‫ݐ‬ቁ ݀‫ݐ‬ + ߝ ܰ(‫,ݍ‬ ‫ݍ‬ሶ, ‫,ݐ݀)ݐ‬ (4) with the Noether’s function [4, 19]: ܰ = డ డ௧ (‫ߙܮ‬଴) + డ௅ డ௤೔ ߙ௜ + డ௅ డ௤ሶ೔ (ߙሶ௜ − ‫ݍ‬ሶ௜ߙሶ଴), ߙሶ௜ = డఈ೔ డ௧ + డఈ೔ డ௤ೝ ‫ݍ‬ሶ௥, (5) Where the Dedekind (1868)-Einstein [20,21] summation convention is used for repeated indices. The condition ߜܵሚ = ߜܵ can be obtained if the variation of the Lagrangian is a total derivative [3,22], that is, if in (4): ܰ(‫,ݍ‬ ‫,ݍ‬ ‫)ݐ‬ = ௗ ௗ௧ ሶ ‫,ݍ(ܨ‬ ‫)ݐ‬ = డி డ௧ + డி డ௤ೌ ‫ݍ‬ሶ௔ ,(6) thus in the left side of (6) the term without velocities is equal to డி డ௧ , the coefficient of ‫ݍ‬ሶ௔ coincides with డி డ௤ೌ , and each term nonlinear in the ‫ݍ‬ሶ௝ must be zero, which leads to a set of partial differential equations [4] called Killing equations [2] for the functions ߙ଴(‫)ݐ‬ and ߙ௥(‫,ݍ‬ ‫.)ݐ‬ We can apply the Noether’s expressions to Lagrangians employed by several authors: a). Rothe [17]. ‫ܮ‬ = ଵ ଶ ‫ݍ‬ሶଵ ଶ + ‫ݍ‬ሶଵ‫ݍ‬ଶ + ଵ ଶ (‫ݍ‬ଵ − ‫ݍ‬ଶ)ଶ , (7) then (5) and (6) imply the Killing equations: డఈభ డ௤మ = 0, ଵ ଶ (‫ݍ‬ଵ − ‫ݍ‬ଶ)ଶ ߙሶ଴ + ‫ݍ‬ଶ డఈభ డ௧ + (‫ݍ‬ଵ − ‫ݍ‬ଶ)(ߙଵ − ߙଶ) = డி డ௧ , ߲ߙଵ ߲‫ݍ‬ଵ − 1 2 ߙሶ଴ = 0, ‫ݍ‬ଶ ߲ߙଵ ߲‫ݍ‬ଶ = ߲‫ܨ‬ ߲‫ݍ‬ଶ , ߙଶ + ߲ߙଵ ߲‫ݐ‬ + ‫ݍ‬ଶ ߲ߙଵ ߲‫ݍ‬ଵ = ߲‫ܨ‬ ߲‫ݍ‬ଵ , whose general solution is: ߙ଴ = ܿ଴ , ߙଶ = ߙଵ − ߙሶଵ , ‫ܨ‬ = ‫ݍ‬ଵߙଵ , (8) where ܿ଴ is any constant, ߙଵ(‫)ݐ‬ is an arbitrary function, and we could ask the conditions ߙଵ൫‫ݐ‬௝൯ = 0, j = 1, 2. Thus (2) gives the local symmetry: ‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ߙଵ , ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ (ߙଵ − ߙሶଵ), (9)
  • 3. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 3 in according with the relations (2.5) in [17]. b). Henneaux [15, 17]. ‫ܮ‬ = ଵ ଶ (‫ݍ‬ሶଶ − ݁௤భ)ଶ + ଵ ଶ (‫ݍ‬ሶଷ − ‫ݍ‬ଶ)ଶ , (10) and from this Noether’s procedure we deduce the system of Killing equations: డఈమ డ௤భ = డఈయ డ௤భ = 0, డఈమ డ௤య + డఈయ డ௤మ = 0, − ఈሶ బ ଶ + డఈమ డ௤మ = 0, − ఈሶ బ ଶ + డఈయ డ௤య = 0, ߲‫ܨ‬ ߲‫ݐ‬ = 1 2 (‫ݍ‬ଶ ଶ + ݁ଶ௤భ)ߙሶ଴ − ݁௤భ ߲ߙଶ ߲‫ݐ‬ − ‫ݍ‬ଶ ߲ߙଷ ߲‫ݐ‬ + ݁ଶ௤భߙଵ + ‫ݍ‬ଶߙଶ, ߲‫ܨ‬ ߲‫ݍ‬ଵ = −݁௤భ ߲ߙଶ ߲‫ݍ‬ଵ − ‫ݍ‬ଶ ߲ߙଷ ߲‫ݍ‬ଵ , డி డ௤మ = డఈమ డ௧ − ݁௤భ డఈమ డ௤మ − ‫ݍ‬ଶ డఈయ డ௤మ − ݁௤భߙଵ, డி డ௤య = −݁௤భ డఈమ డ௤య + డఈయ డ௧ − ‫ݍ‬ଶ డఈయ డ௤య − ߙଶ, with the general solution: ߙ଴ = ܿ଴ , ߙଵ = ݁ି௤భߙሷଷ , ߙଶ = ߙሶଷ , ‫ܨ‬ = 0, (11) and the corresponding point symmetry has the structure: ‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ݁ି௤భߙሷଷ , ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ߙሶଷ , ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ߙଷ , (12) where ߙଷ(‫)ݐ‬ is arbitrary, which are the expressions (2.7) in [17]. c). Torres del Castillo [18]. ‫ܮ‬ = ଵ ଺ ‫ݍ‬ሶଷ + ଵ ଶ ݃‫ݍݐ‬ሶଶ − ݃ଶ ‫,ݐݍ‬ ݃is a constant, (13) therefore (5) and (6) imply the partial differential equations: − 1 3 ߙሶ଴ + 1 2 ߲ߙ ߲‫ݍ‬ = 0, ݃‫ݐ‬ ߲ߙ ߲‫ݐ‬ = ߲‫ܨ‬ ߲‫ݍ‬ , −݃‫ߙݐ‬ሶ଴ + ߲ߙ ߲‫ݐ‬ + 2݃‫ݐ‬ ߲ߙ ߲‫ݍ‬ + ݃ߙ଴ = 0, ݃ଶ (‫ߙݐݍ‬ሶ଴ + ‫ߙݍ‬଴ + ‫)ߙݐ‬ = − ߲‫ܨ‬ ߲‫ݐ‬ with the solution: ߙ଴ = ଷ ଶ ‫,ݐ‬ ߙ = ‫ݍ‬ − ݃‫ݐ‬ଶ , ‫ܨ‬ = ݃ଶ ‫ݐ‬ଶ ቀ ଵ ସ ݃‫ݐ‬ଶ − 2‫ݍ‬ቁ, (14) in harmony with the transformation (2) in [18] for the infinitesimal case. Thus the local symmetry is given by: ‫ݐ‬̃ = ‫ݐ‬ + ଷ ଶ ߝ ‫,ݐ‬ ‫ݍ‬෤ = ‫ݍ‬ + ߝ (‫ݍ‬ − ݃‫ݐ‬ଶ). (15) d). Torres del Castillo [18]. ‫ܮ‬ = ଵ ଶ ‫ݐ‬ଶ ቀ‫ݍ‬ሶଶ − ଵ ଷ ‫ݍ‬଺ ቁ, (16)
  • 4. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 4 and this Noether’s approach permits to obtain the Killing equations: ‫ݐ‬ଶ ߲ߙ ߲‫ݐ‬ = ߲‫ܨ‬ ߲‫ݍ‬ , − 1 2 ‫ݐ‬ଶ ߙሶ଴ + ‫ݐ‬ଶ ߲ߙ ߲‫ݍ‬ + ‫ߙݐ‬଴ = 0, ‫ݐ‬ ‫ݍ‬ହ ൬ 1 6 ‫ߙݍݐ‬ሶ଴ + 1 3 ‫ߙݍ‬଴ + ‫ߙݐ‬൰ = − ߲‫ܨ‬ ߲‫ݐ‬ , with the following solution: ߙ଴ = 2‫,ݐ‬ ߙ = −‫,ݍ‬ ‫ܨ‬ = 0, (17) equivalent to infinitesimal version of the transformation (4) in [18], and the point symmetry is: ‫ݐ‬̃ = ‫ݐ‬ + 2 ߝ‫,ݐ‬ ‫ݍ‬෤ = ‫ݍ‬ − ߝ‫.ݍ‬ (18) e). Havelková [4] – Torres del Castillo [19]. ‫ܮ‬ = (‫ݍ‬ሶଵ − ‫ݍ‬ଶ)‫ݍ‬ሶଷ + ‫ݍ‬ଵ‫ݍ‬ଷ , (19) its associated Noether’s partial differential equations system is: ߲ߙଵ ߲‫ݍ‬ଶ = ߲ߙଵ ߲‫ݍ‬ଷ = ߲ߙଷ ߲‫ݍ‬ଵ = ߲ߙଷ ߲‫ݍ‬ଶ = 0, ߲ߙଵ ߲‫ݍ‬ଵ + ߲ߙଷ ߲‫ݍ‬ଷ − ߙሶ଴ = 0, ߲‫ܨ‬ ߲‫ݍ‬ଷ = ߲ߙଵ ߲‫ݐ‬ − ‫ݍ‬ଶ ߲ߙଷ ߲‫ݍ‬ଷ − ߙଶ , ߲‫ܨ‬ ߲‫ݐ‬ = ‫ݍ‬ଷ(‫ݍ‬ଵߙሶ଴ + ߙଵ) + ‫ݍ‬ଵߙଷ − ‫ݍ‬ଶ ߲ߙଷ ߲‫ݐ‬ , ߲‫ܨ‬ ߲‫ݍ‬ଵ = ߲ߙଷ ߲‫ݐ‬ − ‫ݍ‬ଶ ߲ߙଷ ߲‫ݍ‬ଵ , ߲‫ܨ‬ ߲‫ݍ‬ଶ = −‫ݍ‬ଶ ߲ߙଷ ߲‫ݍ‬ଶ , and the corresponding general solution is given in [4, 19]: ߙ଴ = ܿ଴, ߙଵ = −ܿଵ‫ݍ‬ଵ + ܿଶ݁௧ + ܿଷ݁ି௧ , ߙଶ = −ܿଵ‫ݍ‬ଶ + ݂(‫ݍ‬ଷ), ߙଷ = ܿଵ‫ݍ‬ଷ , ‫ܨ‬ = (ܿଶ݁௧ − ܿଷ݁ି௧)‫ݍ‬ଷ − ‫׬‬ ݂(‫,ݑ݀)ݑ‬ ௤య (20) Where ݂(‫ݍ‬ଷ) is an arbitrary function and the ܿ௝ are constants. Thus, we have the local symmetry ([4] p.28, and relations (30) in [19]): ‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ (−ܿଵ ‫ݍ‬ଵ + ܿଶ ݁௧ + ܿଷ݁ି௧), ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ൫−ܿଵ ‫ݍ‬ଶ + ݂(‫ݍ‬ଷ)൯, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ܿଵ‫ݍ‬ଷ . (21) f). Rothe [17]. ‫ܮ‬ = ଵ ଶ ‫ݍ‬ሶଵ ଶ + (‫ݍ‬ଶ − ‫ݍ‬ଷ)‫ݍ‬ሶଵ + ଵ ଶ (‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ)ଶ , (22) with the set of Killing equations: డఈభ డ௤మ = డఈభ డ௤య = 0, డఈభ డ௤భ = ଵ ଶ ߙሶ଴ , డி డ௤ೝ = (‫ݍ‬ଶ − ‫ݍ‬ଷ) డఈభ డ௤ೝ , ‫ݎ‬ = 2, 3 ߲‫ܨ‬ ߲‫ݐ‬ = (‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ) ൤ 1 2 ߙሶ଴(‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ) + ߙଵ − ߙଶ + ߙଷ൨ + (‫ݍ‬ଶ − ‫ݍ‬ଷ) ߲ߙଵ ߲‫ݐ‬ , ߲‫ܨ‬ ߲‫ݍ‬ଵ = ൬ ߲ߙଵ ߲‫ݍ‬ଵ + ߙሶ଴൰ (‫ݍ‬ଶ − ‫ݍ‬ଷ) + ߲ߙଵ ߲‫ݐ‬ + ߙଶ − ߙଷ , which implies that ‫ܨ‬ = ‫ݍ‬ଵߙଵ with the point symmetry:
  • 5. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 5 ‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴ , ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ߙଵ , ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ (ߙଵ − ߙሶଵ + ߙଷ), ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ߙଷ , (23) where ߙଵ(‫)ݐ‬ and ߙଷ(‫)ݐ‬ are arbitrary functions, in according with the expressions (2.36) in [17]. In this Section the Noether’s technique was applied to several Lagrangians to exhibit that the explicit construction of local symmetries it is equivalent to solve a set of partial differential equations named Killing equations. Local symmetries of the action are not always easily detected; it is however crucial to unravel them since their knowledge is required for the quantization [17] of such singular systems.In Sec. 3 we use the Lanczos technique [13, 14] to deduce the conservation laws [8, 23] associated with point symmetries. 3. LANCZOS APPROACH TO NOETHER’S THEOREM Noether [1-3, 8] proved that in a variational principle the existence of symmetries implies the presence of conservation laws. Lanczos [13, 14] employs this Noether’s result in the following manner: 1). We consider a global symmetry with constant parameters. 2). After we accept that the parameters are functions of t, that is, now the transformation is a local symmetry. 3). Into Lagrangian we substitute this local mapping to first order in ߝ, and the parameters are new degrees of freedom. 