SlideShare a Scribd company logo
1 of 56
Special Binomial Operations
A binomial is a two-term polynomial.
Special Binomial Operations
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
Special Binomial Operations
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial.
Special Binomial Operations
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
Special Binomial Operations
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
The product of two binomials is a trinomial.
(#x + #)(#x + #) = #x2 + #x + #
Special Binomial Operations
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
The product of two binomials is a trinomial.
(#x + #)(#x + #) = #x2 + #x + #
Special Binomial Operations
F: To get the x2-term, multiply the two Front x-terms of the
binomials.
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
The product of two binomials is a trinomial.
(#x + #)(#x + #) = #x2 + #x + #
Special Binomial Operations
F: To get the x2-term, multiply the two Front x-terms of the
binomials.
OI: To get the x-term, multiply the Outer and Inner pairs and
combine the results.
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
The product of two binomials is a trinomial.
(#x + #)(#x + #) = #x2 + #x + #
Special Binomial Operations
F: To get the x2-term, multiply the two Front x-terms of the
binomials.
OI: To get the x-term, multiply the Outer and Inner pairs and
combine the results.
L: To get the constant term, multiply the two Last constant
terms.
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
The product of two binomials is a trinomial.
(#x + #)(#x + #) = #x2 + #x + #
Special Binomial Operations
F: To get the x2-term, multiply the two Front x-terms of the
binomials.
OI: To get the x-term, multiply the Outer and Inner pairs and
combine the results.
L: To get the constant term, multiply the two Last constant
terms.
This is called the FOIL method.
A binomial is a two-term polynomial. Usually we use the
term for expressions of the form ax + b.
A trinomial is a three term polynomial. Usually we use the
term for expressions of the form ax2 + bx + c.
The product of two binomials is a trinomial.
(#x + #)(#x + #) = #x2 + #x + #
Special Binomial Operations
F: To get the x2-term, multiply the two Front x-terms of the
binomials.
OI: To get the x-term, multiply the Outer and Inner pairs and
combine the results.
L: To get the constant term, multiply the two Last constant
terms.
This is called the FOIL method.
The FOIL method speeds up the multiplication of above
binomial products and this will come in handy later.
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4)
Special Binomial Operations
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2
Special Binomial Operations
The front terms: x2-term
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2
Special Binomial Operations
Outer pair: –4x
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2
Special Binomial Operations
Inner pair: –4x + 3x
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x
Special Binomial Operations
Outer Inner pairs: –4x + 3x = –x
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
Special Binomial Operations
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5)
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2
The front terms: –6x2
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2
Outer pair: 15x
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2
Inner pair: 15x – 8x
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x
Outer and Inner pair: 15x – 8x = 7x
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care.
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Example B. Expand.
a. – (3x – 4)(x + 5)
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Example B. Expand.
a. – [(3x – 4)(x + 5)] Insert [ ]
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Example B. Expand.
a. – [(3x – 4)(x + 5)]
= – [ 3x2 + 15x – 4x – 20]
Insert [ ]
Expand
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Example B. Expand.
a. – [(3x – 4)(x + 5)]
= – [ 3x2 + 15x – 4x – 20]
= – [ 3x2 + 11x – 20]
Insert [ ]
Expand
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Example B. Expand.
a. – [(3x – 4)(x + 5)]
= – [ 3x2 + 15x – 4x – 20]
= – [ 3x2 + 11x – 20]
= – 3x2 – 11x + 20
Insert [ ]
Expand
Remove [ ] and
change all the signs.
Special Binomial Operations
b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20
Example A. Multiply using FOIL method.
a. (x + 3)(x – 4) = x2 – x – 12
The last terms: 20
The last terms: –12
Expanding the negative of the binomial product requires
extra care. One way to do this is to insert a set of “[ ]”
around the product.
Example B. Expand.
a. – [(3x – 4)(x + 5)]
= – [ 3x2 + 15x – 4x – 20]
= – [ 3x2 + 11x – 20]
= – 3x2 – 11x + 20
Insert [ ]
Expand
Remove [ ] and
change all the signs.
The key here is that all three terms change signs.
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5) Distribute the sign.
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
