SlideShare a Scribd company logo
1 of 62
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12,
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
We may improve the above listing-method for finding the LCM.
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 }= 12.
LCM and LCD
We may improve the above listing-method for finding the LCM.
Given two or more numbers, we start with the largest number,
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
We may improve the above listing-method for finding the LCM.
Given two or more numbers, we start with the largest number,
list its multiples in order until we find the one that can divide all
the other numbers.
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
Example B. Find the LCM of 8, 9, and 12.
We may improve the above listing-method for finding the LCM.
Given two or more numbers, we start with the largest number,
list its multiples in order until we find the one that can divide all
the other numbers.
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
Example B. Find the LCM of 8, 9, and 12.
The largest number is 12 and the multiples of 12 are 12, 24,
36, 48, 60, 72, 84 …
We may improve the above listing-method for finding the LCM.
Given two or more numbers, we start with the largest number,
list its multiples in order until we find the one that can divide all
the other numbers.
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
Example B. Find the LCM of 8, 9, and 12.
The largest number is 12 and the multiples of 12 are 12, 24,
36, 48, 60, 72, 84 … The first number that is also a multiple
of 8 and 9 is 72.
We may improve the above listing-method for finding the LCM.
Given two or more numbers, we start with the largest number,
list its multiples in order until we find the one that can divide all
the other numbers.
Definition of LCM
The least common multiple (LCM) of two or more numbers is
the least number that is the multiple of all of these numbers.
Example A. Find the LCM of 4 and 6.
The multiples of 4 are 4, 8, 12, 16, 20, 24, …
The multiples of 6 are 6, 12, 18, 24, 30,…
The smallest of the common multiples is 12, so LCM{4, 6 } = 12.
LCM and LCD
Example B. Find the LCM of 8, 9, and 12.
The largest number is 12 and the multiples of 12 are 12, 24,
36, 48, 60, 72, 84 … The first number that is also a multiple
of 8 and 9 is 72. Hence LCM{8, 9, 12} = 72.
We may improve the above listing-method for finding the LCM.
Given two or more numbers, we start with the largest number,
list its multiples in order until we find the one that can divide all
the other numbers.
But when the LCM is large, the listing method is cumbersome.
LCM and LCD
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor:
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor:
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5,
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
The LCM of the denominators of a list of fractions is called the
least common denominator (LCD).
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
To construct the LCM:
a. Factor each number completely
b. For each prime factor, take the highest power appearing in
the factorizations. The LCM is their product.
Example C. Construct the LCM of {8, 15, 18}.
Factor each number completely,
8 = 23
15 = 3 * 5
18 = 2 * 32
From the factorization select the highest degree of each prime
factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
But when the LCM is large, the listing method is cumbersome.
It's easier to find the LCM by constructing it instead.
LCM and LCD
The LCM of the denominators of a list of fractions is called the
least common denominator (LCD). Following is an
application of the LCM.
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6.
LCM and LCD
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6.
LCM and LCD
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
LCM and LCD
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
LCM and LCD
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching.
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, …
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM.
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices
Mary Chuck
In picture:
Joe
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12*
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12*
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12* = 3 slices
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12* = 3 slices
1
6
Chuck gets 12*
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12* = 3 slices
1
6
Chuck gets 12* = 2 slices
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12* = 3 slices
1
6
Chuck gets 12* = 2 slices
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
In total, that is 4 + 2 + 3 = 9 slices,
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12* = 3 slices
1
6
Chuck gets 12* = 2 slices
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
In total, that is 4 + 2 + 3 = 9 slices, or of the pizza.
9
12
Example D. From one pizza, Joe wants 1/3, Mary wants 1/4
and Chuck wants 1/6. How many equal slices should we cut
the pizza into and how many slices should each person take?
What is the fractional amount of the pizza they want in total?
Joe gets 12* = 4 slices 1
4
Mary gets 12* = 3 slices
1
6
Chuck gets 12* = 2 slices
LCM and LCD
We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of
6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4,
then 12 is the LCM. Hence we should cut it into 12 slices and
Mary Chuck
In picture:
Joe
1
3
In total, that is 4 + 2 + 3 = 9 slices, or of the pizza.
9
12 =
3
4
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
To convert the fraction into a fraction with denominator d,
the new numerator is * d.
a
b
a
b
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
To convert the fraction into a fraction with denominator d,
the new numerator is * d.
a
b
a
b
Example D: Convert to a fraction with denominator 48.
9
16
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
To convert the fraction into a fraction with denominator d,
the new numerator is * d.
a
b
a
b
Example D: Convert to a fraction with denominator 48.
The new denominator is 48,
9
16
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
To convert the fraction into a fraction with denominator d,
the new numerator is * d.
a
b
a
b
Example D: Convert to a fraction with denominator 48.
The new denominator is 48, then the new numerator is
48*
9
16
9
16
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
To convert the fraction into a fraction with denominator d,
the new numerator is * d.
a
b
a
b
Example D: Convert to a fraction with denominator 48.
The new denominator is 48, then the new numerator is
48*
9
16
9
16
3
Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6
of it and Chuck wants 5/12 of it. How many equal slices should
we cut the pizza and how many slices should each person
take?
LCM and LCD
In the above example, we found that is the same .
1
3
4
12
The following theorem tells us how to convert the denominator
of a fraction to a fraction with a different denominator.
Multiplier Theorem:
To convert the fraction into a fraction with denominator d,
the new numerator is * d.
a
b
a
b
Example D: Convert to a fraction with denominator 48.
The new denominator is 48, then the new numerator is
48* = 27 so .
9
16
9
16
3 9
16
27
48=
LCM and LCD
Exercise A. Find the LCM.
1. a.{6, 8} b. {6, 9} c. {3, 4}
d. {4, 10}
2. a.{5, 6, 8} b. {4, 6, 9} c. {3, 4, 5}
d. {4, 6, 10}
3. a.{6, 8, 9} b. {6, 9, 10} c. {4, 9, 10}
d. {6, 8, 10}
4. a.{4, 8, 15} b. {8, 9, 12} c. {6, 9, 15}
5. a.{6, 8, 15} b. {8, 9, 15} c. {6, 9, 16}
6. a.{8, 12, 15} b. { 9, 12, 15} c. { 9, 12, 16}
7. a.{8, 12, 18} b. {8, 12, 20} c. { 12, 15, 16}
8. a.{8, 12, 15, 18} b. {8, 12, 16, 20}
9. a.{8, 15, 18, 20} b. {9, 16, 20, 24}
B. Convert the fractions to fractions with the given
denominators.
10. Convert to denominator 12.
11. Convert to denominator 24.
12. Convert to denominator 36.
13. Convert to denominator 60.
2
3 ,
3
4 ,
5
6 ,
7
4
1
6 ,
3
4 ,
5
6 ,
3
8
7
12 ,
5
4 ,
8
9 ,
11
6
9
10 ,
7
12 ,
13
5 ,
11
15
LCM and LCD

More Related Content

What's hot

1 5 multiplication and division of rational expressions
1 5 multiplication and division of rational expressions1 5 multiplication and division of rational expressions
1 5 multiplication and division of rational expressionsmath123b
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...elem-alg-sample
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators xTzenma
 
2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominatorsmath123b
 
Common Multiples and Least Common Multiple
Common Multiples and Least Common MultipleCommon Multiples and Least Common Multiple
Common Multiples and Least Common MultipleBrooke Young
 
Least common multiple (lcm) & greatest
Least common multiple (lcm) & greatestLeast common multiple (lcm) & greatest
Least common multiple (lcm) & greatestShiara Agosto
 

What's hot (7)

1 5 multiplication and division of rational expressions
1 5 multiplication and division of rational expressions1 5 multiplication and division of rational expressions
1 5 multiplication and division of rational expressions
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
 
2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators2 the least common multiple and clearing the denominators
2 the least common multiple and clearing the denominators
 
Common Multiples and Least Common Multiple
Common Multiples and Least Common MultipleCommon Multiples and Least Common Multiple
Common Multiples and Least Common Multiple
 
Least common multiple (lcm) & greatest
Least common multiple (lcm) & greatestLeast common multiple (lcm) & greatest
Least common multiple (lcm) & greatest
 
3 6
3 63 6
3 6
 

Similar to 4 lcm and lcd 125s

1 6 the least common multiple
1 6 the least common multiple1 6 the least common multiple
1 6 the least common multiplemath123b
 
Ch. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common MultipleCh. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common MultipleKathy Favazza
 
Ciii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multipleCiii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multipleErnestoAlfonso7
 
Finds the common multiples and the least common demo teach
Finds the common multiples and the least common  demo teachFinds the common multiples and the least common  demo teach
Finds the common multiples and the least common demo teachrosalio baybayan jr
 
Sec. 5.4
Sec. 5.4Sec. 5.4
Sec. 5.4bweldon
 
4.5 comparing fractions updated
4.5 comparing fractions updated4.5 comparing fractions updated
4.5 comparing fractions updatedbweldon
 