4). Then the Euler-Lagrange equations for these parameters give the conservation laws. Now we apply this Lanczos approach to Lagrangians from Sec. 2: A). Lagrangian (7): ‫ܮ‬ = ଵ ଶ ‫ݍ‬ሶଵ ଶ + ‫ݍ‬ሶଵ‫ݍ‬ଶ + ଵ ଶ (‫ݍ‬ଵ − ‫ݍ‬ଶ)ଶ , (24) First, in the transformation (9) we employ ܿ଴ = 0 with the constant ߙଵ = ܽ, thus we have the global symmetry ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ܽ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ. Now we change the parameter ܽ by the function ߚ(‫,)ݐ‬our new degree of freedom, to obtain the local symmetry ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ߚ(‫ݐ‬), ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ߚ(‫ݐ‬), therefore ‫ܮ‬෪ = ‫ܮ‬ + ߝ ൣߚ ‫ݍ‬ሶଵ + ߚሶ(‫ݍ‬ሶଵ + ‫ݍ‬ଶ)൧, and from the Euler-Lagrange equation forߚ, ௗ ௗ௧ ቀ డ௅෨ డఉሶ ቁ − డ௅෨ డఉ = 0, we deduce that: ௗ ௗ௧ (‫ݍ‬ሶଵ + ‫ݍ‬ଶ − ‫ݍ‬ଵ) = 0, (25) and it is the conserved quantity associated with (9) for ܿ଴ = 0. The transformation (9) for ߙଵ = 0 is the global symmetry ‫ݐ‬̃ = ‫ݐ‬ + ߝ ܿ଴, ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ, and now we consider that ܿ଴ is the function ߚ(‫,)ݐ‬
  • 6. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 6 then ‫ܮ‬෩ ݀‫ݐ‬̃ = ൣ‫ܮ‬ + ߚሶ(‫ܮ‬ − ‫ݍ‬ሶଵ ଶ − ‫ݍ‬ሶଵ‫ݍ‬ଶ)൧ ݀‫ݐ‬and the Euler-Lagrange equation for ߚ implies the conservation of the Hamiltonian function ‫ܪ‬ = ‫ݍ‬ሶଵ(‫ݍ‬ሶଵ + ‫ݍ‬ଶ) − ‫,ܮ‬ because t is ignorable in (24). B). Lagrangian (10): ‫ܮ‬ = ଵ ଶ (‫ݍ‬ሶଶ − ݁௤భ)ଶ + ଵ ଶ (‫ݍ‬ሶଷ − ‫ݍ‬ଶ)ଶ . (26) In the transformation (12) we utilize ܿ଴ = 0 and ߙଷ = ܽ = constant, to obtain the global symmetry ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ܽ. Into (25) we apply this symmetry whenܽ → ߚ(‫:)ݐ‬ ‫ܮ‬෨ = ‫ܮ‬ + ߝ ߚሶ (‫ݍ‬ሶଷ − ‫ݍ‬ଶ) ∴ ௗ ௗ௧ (‫ݍ‬ሶଷ − ‫ݍ‬ଶ) = 0, (27) on the subspace of physical paths. If it is necessary, in (12) we can use ߙଷ = 0 with ܿ଴ ≠ 0 to deduce the conservation of the corresponding Hamiltonian because (26) has not explicit dependence of t. C). Lagrangian (19): ‫ܮ‬ = (‫ݍ‬ሶଵ − ‫ݍ‬ଶ)‫ݍ‬ሶଷ + ‫ݍ‬ଵ‫ݍ‬ଷ , (28) the transformations (20) permit several situations, in fact: C1). ܿ଴ = ܿଶ = ܿଷ = ݂ = 0, ܿଵ ≠ 0,then ‫ܮ‬෨ = ‫ܮ‬ + ߝ ߚሶ (‫ݍ‬ଷ‫ݍ‬ሶଵ − ‫ݍ‬ଷ‫ݍ‬ଶ − ‫ݍ‬ሶଷ‫ݍ‬ଵ)and the Lanczos procedure implies: Constant = ‫ݍ‬ଵ ‫ݍ‬ሶଷ − (‫ݍ‬ሶଵ − ‫ݍ‬ଶ)‫ݍ‬ଷ , (29) whose value is zero on-shell. C2).ܿ௥ = 0, r = 0,…, 3 and ݂ = ܽ, therefore ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ. If ܽ → ߚ(‫,)ݐ‬ from (28) we have that ‫ܮ‬෨ = ‫ܮ‬ − ߝ ߚ ‫ݍ‬ሶଷand the Euler-Lagrange equation for ߚ leads to: ‫ݍ‬ሶଷ = 0, (30) on the subspace of physical trajectories. C3). ܿ଴ = ܿଵ = ܿଷ = ݂ = 0, ܿଶ ≠ 0,then ‫ܮ‬෨ = ‫ܮ‬ + ߝ ൣߚሶ‫ݍ‬ሶଷ + ߚ (‫ݍ‬ଷ + ‫ݍ‬ሶଷ)൧݁௧ and the Lanczos approach gives ‫ݍ‬ሷଷ − ‫ݍ‬ሶଷ − ‫ݍ‬ଷ = 0. (31)
