ECON 351* -- A Guide to Hypothesis Testing                                                           M.G. Abbott


      A Guide to Hypothesis Testing in Linear Regression Models

Tests of One Coefficient Restriction: One Restriction on One Coefficient

H0 specifies only one equality restriction on one coefficient.

    Two-Tail Tests of One Restriction on One Coefficient

•   Example:               H0: βj = bj versus H1: βj ≠ bj where bj is a specified constant.

•   Use: either a two-tail t-test or an F-test.

•   Test Statistics:
                $                                                                             ˆ
          $ ) = β j − β j ~ t[ N − k ]
       t (β j                                                                   ˆ
                                                          ⇒ sample value = t 0 (β j ) =
                                                                                              βj − bj
                                                                                                      .
                  $( $
                 se β j )                                                                       ˆ ˆ
                                                                                              se(β )  j



                       (             )                                            ˆ ) = (β − b )
                                         2
                        $
                        βj − βj                                                          ˆ                    2
          $
        F(β j ) =                            ~ F[1, N − k ] ⇒   sample value = F (β              j        j
                                                                                                                  .
                                                                                                ˆ ˆ
                                                                                    0   j
                            $ $
                           Var (β j )                                                          Var (β j )

    Note:      [      $ 2
                           ]    $           ˆ         ˆ
                   t (β j ) = F(β j ) or t (β j ) = F(β j )        and     [t α / 2 [ N − k ]]2 = Fα [1, N − k ] .

•   Decision Rules:

    Reject H0 if                t 0 > t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) < α ;
                               F0 > Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) < α .


    Retain H0 if t 0 ≤ t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) ≥ α ;
                 F0 ≤ Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) ≥ α .




ECON 351*: Guide to Hypothesis Testing                                                                Page 1 of 5
351guide.doc
ECON 351* -- A Guide to Hypothesis Testing                                            M.G. Abbott


    One-Tail Tests of One Restriction on One Coefficient

•   Examples: H0: βj = bj (or βj ≥ bj) versus H1: βj < bj             a left-tail test
              H0: βj = bj (or βj ≤ bj) versus H1: βj > bj             a right-tail test

•   Use: a one-tail t-test.

•   Test Statistic:
                $                                                            ˆ
          $ ) = β j − β j ~ t[ N − k ]
       t (β j                            ⇒                         ˆ
                                               sample value = t 0 (β j ) =
                                                                             βj − bj
                                                                                     .
                  $( $
                 se β j )                                                      ˆ ˆ
                                                                             se(β )
                                                                                  j



•   Decision Rules -- left-tail t-test:

    Reject H0 if t 0 < − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) < α ;

    Retain H0 if t 0 ≥ − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) ≥ α .

•   Decision Rules -- right-tail t-test:

    Reject H0 if t 0 > t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) < α ;

    Retain H0 if t 0 ≤ t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) ≥ α .




ECON 351*: Guide to Hypothesis Testing                                                 Page 2 of 5
351guide.doc
ECON 351* -- A Guide to Hypothesis Testing                                                                                                             M.G. Abbott


Tests of One Linear Restriction on Two or More Coefficients

H0 specifies only one linear restriction on two or more regression coefficients.

    Two-Tail Tests of One Linear Restriction on Two Coefficients

•   Example:                      H0: cjβj + chβh = c0                                     versus                              H1: cjβj + chβh ≠ c0.

•   Use: either a two-tail t-test or an F-test.

•   Test Statistics:
                           ˆ         ˆ
         (
        t c jβ j h h           )
             ˆ + c β = (c jβ j + c h β h ) − (c jβ j + c hβ h ) ~ t[ N − k ] = t[ N − k ]
                   ˆ
                                 ˆ ˆ             ˆ
                                se(c jβ j + c h β h )
                                                                                       1



               ˆ ˆ            ˆ               ˆ         ˆ
       where: se(c jβ j + c h β h ) = Var (c jβ j + c h β h )
                                       ˆ
                               ˆ         ˆ            ˆ ˆ              ˆ ˆ                  ˆ ˆ ˆ
                       Var (c jβ j + c h β h ) = c 2 Var (β j ) + c 2 Var (β h ) + 2c jc h Cov(β j , β h ) .
                        ˆ                          j                h

                                           ˆ         ˆ
       sample value = t 0 c jβ j h h       (
                             ˆ + c β = (c jβ j + c h β h ) − c 0 .
                                   ˆ
                                          ˆ ˆ             ˆ
                                        se(c jβ j + c h β h )
                                                                               )

