Correlated and Uncorrelated Signals
Problem: we have two signals and . How “close” are they to each other?
]
[n
x ]
[n
y
Example: in a radar (or sonar) we transmit a pulse and we expect a return
0 20 40 60 80 100 120 140 160 180
-2
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10 12 14 16 18 20
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Transmit
Receive
Example: Radar Return
Since we know what we are looking for, we keep comparing what we receive
with what we sent.
0 20 40 60 80 100 120 140 160 180
-2
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10 12 14 16 18 20
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Receive
0 2 4 6 8 10 12 14 16 18 20
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Similar? NO! Think so!
Inner Product between two Signals
We need a “measure” of how close two signals are to each other.
This leads to the concepts of
• Inner Product
• Correlation Coefficient
Inner Product
Problem: we have two signals and . How “close” are they to each other?
]
[n
x ]
[n
y
Define: Inner Product between two signals of the same length




1
0
*
]
[
]
[
N
n
xy n
y
n
x
r
Properties:
0
]
[
]
[
]
[
1
0
2
1
0
*


 





N
n
N
n
xx n
x
n
x
n
x
r
yy
xx
xy r
r
r 
2
yy
xx
xy r
r
r 
2
if and only if ]
[
]
[ n
x
C
n
y  for some constant C
How we measure similarity (correlation coefficient)
yy
xx
xy
xy
r
r
r |
|


Compute:
Check the value:
1
0 
 xy

1

xy

x,y strongly correlated
x,y uncorrelated
0

xy

Assume: zero mean
003
.
0
982
500
27
.
2




xy
yy
xx
xy
r
r
r

Back to the Example: with no return
0 100 200 300 400 500 600 700 800 900
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 100 200 300 400 500 600 700 800 900
-3
-2
-1
0
1
2
3
0 100 200 300 400 500 600 700 800 900 1000
-3
-2
-1
0
1
2
3
]
[n
x ]
[n
y ]
[
]
[ n
y
n
x
NO Correlation!
Back to the Example: with return
8
.
0
754
500
494





yy
xx
xy
r
r
r
0 100 200 300 400 500 600 700 800 900
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 100 200 300 400 500 600 700 800 900
-3
-2
-1
0
1
2
3
0 100 200 300 400 500 600 700 800 900 1000
-0.5
0
0.5
1
1.5
2
2.5
]
[n
x ]
[n
y ]
[
]
[ n
y
n
x
Good Correlation!
Inner Product in Matlab
 
)
(
)
2
(
)
1
( N
x
x
x
x 

 
)
(
)
2
(
)
1
( N
y
y
y
y 

Row vector
Row vector
 
















 

)
(
)
2
(
)
1
(
)
(
)
2
(
)
1
(
)
(
)
(
*
*
*
1
*
N
y
y
y
N
x
x
x
n
y
n
x
r
N
n
xy


'
* y
x
rxy 
x
'
y
conjugate,
transpose
Take two signals of the same length. Each one is a vector:
Define: Inner Product between two vectors
Example
Take two signals:
0 50 100 150 200 250 300
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
x
y
0 50 100 150 200 250 300
-3
-2
-1
0
1
2
3
Compute these:
Then:
0
0856
.
0
9
.
241
8
.
218
7
.
19




xy

x,y are not correlated
7
.
19
'
* 

 y
x
rxy
8
.
218
'
* 
 x
x
rxx
9
.
241
'
* 
 y
y
ryy
Example
Take two signals:
x
y
9
.
230
'
* 
 y
x
rxy
6
.
229
'
* 
 x
x
rxx
3
.
234
'
* 
 y
y
ryy
Compute these:
Then:
1
9955
.
0
3
.
234
6
.
229
9
.
230




xy

x,y are strongly correlated
0 50 100 150 200 250 300
-3
-2
-1
0
1
2
3
0 50 100 150 200 250 300
-3
-2
-1
0
1
2
3
Example
Take two signals:
Compute these:
Then:
1
9955
.
0
3
.
234
6
.
229
9
.
230




xy

x,y are strongly correlated
x
y
0 50 100 150 200 250 300
-3
-2
-1
0
1
2
3
0 50 100 150 200 250 300
-3
-2
-1
0
1
2
3
9
.
230
'
* 
 y
x
rxy
6
.
229
'
* 
 x
x
rxx
3
.
234
'
* 
 y
y
ryy
Typical Application: Radar
]
[n
s
n
Send a Pulse…
]
[n
y
n
0
n
… and receive it back with noise, distortion …
N
Problem: estimate the time delay , ie detect when we receive it.
0
n
Use Inner Product
“Slide” the pulse s[n] over the received signal and see when
the inner product is maximum:
]
[
s