  • 7. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 7 D). Lagrangian (22): ‫ܮ‬ = ଵ ଶ ‫ݍ‬ሶଵ ଶ + (‫ݍ‬ଶ − ‫ݍ‬ଷ)‫ݍ‬ሶଵ + ଵ ଶ (‫ݍ‬ଵ − ‫ݍ‬ଶ + ‫ݍ‬ଷ)ଶ . (32) In (23) the first option is ܿ଴ = ߙଷ = 0 ∴ ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ + ߝ ܽ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ. If ܽ → ߚ(‫ݐ‬), then from (32) ‫ܮ‬෨ = ‫ܮ‬ + ߝ ൣߚሶ(‫ݍ‬ሶଵ + ‫ݍ‬ଶ − ‫ݍ‬ଷ) + ߚ ‫ݍ‬ሶଵ൧, thus: ௗ ௗ௧ (‫ݍ‬ሶଵ + ‫ݍ‬ଶ − ‫ݍ‬ଷ − ‫ݍ‬ଵ) = 0. (33) The second case is ܿ଴ = ߙଵ = 0, ‫ݐ‬̃ = ‫,ݐ‬ ‫ݍ‬෤ଵ = ‫ݍ‬ଵ, ‫ݍ‬෤ଶ = ‫ݍ‬ଶ + ߝ ܽ, ‫ݍ‬෤ଷ = ‫ݍ‬ଷ + ߝ ܽ, and if ܽ → ߚ(‫)ݐ‬ we obtain ‫ܮ‬෨ = ‫ܮ‬ ∴ the Euler-Lagrange equation for ߚ gives 0 = 0. Our process show that with the Lanczos technique is easy to deduce the conservation laws (on the subspace on physical paths) associated with point symmetries. On this topic we recommend the interesting papers indicated in [24-27]. REFERENCES [1] E. Noether, Invariantevariationsprobleme, Nachr. Ges.Wiss.Göttingen2 (1918) 235-257 [2] D. E. Neuenschwander, Emmy Noether’s wonderful theorem, The Johns Hopkins University Press, Baltimore, USA (2011) [3] Y. Kosmann-Schwarzbach, The Noether theorems, Springer, New York (2011) [4] Monika Havelková, Symmetries of a dynamical system represented by singular Lagrangians, Comm. in Maths.20, No. 1 (2012) 23-32 [5] H. Rund, The Hamilton-Jacobi theory in the calculus of variations. Its role in Mathematics and Physics, D. Van Nostrand, London (1966) [6] H. Rund, A direct approach to Noether’s theorem in the calculus of variations, Utilitas Math. 2 (1972) 205-214 [7] D. Lovelock, H. Rund, Tensors, differential forms and variational principles, Dover, New York (1989) [8] Nina Byers, EmmyNoether’s discoveryof the deep connection between symmetries and conservation laws, Proc. Symp. Heritage E. Noether, Bar Ilan University, Tel Aviv, Israel, Dec. 2-3, 1996 [9] D. E. Neuenschwander, Symmetries, conservation laws and Noether’s theorem, Soc. of Phys. Newsletter, Jan 1996, 14-16 [10] István Hargittai, Magdolna Hargittai, Homage to Emmy Noether, Mathematical Intelligencer 24, No. 1 (2002) 48-49 [11] K. A. Brading, H. Brown, Symmetries and Noether’s theorems, in ‘Symmetries in Physics, Philosophical Reflections’, Cambridge University Press (2003) 89-109 [12] L. M. Lederman, Ch. T. Hill, Symmetry and the beautiful universe, Prometheus Books, Amherst, New York (2004) Chaps. 