Distribute the sign.
Expand
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Below we present both versions of the algebra for
simplifying the differences of two products of binomials.
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Example D. Expand and simplify.
Below we present both versions of the algebra for
simplifying the differences of two products of binomials.
a. (2x – 5)(x +3) – [(3x – 4)(x + 5)]
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Example D. Expand and simplify.
Below we present both versions of the algebra for
simplifying the differences of two products of binomials.
a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Example D. Expand and simplify.
Below we present both versions of the algebra for
simplifying the differences of two products of binomials.
a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets
= 2x2 + x – 15 – [3x2 +11x – 20] Expand
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Example D. Expand and simplify.
Below we present both versions of the algebra for
simplifying the differences of two products of binomials.
a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets
= 2x2 + x – 15 – [3x2 +11x – 20]
= 2x2 + x – 15 – 3x2 – 11x + 20
Expand
Remove brackets
and combine
Special Binomial Operations
Another way to do this is to distribute the negative sign into
the first binomial then FOIL.
Example C. Expand.
a. – (3x – 4)(x + 5)
= (–3x + 4)(x + 5)
= – 3x2 – 15x + 4x + 20
= – 3x2 – 11x + 20
Distribute the sign.
Expand
Example D. Expand and simplify.
Below we present both versions of the algebra for
simplifying the differences of two products of binomials.
a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets
= 2x2 + x – 15 – [3x2 +11x – 20]
= 2x2 + x – 15 – 3x2 – 11x + 20
= –x2 – 10x + 5
Expand
Remove brackets
and combine
Special Binomial Operations
b. Expand and simplify.
(2x – 5)(x +3) – (3x – 4)(x + 5)
Special Binomial Operations
b. Expand and simplify.
(2x – 5)(x +3) – (3x – 4)(x + 5)
= (2x – 5)(x +3) + (–3x + 4)(x + 5) Distribute the “–” sign
Special Binomial Operations
b. Expand and simplify.
(2x – 5)(x +3) – (3x – 4)(x + 5)
= (2x – 5)(x +3) + (–3x + 4)(x + 5)
= 2x2 + 6x – 5x – 15 – 3x2 –15x + 4x + 20
Distribute the “–” sign
Expand
Special Binomial Operations
b. Expand and simplify.
(2x – 5)(x +3) – (3x – 4)(x + 5)
= (2x – 5)(x +3) + (–3x + 4)(x + 5)
= 2x2 + 6x – 5x – 15 – 3x2 –15x + 4x + 20
= 2x2 + x – 15 – 3x2 – 11x + 20
= –x2 – 10x + 5
Distribute the “–” sign
Expand
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms.
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
(#x + #y)(#x + #y) = #x2 + #xy + #y2
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
(#x + #y)(#x + #y) = #x2 + #xy + #y2
The FOIL method is still applicable in this case.
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
Example E. Expand.
(3x – 4y)(x + 5y)
(#x + #y)(#x + #y) = #x2 + #xy + #y2
The FOIL method is still applicable in this case.
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
Example E. Expand.
(3x – 4y)(x + 5y)
= 3x2
(#x + #y)(#x + #y) = #x2 + #xy + #y2
The FOIL method is still applicable in this case.
F OI L
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
Example E. Expand.
(3x – 4y)(x + 5y)
= 3x2 + 15xy – 4yx
(#x + #y)(#x + #y) = #x2 + #xy + #y2
The FOIL method is still applicable in this case.
F OI
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
Example E. Expand.
(3x – 4y)(x + 5y)
= 3x2 + 15xy – 4yx – 20y2
(#x + #y)(#x + #y) = #x2 + #xy + #y2
The FOIL method is still applicable in this case.
F OI L
Special Binomial Operations
If the binomials are in x and y, then the products consist of
the x2, xy and y2 terms. That is,
Example E. Expand.
(3x – 4y)(x + 5y)
= 3x2 + 15xy – 4yx – 20y2 = 3x2 + 11xy – 20y2
(#x + #y)(#x + #y) = #x2 + #xy + #y2
The FOIL method is still applicable in this case.
F OI L
B. Expand and simplify.
Special Binomial Operations
1. (x + 5)(x + 7) 2. (x – 5)(x + 7)
3. (x + 5)(x – 7) 4. (x – 5)(x – 7)
5. (3x – 5)(2x + 4) 6. (–x + 5)(3x + 8)
7. (2x – 5)(2x + 5) 8. (3x + 7)(3x – 7)
Exercise. A. Expand by FOIL method first. Then do them by
inspection.
9. (–3x + 7)(4x + 3) 10. (–5x + 3)(3x – 4)
11. (2x – 5)(2x + 5) 12. (3x + 7)(3x – 7)
13. (9x + 4)(5x – 2) 14. (–5x + 3)(–3x + 1)
15. (5x – 1)(4x – 3) 16. (6x – 5)(–2x + 7)
17. (x + 5y)(x – 7y) 18. (x – 5y)(x – 7y)
19. (3x + 7y)(3x – 7y) 20. (–5x + 3y)(–3x + y)
21. –(2x – 5)(x + 3) 22. –(6x – 1)(3x – 4)
23. –(8x – 3)(2x + 1) 24. –(3x – 4)(4x – 3)
C. Expand and simplify.
25. (3x – 4)(x + 5) + (2x – 5)(x + 3)
26. (4x – 1)(2x – 5) + (x + 5)(x + 3)
27. (5x – 3)(x + 3) + (x + 5)(2x – 5)
Special Binomial Operations
28. (3x – 4)(x + 5) – (2x – 5)(x + 3)
29. (4x – 4)(2x – 5) – (x + 5)(x + 3)
30. (5x – 3)(x + 3) – (x + 5)(2x – 5)
31. (2x – 7)(2x – 5) – (3x – 1)(2x + 3)
32. (3x – 1)(x – 7) – (x – 7)(3x + 1)
33. (2x – 3)(4x + 3) – (x + 2)(6x – 5)
34. (2x – 5)2 – (3x – 1)2
35. (x – 7)2 – (2x + 3)2
36. (4x + 3)2 – (6x – 5)2