        F(c β + c β ) =
            ˆ     ˆ     [(c β + c β ) − (c β + c β )]
                            ˆ      ˆ
                                               j       j       h       h               j       j               h       h
                                                                                                                               2

                                                                                                                                   ~ F[1, N − k ] = F[1, N − k1 ]
               j   j      h   h
                                      ˆ     ˆ
                               Var (c β + c β )
                                 ˆ                                         j       j       h           h

                      ˆ         ˆ            ˆ ˆ              ˆ ˆ                  ˆ ˆ ˆ
       where: Var (c jβ j + c h β h ) = c 2 Var (β j ) + c 2 Var (β h ) + 2c jc h Cov(β j , β h ) .
               ˆ                          j                h



       sample value = F (c β + c β ) =
                           ˆ     ˆ     [(c β + c β ) − c ]
                                           ˆ      ˆ
                                                                                                   j       j           h       h       0
                                                                                                                                           2


                                       0
                                                ˆ  j
                                                      ˆ
                                         Var (c β + c β )
                                           ˆ
                                                           j       h       h
                                                                                                                   j       j       h   h



•   Decision Rules:

    Reject H0 if              t 0 > t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) < α ;
                              F0 > Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) < α .

    Retain H0 if t 0 ≤ t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) ≥ α ;
                 F0 ≤ Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) ≥ α .


ECON 351*: Guide to Hypothesis Testing                                                                                                                   Page 3 of 5
351guide.doc
ECON 351* -- A Guide to Hypothesis Testing                                                    M.G. Abbott


    One-Tail Tests of One Linear Restriction on Two Coefficients

•   Examples: H0: cjβj + chβh = c0 vs.               H1: cjβj + chβh < c0 a left-tail test
              H0: cjβj + chβh = c0 vs.               H1: cjβj + chβh > c0     a right-tail test

•   Use: a one-tail t-test.

•   Test Statistic:
                           ˆ         ˆ
         (
        t c jβ j h h  )
             ˆ + c β = (c jβ j + c h β h ) − (c jβ j + c hβ h ) ~ t[ N − k ] = t[ N − k ]
                   ˆ
                                 ˆ ˆ             ˆ
                                se(c jβ j + c h β h )
                                                                                       1



              ˆ ˆ            ˆ               ˆ         ˆ
       where se(c jβ j + c h β h ) = Var (c jβ j + c h β h )
                                      ˆ
                       ˆ         ˆ            ˆ ˆ              ˆ ˆ                  ˆ ˆ ˆ
               Var (c jβ j + c h β h ) = c 2 Var (β j ) + c 2 Var (β h ) + 2c jc h Cov(β j , β h ) .
                ˆ                          j                h

                                           ˆ         ˆ
                              (
       sample value = t 0 c jβ j h h
                                          ˆ ˆ
                                             )
                             ˆ + c β = (c jβ j + c h β h ) − c 0 .
                                   ˆ
                                                          ˆ
                                        se(c jβ j + c h β h )

•   Decision Rules -- left-tail t-test:

    Reject H0 if t 0 < − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) < α ;

    Retain H0 if t 0 ≥ − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) ≥ α .

•   Decision Rules -- right-tail t-test:

    Reject H0 if t 0 > t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) < α ;

    Retain H0 if t 0 ≤ t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) ≥ α .




ECON 351*: Guide to Hypothesis Testing                                                         Page 4 of 5
351guide.doc
ECON 351* -- A Guide to Hypothesis Testing                                  M.G. Abbott


Tests of Two or More Linear Coefficient Restrictions

H0 specifies two or more linear coefficient restrictions.

•   Example:        H0: β2 = β4 and β3 = β5
                    H1: β2 ≠ β4 and/or β3 ≠ β5

•   Use: a general F-test; only an F-test can be used to test jointly two or more
    coefficient restrictions.

•   Test Statistics: Either of the following two general F-statistics.

               (RSS 0 − RSS1 ) (df 0 − df1 ) (RSS 0 − RSS1 ) (k − k 0 )
        F=                                  =                           .
                       RSS1 df1                  RSS1 ( N − k )
          (R 2 − R 2 ) (df 0 − df1 ) (R 2 − R 2 ) (k − k 0 )
        F= U       R
                                    = U 2R                   .
               (1 − R U ) df1
                      2
                                      (1 − R U ) ( N − k )

    Null distribution: F ~ F[df 0 − df1 , df1 ] = F[k − k 0 , N − k ] .