]
[
y

0
n
N
n





1
0
*
]
[
]
[
]
[
N
ys s
n
y
n
r



0
if
,
0
]
[ n
n
n
rys 

Use Inner Product
]
[
s

“Slide” the pulse x[n] over the received signal and see when
the inner product is maximum:
]
[
y

N
0
n


if 0
n
n 
MAX
s
n
y
n
r
N
ys 

 


1
0
*
]
[
]
[
]
[



Matched Filter
Take the expression
]
[
]
0
[
]
1
[
]
1
[
...
]
1
[
]
1
[
]
[
]
[
]
[
*
*
*
1
0
*
n
y
s
n
y
s
N
n
y
N
s
s
n
y
n
r
N
n
ys









 




Then
]
1
[
]
1
[
]
1
[
]
1
[
...
]
[
]
0
[
]
[
ˆ 






 N
n
y
N
h
n
y
h
n
y
h
n
r
]
[n
y ]
[n
h
1
,...,
0
],
1
[
]
[ *




 N
n
n
N
s
n
h
]
1
[
]
[
ˆ 

 N
n
r
n
r ys
Compare this, with the output of the following FIR Filter
Matched Filter
This Filter is called a Matched Filter
The output is maximum when
]
[n
y ]
[
ˆ n
r
]
[n
h
1
,...,
0
],
1
[
]
[ *




 N
n
n
N
s
n
h
]
1
[
]
[
ˆ 

 N
n
r
n
r ys
0
1 n
N
n 


1
0 

 N
n
n
i.e.
Example
0 2 4 6 8 10 12 14 16 18 20
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
]
[n
s
0 20 40 60 80 100 120 140 160 180 200
-6
-4
-2
0
2
4
6
8
10
12
0 20 40 60 80 100 120 140 160 180
-2
-1.5
-1
-0.5
0
0.5
1
1.5
]
[n
y
]
[n
y ]
[
ˆ n
r
]
[n
h
1
,...,
0
],
1
[
]
[ *




 N
n
n
N
s
n
h
1
,...,
0
],
[ 
 N
n
n
s
We transmit the pulse shown below, with
length 20

N
Received signal:
Max at n=119
100
1
20
119
0 



 n
How do we choose a “good pulse”
1
,...,
0
],
[ 
 N
n
n
s
We transmit the pulse and we receive
(ignore the noise for the time being)
]
[
]
[
]
[
]
[
0
1
0
*
0
n
n
r
A
s
n
n
s
A
n
r
ss
N
n
ys




 




]
[
]
[ 0
n
n
As
n
y 
 ]
[
ˆ n
r
]
[n
h
1
,...,
0
],
1
[
]
[ *




 N
n
n
N
s
n
h
]
1
[
]
[
ˆ 

 N
n
r
n
r ys
where
The term
is called the “autocorrelation of s[n]”. This characterizes
the pulse.





1
0
*
]
[
]
[
]
[
N
ss s
n
s
n
r



Example: a square pulse
?
]
[
]
[
]
[
1
0
*


 


N
ss s
n
s
n
r



N
s
s
s
r
N
N
ss 

 





1
0
2
1
0
*
]
[
]
[
]
[
]
0
[





1
1
]
[
]
1
[
]
1
[
2
0
2
0
*




 





N
s
s
r
N
N
ss




k
N
s
k
s
k
r
k
N
k
N
ss 



 







1
0
1
0
*
1
]
[
]
[
]
[




]
[n
rss
]
[n
s
n
1

N
1
0
N
N
 N n
See a few values:
k
N
s
k
s
k
r
N
k
k
N
ss 





 






1
1
0
*
1
]
[
]
[
]
[




Compute it in Matlab
]
[n
s
n
1

N
1
0
N=20; % data length
s=ones(1,N); % square pulse
rss=xcorr(s); % autocorr
n=-N+1:N-1; % indices for plot
stem(n,rss) % plot
-20 -15 -10 -5 0 5 10 15 20
0
2
4
6
8
10
12
14
16
18
20
Example: Sinusoid
49
,...,
0
],
[ 
n
n
s
-50 -40 -30 -20 -10 0 10 20 30 40 50
-20
-15
-10
-5
0
5
10
15
20
25
0 5 10 15 20 25 30 35 40 45 50
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
49
,...,
49
],
[ 

n
n
rss
Example: Chirp
49
,...,
49
],
[ 

n
n
rss
49
,...,
0
],
[ 
n
n
s
0 5 10 15 20 25 30 35 40 45 50
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
-50 -40 -30 -20 -10 0 10 20 30 40 50
-10
-5
0
5
10
15
20
25
30
s=chirp(0:49,0,49,0.1)
Example: Pseudo Noise
49
,...,
49
],
[ 

n
n
rss
s=randn(1,50)
49
,...,
0
],
[ 
n
n
s
0 5 10 15 20 25 30 35 40 45 50
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
-50 -40 -30 -20 -10 0 10 20 30 40 50
-20
-10
0
10
20
30
40
50
Compare them
-50 -40 -30 -20 -10 0 10 20 30 40 50
-20
-10
0
10
20
30
40
50
-50 -40 -30 -20 -10 0 10 20 30 40 50
-10
-5
0
5
10
15
20
25
30
0 5 10 15 20 25 30 35 40 45 50
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
0 5 10 15 20 25 30 35 40 45 50
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
0 5 10 15 20 25 30 35 40 45 50
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
-50 -40 -30 -20 -10 0 10 20 30 40 50
-20
-15
-10
-5
0
5
10
15
20
25
]
[n
s
]
[n
rss
cos chirp pseudonoise
Two best!
Detection with Noise
Now see with added noise
]
[
]
[
]
[ 0 n
w
n
n
As
n
y 


]
[n
h
1
,...,
0
],
1
[
]
[ *




 N
n
n
N
s
n
h
]
[
]
1
[
]
[
ˆ 0 n
r
N
n
n
r
n
r yw
ys 




White Noise
A first approximation of a disturbance is by “White Noise”.
White noise is such that any two different samples are
uncorrelated with each other:
0 100 200 300 400 500 600 700 800 900 1000
-4
-3
-2
-1
0
1
2
3
]
[n
w
White Noise
The autocorrelation of a white noise signal tends to be a
“delta” function, ie it is always zero, apart from when n=0.
]
[n
rss
n
White Noise and Filters
The output of a Filter
]
[n
w
]
[n
h





1
0
]
[
]
[
]
[
N
n
w
h
n
w






































  
  



















1
0
2
1
0
2
1
0
1
0
1
0
2
1
2
1
1
0
1
0
1
0
2
1
2
1
1
0
2
]
[
1
]
[
]
[
]
[
1
]
[
]
[
]
[
]
[
]
[
]
[
1
]
[
1
1 2
1 2
M
n
N
N N M
n
M
n
N N
M
n
n
w
M
h
n
w
n
w
M
h
h
n
w
n
w
h
h
M
n
w
M

 
 









White Noise
The output of a Filter
]
[n
w
]
[n
h




N
n
w
h
n
w
0
]
[
]
[
]
[



In other words the Power of the Noise at the ouput is
related to the Power of the Noise at the input as
w
N
n
W
P
n
h
P 





 


1
0
2
]
[
Back to the Match Filter
At the peak:
]
[
]
[
]
[ 0 n
w
n
n
As
n
y 


]
[n
h
1
,...,
0
],
1
[
]
[ *




 N
n
n
N
s
n
h
]
[
]
1
[
]
[
ˆ 0 n
w
N
n
n
Ar
n
r ss 




]
1
[
]
0
[
]
1
[
ˆ 0
0 




 N
n
w
Ar
N
n
r ss
Match Filter and SNR
At the peak:
]
1
[
]
0
[
]
1
[
ˆ 0
0 




 N
n
r
Ar
N
n
r sw
ss












 





1
0
2
1
0
2
2
|
]
[
|
|
]
[
|
]
0
[
N
n
N
n
ss n
s
n
As
Ar
W
N
n
W
P
n
s
P 





 