More Related Content

What's hot

Haile Middle School: Properties
Haile Middle School: PropertiesHaile Middle School: Properties
Haile Middle School: PropertiesHannah5460
 
2.1 the basic language of functions t
2.1 the basic language of functions  t2.1 the basic language of functions  t
2.1 the basic language of functions tmath260
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressionsAndri Rahadi
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsbingotif
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions xmath260
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions xmath260
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functionsTzenma
 
0.3 Factoring Polynomials
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomialssmiller5
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp xmath260
 
Jeopardy derivatives
Jeopardy derivativesJeopardy derivatives
Jeopardy derivativesjchartiersjsd
 
Functions 1 - Math Academy - JC H2 maths A levels
Functions 1 - Math Academy - JC H2 maths A levelsFunctions 1 - Math Academy - JC H2 maths A levels
Functions 1 - Math Academy - JC H2 maths A levelsMath Academy Singapore
 

What's hot (18)

Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
Haile Middle School: Properties
Haile Middle School: PropertiesHaile Middle School: Properties
Haile Middle School: Properties
 
9.2
9.29.2
9.2
 
Polynomials
PolynomialsPolynomials
Polynomials
 
2.1 the basic language of functions t
2.1 the basic language of functions  t2.1 the basic language of functions  t
2.1 the basic language of functions t
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
 
Functions
FunctionsFunctions
Functions
 
1150 day 5
1150 day 51150 day 5
1150 day 5
 
0.3 Factoring Polynomials
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomials
 
Foil
FoilFoil
Foil
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
 
Jeopardy derivatives
Jeopardy derivativesJeopardy derivatives
Jeopardy derivatives
 
Functions 1 - Math Academy - JC H2 maths A levels
Functions 1 - Math Academy - JC H2 maths A levelsFunctions 1 - Math Academy - JC H2 maths A levels
Functions 1 - Math Academy - JC H2 maths A levels
 
Special product
Special productSpecial product
Special product
 

Similar to 3 special binomial operations x

Factorization Introduction
Factorization IntroductionFactorization Introduction
Factorization Introductionjacobwoot
 
factoring and the other ones polynomials2.ppt
factoring and the other ones polynomials2.pptfactoring and the other ones polynomials2.ppt
factoring and the other ones polynomials2.pptScience18
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomialsitutor
 
mr. amato's class presentation
mr. amato's class presentationmr. amato's class presentation
mr. amato's class presentationtonyamato
 
Factoring with a gcf (1)
Factoring with a gcf (1)Factoring with a gcf (1)
Factoring with a gcf (1)laila_barrera
 
9-2-Mult-polynom-foil.ppt
9-2-Mult-polynom-foil.ppt9-2-Mult-polynom-foil.ppt
9-2-Mult-polynom-foil.pptWahyuYulianto12
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions ymath260
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressionsmath260
 