3 and 5 [13] C. Lanczos, The variational principles of mechanics, University of Toronto Press (1970) Chap. 11 [14] C. Lanczos, Emmy Noether and calculus of variations, Bull. Inst. Math. Appl. 9, No.8 (1973) 253-258 [15] M. Henneaux, C. Teitelboim, J. Zanelli, Gauge invariance and degree of freedom count, Nucl. Phys. B 332, No. 1 (1990) 169-188 [16] M. Henneaux, C. Teitelboim, Quantization of gauges systems, Princeton University Press, NJ (1994)
  • 8. Operations Research and Applications : An International Journal (ORAJ), Vol.2, No.1, February 2015 8 [17] H. J. Rothe, K. D. Rothe, Classical and quantum dynamics of constrained Hamiltonian systems, World Scientific Lecture Notes in Physics 81, Singapore (2010) [18] G. F. Torres del Castillo, C. Andrade-Mirón, R. Bravo-Rojas, Variational symmetries of Lagrangians, Rev. Mex. Fís. E59 (2013) 140-147 [19] G. F. Torres del Castillo, Point symmetries of the Euler-Lagrange equations, Rev. Mex. Fís. 60 (2014) 129-135 [20] M. A. Sinaceur, Dedekind et le programme de Riemann, Rev. Hist. Sci. 43 (1990) 221-294 [21] D. Laugwitz, Bernhard Riemann 1826-1866. Turning points in the conception of mathematics, Birkhäuser, Boston, USA (2008) [22] E. Bessel-Hagen, Über die Erhaltungssätze der Elektrodynamik, MathematischeAnnalen84 (1921) 258-276 [23] J. López-Bonilla, J. Morales, G. Ovando, Conservation laws for energy and momentum in curved spaces, J. Zhejiang Univ. Sci. A8, No. 4 (2007) 665-668 [24] V. N. Mishra, Some problems on approximations of functions in Banach spaces, Ph. D. Thesis, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India (2007) [25] Deepmala, H. K. Pathak, A study on some problems on existence of solutions for nonlinear functional- integral equations, Acta Mathematica Scientia B33, No. 5 (2013) 1305-1313 [26] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, J. of Inequalities and Applications (2013) 2013:586, doi: 10.1186/1029-242X-2013-586 [27] Deepmala, A study on fixed point theorems for nonlinear contractions and its applications, Ph. D. Thesis, Pt. Ravishankar Shukla University, Raipur (Chhatisgarh) 492 010, India (2014)