9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes
 9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes 9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes
9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand ClassesANAND CLASSES - A SCHOOL OF COMPETITIONS
 
Updated sec. 5.4
Updated sec. 5.4Updated sec. 5.4
Updated sec. 5.4bweldon
 
Quick Guide For HCF & LCM
Quick Guide For HCF & LCMQuick Guide For HCF & LCM
Quick Guide For HCF & LCMKameliaBanerjee
 
Adding Fractions With Unlike Denominators
Adding Fractions With Unlike DenominatorsAdding Fractions With Unlike Denominators
Adding Fractions With Unlike DenominatorsSarah Hallum
 
Lesson 5 5 lcm
Lesson 5 5 lcmLesson 5 5 lcm
Lesson 5 5 lcmmlabuski
 
Adding & Subtracting Fractions - Part 1
Adding & Subtracting Fractions - Part 1Adding & Subtracting Fractions - Part 1
Adding & Subtracting Fractions - Part 1DACCaanderson
 
7-4 Common Multiples and LCM
7-4 Common Multiples and LCM7-4 Common Multiples and LCM
7-4 Common Multiples and LCMRudy Alfonso
 
2nd9 Interim Review Pp
2nd9 Interim Review Pp2nd9 Interim Review Pp
2nd9 Interim Review Ppguest931d09
 
Study Guide in Greatest Common Factor.pptx
Study Guide in Greatest Common Factor.pptxStudy Guide in Greatest Common Factor.pptx
Study Guide in Greatest Common Factor.pptxKennedyTabon
 
Least Common Multiple
Least Common MultipleLeast Common Multiple
Least Common MultipleKathy Favazza
 
least common multiple.ppt
least common multiple.pptleast common multiple.ppt
least common multiple.pptCautES1
 

Similar to 4 lcm and lcd 125s (20)

1 6 the least common multiple
1 6 the least common multiple1 6 the least common multiple
1 6 the least common multiple
 
Ch. 5.1 Bt
Ch. 5.1 BtCh. 5.1 Bt
Ch. 5.1 Bt
 
Ch. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common MultipleCh. 5.1 - Least Common Multiple
Ch. 5.1 - Least Common Multiple
 
Ciii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multipleCiii. lesson-4-least-common-multiple
Ciii. lesson-4-least-common-multiple
 
Finds the common multiples and the least common demo teach
Finds the common multiples and the least common  demo teachFinds the common multiples and the least common  demo teach
Finds the common multiples and the least common demo teach
 
Sec. 5.4
Sec. 5.4Sec. 5.4
Sec. 5.4
 
4.5 comparing fractions updated
4.5 comparing fractions updated4.5 comparing fractions updated
4.5 comparing fractions updated
 
9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes
 9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes 9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes
9463138669|Sainik School RIMC RMS Coaching Center In Jalandhar Anand Classes
 
Updated sec. 5.4
Updated sec. 5.4Updated sec. 5.4
Updated sec. 5.4
 
Quick Guide For HCF & LCM
Quick Guide For HCF & LCMQuick Guide For HCF & LCM
Quick Guide For HCF & LCM
 
Adding Fractions With Unlike Denominators
Adding Fractions With Unlike DenominatorsAdding Fractions With Unlike Denominators
Adding Fractions With Unlike Denominators
 
COT Q1. LCM.pptx
COT Q1. LCM.pptxCOT Q1. LCM.pptx
COT Q1. LCM.pptx
 
Lesson 5 5 lcm
Lesson 5 5 lcmLesson 5 5 lcm
Lesson 5 5 lcm
 
Adding & Subtracting Fractions - Part 1
Adding & Subtracting Fractions - Part 1Adding & Subtracting Fractions - Part 1
Adding & Subtracting Fractions - Part 1
 
7-4 Common Multiples and LCM
7-4 Common Multiples and LCM7-4 Common Multiples and LCM
7-4 Common Multiples and LCM
 
7-4 Common Multiples and LCM
7-4 Common Multiples and LCM7-4 Common Multiples and LCM
7-4 Common Multiples and LCM
 
2nd9 Interim Review Pp
2nd9 Interim Review Pp2nd9 Interim Review Pp
2nd9 Interim Review Pp
 
Study Guide in Greatest Common Factor.pptx
Study Guide in Greatest Common Factor.pptxStudy Guide in Greatest Common Factor.pptx
Study Guide in Greatest Common Factor.pptx
 