1.2Algebraic Expressions-x
1.2Algebraic Expressions-x1.2Algebraic Expressions-x
1.2Algebraic Expressions-xmath260
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions ymath266
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions ymath260
 
2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubesjennoga08
 
Multiplying-and-dividing-polynomials.pptx
Multiplying-and-dividing-polynomials.pptxMultiplying-and-dividing-polynomials.pptx
Multiplying-and-dividing-polynomials.pptxregiebalios23
 
Sum and difference of two squares
Sum and difference of two squaresSum and difference of two squares
Sum and difference of two squaresMartinGeraldine
 
Lesson plan final
Lesson plan finalLesson plan final
Lesson plan finaljrbt2014
 
Algebra 1 factorisation by grouping
Algebra 1 factorisation by groupingAlgebra 1 factorisation by grouping
Algebra 1 factorisation by groupingestelav
 

Similar to 3 special binomial operations x (20)

Factorization Introduction
Factorization IntroductionFactorization Introduction
Factorization Introduction
 
factoring and the other ones polynomials2.ppt
factoring and the other ones polynomials2.pptfactoring and the other ones polynomials2.ppt
factoring and the other ones polynomials2.ppt
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
mr. amato's class presentation
mr. amato's class presentationmr. amato's class presentation
mr. amato's class presentation
 
Factoring with a gcf (1)
Factoring with a gcf (1)Factoring with a gcf (1)
Factoring with a gcf (1)
 
9-2-Mult-polynom-foil.ppt
9-2-Mult-polynom-foil.ppt9-2-Mult-polynom-foil.ppt
9-2-Mult-polynom-foil.ppt
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
P6 factoring
P6 factoringP6 factoring
P6 factoring
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
 
1.2Algebraic Expressions-x
1.2Algebraic Expressions-x1.2Algebraic Expressions-x
1.2Algebraic Expressions-x
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
Polynomials2
Polynomials2Polynomials2
Polynomials2
 
2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes
 
Multiplying-and-dividing-polynomials.pptx
Multiplying-and-dividing-polynomials.pptxMultiplying-and-dividing-polynomials.pptx
Multiplying-and-dividing-polynomials.pptx
 
Sum and difference of two squares
Sum and difference of two squaresSum and difference of two squares
Sum and difference of two squares
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
Lesson plan final
Lesson plan finalLesson plan final
Lesson plan final
 
Algebra 1 factorisation by grouping
Algebra 1 factorisation by groupingAlgebra 1 factorisation by grouping
Algebra 1 factorisation by grouping
 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient xTzenma
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circlesTzenma
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions xTzenma
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions xTzenma
 
1 functions
1 functions1 functions
1 functionsTzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-xTzenma
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-xTzenma
 
7 proportions x
7 proportions x7 proportions x
7 proportions xTzenma
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions xTzenma
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii xTzenma
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i xTzenma
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators xTzenma
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions xTzenma
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation xTzenma
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions xTzenma
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y xTzenma
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii xTzenma
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i xTzenma
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines xTzenma
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes xTzenma
 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
1 functions
1 functions1 functions
1 functions
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
 
7 proportions x
7 proportions x7 proportions x
7 proportions x
 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
 

Recently uploaded

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 

Recently uploaded (20)