1
0
2
|
]
[
|
SNR
N
P
n
s
n
s
P
N
SNR
W
N
n
N
n
S
peak 























1
0
2
1
0
2
]
[
]
[
Example
Transmit a Chirp of length N=50 samples, with SNR=0dB
0 50 100 150 200 250 300
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 200 400 600 800 1000 1200
-15
-10
-5
0
5
10
15
20
25
30
Transmitted Detected with
Matched Filter
Example
Transmit a Chirp of length N=100 samples, with SNR=0dB
0 50 100 150 200 250 300
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 200 400 600 800 1000 1200
-20
-10
0
10
20
30
40
50
Transmitted Detected with
Matched Filter
Example
Transmit a Chirp of length N=300 samples, with SNR=0dB
0 50 100 150 200 250 300
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 200 400 600 800 1000 1200 1400
-40
-20
0
20
40
60
80
100
120
140
160
Transmitted
Detected with
Matched Filter

3-Matched-Filter.ppt

  • 1.
    Correlated and UncorrelatedSignals Problem: we have two signals and . How “close” are they to each other? ] [n x ] [n y Example: in a radar (or sonar) we transmit a pulse and we expect a return 0 20 40 60 80 100 120 140 160 180 -2 -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 12 14 16 18 20 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Transmit Receive
  • 2.
    Example: Radar Return Sincewe know what we are looking for, we keep comparing what we receive with what we sent. 0 20 40 60 80 100 120 140 160 180 -2 -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 12 14 16 18 20 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Receive 0 2 4 6 8 10 12 14 16 18 20 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Similar? NO! Think so!
  • 3.
    Inner Product betweentwo Signals We need a “measure” of how close two signals are to each other. This leads to the concepts of • Inner Product • Correlation Coefficient
  • 4.
    Inner Product Problem: wehave two signals and . How “close” are they to each other? ] [n x ] [n y Define: Inner Product between two signals of the same length     1 0 * ] [ ] [ N n xy n y n x r Properties: 0 ] [ ] [ ] [ 1 0 2 1 0 *          N n N n xx n x n x n x r yy xx xy r r r  2 yy xx xy r r r  2 if and only if ] [ ] [ n x C n y  for some constant C
  • 5.
    How we measuresimilarity (correlation coefficient) yy xx xy xy r r r | |   Compute: Check the value: 1 0   xy  1  xy  x,y strongly correlated x,y uncorrelated 0  xy  Assume: zero mean
  • 6.
    003 . 0 982 500 27 . 2     xy yy xx xy r r r  Back to theExample: with no return 0 100 200 300 400 500 600 700 800 900 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 100 200 300 400 500 600 700 800 900 -3 -2 -1 0 1 2 3 0 100 200 300 400 500 600 700 800 900 1000 -3 -2 -1 0 1 2 3 ] [n x ] [n y ] [ ] [ n y n x NO Correlation!
  • 7.
    Back to theExample: with return 8 . 0 754 500 494      yy xx xy r r r 0 100 200 300 400 500 600 700 800 900 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 100 200 300 400 500 600 700 800 900 -3 -2 -1 0 1 2 3 0 100 200 300 400 500 600 700 800 900 1000 -0.5 0 0.5 1 1.5 2 2.5 ] [n x ] [n y ] [ ] [ n y n x Good Correlation!
  • 8.
    Inner Product inMatlab   ) ( ) 2 ( ) 1 ( N x x x x     ) ( ) 2 ( ) 1 ( N y y y y   Row vector Row vector                      ) ( ) 2 ( ) 1 ( ) ( ) 2 ( ) 1 ( ) ( ) ( * * * 1 * N y y y N x x x n y n x r N n xy   ' * y x rxy  x ' y conjugate, transpose Take two signals of the same length. Each one is a vector: Define: Inner Product between two vectors
  • 9.