Least Common Multiple
Least Common MultipleLeast Common Multiple
Least Common Multiple
 
least common multiple.ppt
least common multiple.pptleast common multiple.ppt
least common multiple.ppt
 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient xTzenma
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functionsTzenma
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circlesTzenma
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions xTzenma
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions xTzenma
 
1 functions
1 functions1 functions
1 functionsTzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-xTzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-xTzenma
 
7 proportions x
7 proportions x7 proportions x
7 proportions xTzenma
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions xTzenma
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii xTzenma
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i xTzenma
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions xTzenma
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation xTzenma
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions xTzenma
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y xTzenma
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii xTzenma
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i xTzenma
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines xTzenma
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes xTzenma
 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
1 functions
1 functions1 functions
1 functions
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 

Recently uploaded (20)

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 

4 lcm and lcd 125s

  • 2. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. LCM and LCD
  • 3. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. LCM and LCD
  • 4. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … LCM and LCD
  • 5. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… LCM and LCD
  • 6. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, LCM and LCD
  • 7. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD
  • 8. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD We may improve the above listing-method for finding the LCM.
  • 9. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 }= 12. LCM and LCD We may improve the above listing-method for finding the LCM. Given two or more numbers, we start with the largest number,
  • 10. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD We may improve the above listing-method for finding the LCM. Given two or more numbers, we start with the largest number, list its multiples in order until we find the one that can divide all the other numbers.
  • 11. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD Example B. Find the LCM of 8, 9, and 12. We may improve the above listing-method for finding the LCM. Given two or more numbers, we start with the largest number, list its multiples in order until we find the one that can divide all the other numbers.
  • 12. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD Example B. Find the LCM of 8, 9, and 12. The largest number is 12 and the multiples of 12 are 12, 24, 36, 48, 60, 72, 84 … We may improve the above listing-method for finding the LCM. Given two or more numbers, we start with the largest number, list its multiples in order until we find the one that can divide all the other numbers.
  • 13. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD Example B. Find the LCM of 8, 9, and 12. The largest number is 12 and the multiples of 12 are 12, 24, 36, 48, 60, 72, 84 … The first number that is also a multiple of 8 and 9 is 72. We may improve the above listing-method for finding the LCM. Given two or more numbers, we start with the largest number, list its multiples in order until we find the one that can divide all the other numbers.
  • 14. Definition of LCM The least common multiple (LCM) of two or more numbers is the least number that is the multiple of all of these numbers. Example A. Find the LCM of 4 and 6. The multiples of 4 are 4, 8, 12, 16, 20, 24, … The multiples of 6 are 6, 12, 18, 24, 30,… The smallest of the common multiples is 12, so LCM{4, 6 } = 12. LCM and LCD Example B. Find the LCM of 8, 9, and 12. The largest number is 12 and the multiples of 12 are 12, 24, 36, 48, 60, 72, 84 … The first number that is also a multiple of 8 and 9 is 72. Hence LCM{8, 9, 12} = 72. We may improve the above listing-method for finding the LCM. Given two or more numbers, we start with the largest number, list its multiples in order until we find the one that can divide all the other numbers.
  • 15. But when the LCM is large, the listing method is cumbersome. LCM and LCD
  • 16. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 17. To construct the LCM: But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 18. To construct the LCM: a. Factor each number completely But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 19. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 20. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 21. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 22. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 23. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 24. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 25. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 26. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 27. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 28. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD
  • 29. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5,
  • 30. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
  • 31. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
  • 32. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD The LCM of the denominators of a list of fractions is called the least common denominator (LCD). Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360.