•   Sample value of F-statistic under H0 = F0.

•   Decision Rules:

    Reject H0 if F0 > Fα [df 0 − df1 , df1 ] = Fα [k − k 0 , N − k ] or
                 p-value for F0 = Pr( F > F0 ) < α .

    Retain H0 if F0 ≤ Fα [df 0 − df 1 , df 1 ] = Fα [k − k 0 , N − k ] or
                 p-value for F0 = Pr( F > F0 ) ≥ α .




ECON 351*: Guide to Hypothesis Testing                                       Page 5 of 5
351guide.doc

A guide to hypothesis testing

  • 1.
    ECON 351* --A Guide to Hypothesis Testing M.G. Abbott A Guide to Hypothesis Testing in Linear Regression Models Tests of One Coefficient Restriction: One Restriction on One Coefficient H0 specifies only one equality restriction on one coefficient. Two-Tail Tests of One Restriction on One Coefficient • Example: H0: βj = bj versus H1: βj ≠ bj where bj is a specified constant. • Use: either a two-tail t-test or an F-test. • Test Statistics: $ ˆ $ ) = β j − β j ~ t[ N − k ] t (β j ˆ ⇒ sample value = t 0 (β j ) = βj − bj . $( $ se β j ) ˆ ˆ se(β ) j ( ) ˆ ) = (β − b ) 2 $ βj − βj ˆ 2 $ F(β j ) = ~ F[1, N − k ] ⇒ sample value = F (β j j . ˆ ˆ 0 j $ $ Var (β j ) Var (β j ) Note: [ $ 2 ] $ ˆ ˆ t (β j ) = F(β j ) or t (β j ) = F(β j ) and [t α / 2 [ N − k ]]2 = Fα [1, N − k ] . • Decision Rules: Reject H0 if t 0 > t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) < α ; F0 > Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) < α . Retain H0 if t 0 ≤ t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) ≥ α ; F0 ≤ Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) ≥ α . ECON 351*: Guide to Hypothesis Testing Page 1 of 5 351guide.doc
  • 2.
    ECON 351* --A Guide to Hypothesis Testing M.G. Abbott One-Tail Tests of One Restriction on One Coefficient • Examples: H0: βj = bj (or βj ≥ bj) versus H1: βj < bj a left-tail test H0: βj = bj (or βj ≤ bj) versus H1: βj > bj a right-tail test • Use: a one-tail t-test. • Test Statistic: $ ˆ $ ) = β j − β j ~ t[ N − k ] t (β j ⇒ ˆ sample value = t 0 (β j ) = βj − bj . $( $ se β j ) ˆ ˆ se(β ) j • Decision Rules -- left-tail t-test: Reject H0 if t 0 < − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) < α ; Retain H0 if t 0 ≥ − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) ≥ α . • Decision Rules -- right-tail t-test: Reject H0 if t 0 > t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) < α ; Retain H0 if t 0 ≤ t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) ≥ α . ECON 351*: Guide to Hypothesis Testing Page 2 of 5 351guide.doc
  • 3.
    ECON 351* --A Guide to Hypothesis Testing M.G. Abbott Tests of One Linear Restriction on Two or More Coefficients H0 specifies only one linear restriction on two or more regression coefficients. Two-Tail Tests of One Linear Restriction on Two Coefficients • Example: H0: cjβj + chβh = c0 versus H1: cjβj + chβh ≠ c0. • Use: either a two-tail t-test or an F-test. • Test Statistics: ˆ ˆ ( t c jβ j h h ) ˆ + c β = (c jβ j + c h β h ) − (c jβ j + c hβ h ) ~ t[ N − k ] = t[ N − k ] ˆ ˆ ˆ ˆ se(c jβ j + c h β h ) 1 ˆ ˆ ˆ ˆ ˆ where: se(c jβ j + c h β h ) = Var (c jβ j + c h β h ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Var (c jβ j + c h β h ) = c 2 Var (β j ) + c 2 Var (β h ) + 2c jc h Cov(β j , β h ) . ˆ j h ˆ ˆ sample value = t 0 c jβ j h h ( ˆ + c β = (c jβ j + c h β h ) − c 0 . ˆ ˆ ˆ ˆ se(c jβ j + c h β h ) ) F(c β + c β ) = ˆ ˆ [(c β + c β ) − (c β + c β )] ˆ ˆ j j h h j j h h 2 ~ F[1, N − k ] = F[1, N − k1 ] j j h h ˆ ˆ Var (c β + c β ) ˆ j j h h ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ where: Var (c jβ j + c h β h ) = c 2 Var (β j ) + c 2 Var (β h ) + 2c jc h Cov(β j , β h ) . ˆ j h sample value = F (c β + c β ) = ˆ ˆ [(c β + c β ) − c ] ˆ ˆ j j h h 0 2 0 ˆ j ˆ Var (c β + c β ) ˆ j h h j j h h • Decision Rules: Reject H0 if t 0 > t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) < α ; F0 > Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) < α . Retain H0 if t 0 ≤ t α / 2 [ N − k ] or two-tail p-value for t 0 = Pr ( t > t 0 ) ≥ α ; F0 ≤ Fα [1, N − k ] or p-value for F0 = Pr( F > F0 ) ≥ α . ECON 351*: Guide to Hypothesis Testing Page 3 of 5 351guide.doc
  • 4.
    ECON 351* --A Guide to Hypothesis Testing M.G. Abbott One-Tail Tests of One Linear Restriction on Two Coefficients • Examples: H0: cjβj + chβh = c0 vs. H1: cjβj + chβh < c0 a left-tail test H0: cjβj + chβh = c0 vs. H1: cjβj + chβh > c0 a right-tail test • Use: a one-tail t-test. • Test Statistic: ˆ ˆ ( t c jβ j h h ) ˆ + c β = (c jβ j + c h β h ) − (c jβ j + c hβ h ) ~ t[ N − k ] = t[ N − k ] ˆ ˆ ˆ ˆ se(c jβ j + c h β h ) 1 ˆ ˆ ˆ ˆ ˆ where se(c jβ j + c h β h ) = Var (c jβ j + c h β h ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Var (c jβ j + c h β h ) = c 2 Var (β j ) + c 2 Var (β h ) + 2c jc h Cov(β j , β h ) . ˆ j h ˆ ˆ ( sample value = t 0 c jβ j h h ˆ ˆ ) ˆ + c β = (c jβ j + c h β h ) − c 0 . ˆ ˆ se(c jβ j + c h β h ) • Decision Rules -- left-tail t-test: Reject H0 if t 0 < − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) < α ; Retain H0 if t 0 ≥ − t α [ N − k ] or one-tail p-value for t 0 = Pr( t < t 0 ) ≥ α . • Decision Rules -- right-tail t-test: Reject H0 if t 0 > t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) < α ; Retain H0 if t 0 ≤ t α [ N − k ] or one-tail p-value for t 0 = Pr( t > t 0 ) ≥ α . ECON 351*: Guide to Hypothesis Testing Page 4 of 5 351guide.doc
  • 5.
    ECON 351* --A Guide to Hypothesis Testing M.G. Abbott Tests of Two or More Linear Coefficient Restrictions H0 specifies two or more linear coefficient restrictions. • Example: H0: β2 = β4 and β3 = β5 H1: β2 ≠ β4 and/or β3 ≠ β5 • Use: a general F-test; only an F-test can be used to test jointly two or more coefficient restrictions. • Test Statistics: Either of the following two general F-statistics. (RSS 0 − RSS1 ) (df 0 − df1 ) (RSS 0 − RSS1 ) (k − k 0 ) F= = . RSS1 df1 RSS1 ( N − k ) (R 2 − R 2 ) (df 0 − df1 ) (R 2 − R 2 ) (k − k 0 ) F= U R = U 2R . (1 − R U ) df1 2 (1 − R U ) ( N − k ) Null distribution: F ~ F[df 0 − df1 , df1 ] = F[k − k 0 , N − k ] . • Sample value of F-statistic under H0 = F0. • Decision Rules: Reject H0 if F0 > Fα [df 0 − df1 , df1 ] = Fα [k − k 0 , N − k ] or p-value for F0 = Pr( F > F0 ) < α . Retain H0 if F0 ≤ Fα [df 0 − df 1 , df 1 ] = Fα [k − k 0 , N − k ] or p-value for F0 = Pr( F > F0 ) ≥ α . ECON 351*: Guide to Hypothesis Testing Page 5 of 5 351guide.doc