    Example Take two signals: 050 100 150 200 250 300 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 x y 0 50 100 150 200 250 300 -3 -2 -1 0 1 2 3 Compute these: Then: 0 0856 . 0 9 . 241 8 . 218 7 . 19     xy  x,y are not correlated 7 . 19 ' *    y x rxy 8 . 218 ' *   x x rxx 9 . 241 ' *   y y ryy
  • 10.
    Example Take two signals: x y 9 . 230 ' *  y x rxy 6 . 229 ' *   x x rxx 3 . 234 ' *   y y ryy Compute these: Then: 1 9955 . 0 3 . 234 6 . 229 9 . 230     xy  x,y are strongly correlated 0 50 100 150 200 250 300 -3 -2 -1 0 1 2 3 0 50 100 150 200 250 300 -3 -2 -1 0 1 2 3
  • 11.
    Example Take two signals: Computethese: Then: 1 9955 . 0 3 . 234 6 . 229 9 . 230     xy  x,y are strongly correlated x y 0 50 100 150 200 250 300 -3 -2 -1 0 1 2 3 0 50 100 150 200 250 300 -3 -2 -1 0 1 2 3 9 . 230 ' *   y x rxy 6 . 229 ' *   x x rxx 3 . 234 ' *   y y ryy
  • 12.
    Typical Application: Radar ] [n s n Senda Pulse… ] [n y n 0 n … and receive it back with noise, distortion … N Problem: estimate the time delay , ie detect when we receive it. 0 n
  • 13.
    Use Inner Product “Slide”the pulse s[n] over the received signal and see when the inner product is maximum: ] [ s  ] [ y  0 n N n      1 0 * ] [ ] [ ] [ N ys s n y n r    0 if , 0 ] [ n n n rys  
  • 14.
    Use Inner Product ] [ s  “Slide”the pulse x[n] over the received signal and see when the inner product is maximum: ] [ y  N 0 n   if 0 n n  MAX s n y n r N ys       1 0 * ] [ ] [ ] [   
  • 15.
    Matched Filter Take theexpression ] [ ] 0 [ ] 1 [ ] 1 [ ... ] 1 [ ] 1 [ ] [ ] [ ] [ * * * 1 0 * n y s n y s N n y N s s n y n r N n ys                Then ] 1 [ ] 1 [ ] 1 [ ] 1 [ ... ] [ ] 0 [ ] [ ˆ         N n y N h n y h n y h n r ] [n y ] [n h 1 ,..., 0 ], 1 [ ] [ *      N n n N s n h ] 1 [ ] [ ˆ    N n r n r ys Compare this, with the output of the following FIR Filter
  • 16.
    Matched Filter This Filteris called a Matched Filter The output is maximum when ] [n y ] [ ˆ n r ] [n h 1 ,..., 0 ], 1 [ ] [ *      N n n N s n h ] 1 [ ] [ ˆ    N n r n r ys 0 1 n N n    1 0    N n n i.e.
  • 17.
    Example 0 2 46 8 10 12 14 16 18 20 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 ] [n s 0 20 40 60 80 100 120 140 160 180 200 -6 -4 -2 0 2 4 6 8 10 12 0 20 40 60 80 100 120 140 160 180 -2 -1.5 -1 -0.5 0 0.5 1 1.5 ] [n y ] [n y ] [ ˆ n r ] [n h 1 ,..., 0 ], 1 [ ] [ *      N n n N s n h 1 ,..., 0 ], [   N n n s We transmit the pulse shown below, with length 20  N Received signal: Max at n=119 100 1 20 119 0      n
  • 18.
    How do wechoose a “good pulse” 1 ,..., 0 ], [   N n n s We transmit the pulse and we receive (ignore the noise for the time being) ] [ ] [ ] [ ] [ 0 1 0 * 0 n n r A s n n s A n r ss N n ys           ] [ ] [ 0 n n As n y   ] [ ˆ n r ] [n h 1 ,..., 0 ], 1 [ ] [ *      N n n N s n h ] 1 [ ] [ ˆ    N n r n r ys where The term is called the “autocorrelation of s[n]”. This characterizes the pulse.      1 0 * ] [ ] [ ] [ N ss s n s n r   
  • 19.
    Example: a squarepulse ? ] [ ] [ ] [ 1 0 *       N ss s n s n r    N s s s r N N ss          1 0 2 1 0 * ] [ ] [ ] [ ] 0 [      1 1 ] [ ] 1 [ ] 1 [ 2 0 2 0 *            N s s r N N ss     k N s k s k r k N k N ss              1 0 1 0 * 1 ] [ ] [ ] [     ] [n rss ] [n s n 1  N 1 0 N N  N n See a few values: k N s k s k r N k k N ss               1 1 0 * 1 ] [ ] [ ] [    
  • 20.
    Compute it inMatlab ] [n s n 1  N 1 0 N=20; % data length s=ones(1,N); % square pulse rss=xcorr(s); % autocorr n=-N+1:N-1; % indices for plot stem(n,rss) % plot -20 -15 -10 -5 0 5 10 15 20 0 2 4 6 8 10 12 14 16 18 20
  • 21.