  • 33. To construct the LCM: a. Factor each number completely b. For each prime factor, take the highest power appearing in the factorizations. The LCM is their product. Example C. Construct the LCM of {8, 15, 18}. Factor each number completely, 8 = 23 15 = 3 * 5 18 = 2 * 32 From the factorization select the highest degree of each prime factor: 23, 32, 5, then LCM{8, 15, 18} = 23*32*5 = 8*9*5 = 360. But when the LCM is large, the listing method is cumbersome. It's easier to find the LCM by constructing it instead. LCM and LCD The LCM of the denominators of a list of fractions is called the least common denominator (LCD). Following is an application of the LCM.
  • 34. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. LCM and LCD
  • 35. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. LCM and LCD Mary Chuck In picture: Joe
  • 36. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? LCM and LCD Mary Chuck In picture: Joe
  • 37. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? LCM and LCD Mary Chuck In picture: Joe
  • 38. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. Mary Chuck In picture: Joe
  • 39. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Mary Chuck In picture: Joe
  • 40. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Mary Chuck In picture: Joe
  • 41. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices Mary Chuck In picture: Joe
  • 42. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3
  • 43. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3
  • 44. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3
  • 45. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* = 3 slices LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3
  • 46. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* = 3 slices 1 6 Chuck gets 12* LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3
  • 47. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* = 3 slices 1 6 Chuck gets 12* = 2 slices LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3
  • 48. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* = 3 slices 1 6 Chuck gets 12* = 2 slices LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3 In total, that is 4 + 2 + 3 = 9 slices,
  • 49. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* = 3 slices 1 6 Chuck gets 12* = 2 slices LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3 In total, that is 4 + 2 + 3 = 9 slices, or of the pizza. 9 12
  • 50. Example D. From one pizza, Joe wants 1/3, Mary wants 1/4 and Chuck wants 1/6. How many equal slices should we cut the pizza into and how many slices should each person take? What is the fractional amount of the pizza they want in total? Joe gets 12* = 4 slices 1 4 Mary gets 12* = 3 slices 1 6 Chuck gets 12* = 2 slices LCM and LCD We find the LCM of 1/3, 1/4, 1/6 by searching. The multiples of 6 are 6, 12, 18, 24, … Since 12 is also the multiple of 3 and 4, then 12 is the LCM. Hence we should cut it into 12 slices and Mary Chuck In picture: Joe 1 3 In total, that is 4 + 2 + 3 = 9 slices, or of the pizza. 9 12 = 3 4
  • 51. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD
  • 52. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12
  • 53. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator.
  • 54. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem:
  • 55. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem: To convert the fraction into a fraction with denominator d, the new numerator is * d. a b a b
  • 56. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem: To convert the fraction into a fraction with denominator d, the new numerator is * d. a b a b Example D: Convert to a fraction with denominator 48. 9 16
  • 57. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem: To convert the fraction into a fraction with denominator d, the new numerator is * d. a b a b Example D: Convert to a fraction with denominator 48. The new denominator is 48, 9 16
  • 58. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem: To convert the fraction into a fraction with denominator d, the new numerator is * d. a b a b Example D: Convert to a fraction with denominator 48. The new denominator is 48, then the new numerator is 48* 9 16 9 16
  • 59. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem: To convert the fraction into a fraction with denominator d, the new numerator is * d. a b a b Example D: Convert to a fraction with denominator 48. The new denominator is 48, then the new numerator is 48* 9 16 9 16 3
  • 60. Your Turn: From one pizza, Joe wants 3/8 of it, Mary wants 1/6 of it and Chuck wants 5/12 of it. How many equal slices should we cut the pizza and how many slices should each person take? LCM and LCD In the above example, we found that is the same . 1 3 4 12 The following theorem tells us how to convert the denominator of a fraction to a fraction with a different denominator. Multiplier Theorem: To convert the fraction into a fraction with denominator d, the new numerator is * d. a b a b Example D: Convert to a fraction with denominator 48. The new denominator is 48, then the new numerator is 48* = 27 so . 9 16 9 16 3 9 16 27 48=
  • 61. LCM and LCD Exercise A. Find the LCM. 1. a.{6, 8} b. {6, 9} c. {3, 4} d. {4, 10} 2. a.{5, 6, 8} b. {4, 6, 9} c. {3, 4, 5} d. {4, 6, 10} 3. a.{6, 8, 9} b. {6, 9, 10} c. {4, 9, 10} d. {6, 8, 10} 4. a.{4, 8, 15} b. {8, 9, 12} c. {6, 9, 15} 5. a.{6, 8, 15} b. {8, 9, 15} c. {6, 9, 16} 6. a.{8, 12, 15} b. { 9, 12, 15} c. { 9, 12, 16} 7. a.{8, 12, 18} b. {8, 12, 20} c. { 12, 15, 16} 8. a.{8, 12, 15, 18} b. {8, 12, 16, 20} 9. a.{8, 15, 18, 20} b. {9, 16, 20, 24}
  • 62. B. Convert the fractions to fractions with the given denominators. 10. Convert to denominator 12. 11. Convert to denominator 24. 12. Convert to denominator 36. 13. Convert to denominator 60. 2 3 , 3 4 , 5 6 , 7 4 1 6 , 3 4 , 5 6 , 3 8 7 12 , 5 4 , 8 9 , 11 6 9 10 , 7 12 , 13 5 , 11 15 LCM and LCD