    Example: Sinusoid 49 ,..., 0 ], [  n n s -50-40 -30 -20 -10 0 10 20 30 40 50 -20 -15 -10 -5 0 5 10 15 20 25 0 5 10 15 20 25 30 35 40 45 50 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 49 ,..., 49 ], [   n n rss
  • 22.
    Example: Chirp 49 ,..., 49 ], [   n n rss 49 ,..., 0 ], [ n n s 0 5 10 15 20 25 30 35 40 45 50 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 -10 -5 0 5 10 15 20 25 30 s=chirp(0:49,0,49,0.1)
  • 23.
    Example: Pseudo Noise 49 ,..., 49 ], [  n n rss s=randn(1,50) 49 ,..., 0 ], [  n n s 0 5 10 15 20 25 30 35 40 45 50 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -50 -40 -30 -20 -10 0 10 20 30 40 50 -20 -10 0 10 20 30 40 50
  • 24.
    Compare them -50 -40-30 -20 -10 0 10 20 30 40 50 -20 -10 0 10 20 30 40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50 -10 -5 0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45 50 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 0 5 10 15 20 25 30 35 40 45 50 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 5 10 15 20 25 30 35 40 45 50 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 -20 -15 -10 -5 0 5 10 15 20 25 ] [n s ] [n rss cos chirp pseudonoise Two best!
  • 25.
    Detection with Noise Nowsee with added noise ] [ ] [ ] [ 0 n w n n As n y    ] [n h 1 ,..., 0 ], 1 [ ] [ *      N n n N s n h ] [ ] 1 [ ] [ ˆ 0 n r N n n r n r yw ys     
  • 26.
    White Noise A firstapproximation of a disturbance is by “White Noise”. White noise is such that any two different samples are uncorrelated with each other: 0 100 200 300 400 500 600 700 800 900 1000 -4 -3 -2 -1 0 1 2 3 ] [n w
  • 27.
    White Noise The autocorrelationof a white noise signal tends to be a “delta” function, ie it is always zero, apart from when n=0. ] [n rss n
  • 28.
    White Noise andFilters The output of a Filter ] [n w ] [n h      1 0 ] [ ] [ ] [ N n w h n w                                                                1 0 2 1 0 2 1 0 1 0 1 0 2 1 2 1 1 0 1 0 1 0 2 1 2 1 1 0 2 ] [ 1 ] [ ] [ ] [ 1 ] [ ] [ ] [ ] [ ] [ ] [ 1 ] [ 1 1 2 1 2 M n N N N M n M n N N M n n w M h n w n w M h h n w n w h h M n w M              
  • 29.
    White Noise The outputof a Filter ] [n w ] [n h     N n w h n w 0 ] [ ] [ ] [    In other words the Power of the Noise at the ouput is related to the Power of the Noise at the input as w N n W P n h P           1 0 2 ] [
  • 30.
    Back to theMatch Filter At the peak: ] [ ] [ ] [ 0 n w n n As n y    ] [n h 1 ,..., 0 ], 1 [ ] [ *      N n n N s n h ] [ ] 1 [ ] [ ˆ 0 n w N n n Ar n r ss      ] 1 [ ] 0 [ ] 1 [ ˆ 0 0       N n w Ar N n r ss
  • 31.
    Match Filter andSNR At the peak: ] 1 [ ] 0 [ ] 1 [ ˆ 0 0       N n r Ar N n r sw ss                    1 0 2 1 0 2 2 | ] [ | | ] [ | ] 0 [ N n N n ss n s n As Ar W N n W P n s P           1 0 2 | ] [ | SNR N P n s n s P N SNR W N n N n S peak                         1 0 2 1 0 2 ] [ ] [
  • 32.
    Example Transmit a Chirpof length N=50 samples, with SNR=0dB 0 50 100 150 200 250 300 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 200 400 600 800 1000 1200 -15 -10 -5 0 5 10 15 20 25 30 Transmitted Detected with Matched Filter
  • 33.
    Example Transmit a Chirpof length N=100 samples, with SNR=0dB 0 50 100 150 200 250 300 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 200 400 600 800 1000 1200 -20 -10 0 10 20 30 40 50 Transmitted Detected with Matched Filter
  • 34.
    Example Transmit a Chirpof length N=300 samples, with SNR=0dB 0 50 100 150 200 250 300 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 0 200 400 600 800 1000 1200 1400 -40 -20 0 20 40 60 80 100 120 140 160 Transmitted Detected with Matched Filter