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 

3 special binomial operations x

  • 2. A binomial is a two-term polynomial. Special Binomial Operations
  • 3. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. Special Binomial Operations
  • 4. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Special Binomial Operations
  • 5. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. Special Binomial Operations
  • 6. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. The product of two binomials is a trinomial. (#x + #)(#x + #) = #x2 + #x + # Special Binomial Operations
  • 7. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. The product of two binomials is a trinomial. (#x + #)(#x + #) = #x2 + #x + # Special Binomial Operations F: To get the x2-term, multiply the two Front x-terms of the binomials.
  • 8. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. The product of two binomials is a trinomial. (#x + #)(#x + #) = #x2 + #x + # Special Binomial Operations F: To get the x2-term, multiply the two Front x-terms of the binomials. OI: To get the x-term, multiply the Outer and Inner pairs and combine the results.
  • 9. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. The product of two binomials is a trinomial. (#x + #)(#x + #) = #x2 + #x + # Special Binomial Operations F: To get the x2-term, multiply the two Front x-terms of the binomials. OI: To get the x-term, multiply the Outer and Inner pairs and combine the results. L: To get the constant term, multiply the two Last constant terms.
  • 10. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. The product of two binomials is a trinomial. (#x + #)(#x + #) = #x2 + #x + # Special Binomial Operations F: To get the x2-term, multiply the two Front x-terms of the binomials. OI: To get the x-term, multiply the Outer and Inner pairs and combine the results. L: To get the constant term, multiply the two Last constant terms. This is called the FOIL method.
  • 11. A binomial is a two-term polynomial. Usually we use the term for expressions of the form ax + b. A trinomial is a three term polynomial. Usually we use the term for expressions of the form ax2 + bx + c. The product of two binomials is a trinomial. (#x + #)(#x + #) = #x2 + #x + # Special Binomial Operations F: To get the x2-term, multiply the two Front x-terms of the binomials. OI: To get the x-term, multiply the Outer and Inner pairs and combine the results. L: To get the constant term, multiply the two Last constant terms. This is called the FOIL method. The FOIL method speeds up the multiplication of above binomial products and this will come in handy later.
  • 12. Example A. Multiply using FOIL method. a. (x + 3)(x – 4) Special Binomial Operations
  • 13. Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 Special Binomial Operations The front terms: x2-term
  • 14. Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 Special Binomial Operations Outer pair: –4x
  • 15. Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 Special Binomial Operations Inner pair: –4x + 3x
  • 16. Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x Special Binomial Operations Outer Inner pairs: –4x + 3x = –x
  • 17. Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 Special Binomial Operations The last terms: –12
  • 18. Special Binomial Operations b. (3x + 4)(–2x + 5) Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: –12
  • 19. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 The front terms: –6x2 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: –12
  • 20. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 Outer pair: 15x Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: –12
  • 21. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 Inner pair: 15x – 8x Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: –12
  • 22. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x Outer and Inner pair: 15x – 8x = 7x Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: –12
  • 23. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12
  • 24. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care.
  • 25. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product.
  • 26. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product. Example B. Expand. a. – (3x – 4)(x + 5)
  • 27. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product. Example B. Expand. a. – [(3x – 4)(x + 5)] Insert [ ]
  • 28. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product. Example B. Expand. a. – [(3x – 4)(x + 5)] = – [ 3x2 + 15x – 4x – 20] Insert [ ] Expand
  • 29. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product. Example B. Expand. a. – [(3x – 4)(x + 5)] = – [ 3x2 + 15x – 4x – 20] = – [ 3x2 + 11x – 20] Insert [ ] Expand
  • 30. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product. Example B. Expand. a. – [(3x – 4)(x + 5)] = – [ 3x2 + 15x – 4x – 20] = – [ 3x2 + 11x – 20] = – 3x2 – 11x + 20 Insert [ ] Expand Remove [ ] and change all the signs.
  • 31. Special Binomial Operations b. (3x + 4)(–2x + 5) = –6x2 + 7x + 20 Example A. Multiply using FOIL method. a. (x + 3)(x – 4) = x2 – x – 12 The last terms: 20 The last terms: –12 Expanding the negative of the binomial product requires extra care. One way to do this is to insert a set of “[ ]” around the product. Example B. Expand. a. – [(3x – 4)(x + 5)] = – [ 3x2 + 15x – 4x – 20] = – [ 3x2 + 11x – 20] = – 3x2 – 11x + 20 Insert [ ] Expand Remove [ ] and change all the signs. The key here is that all three terms change signs.
  • 32. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL.
  • 33. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5)
  • 34. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) Distribute the sign.
  • 35. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 Distribute the sign. Expand
  • 36. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand
  • 37. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand Below we present both versions of the algebra for simplifying the differences of two products of binomials.
  • 38. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand Example D. Expand and simplify. Below we present both versions of the algebra for simplifying the differences of two products of binomials. a. (2x – 5)(x +3) – [(3x – 4)(x + 5)]
  • 39. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand Example D. Expand and simplify. Below we present both versions of the algebra for simplifying the differences of two products of binomials. a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets
  • 40. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand Example D. Expand and simplify. Below we present both versions of the algebra for simplifying the differences of two products of binomials. a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets = 2x2 + x – 15 – [3x2 +11x – 20] Expand
  • 41. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand Example D. Expand and simplify. Below we present both versions of the algebra for simplifying the differences of two products of binomials. a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets = 2x2 + x – 15 – [3x2 +11x – 20] = 2x2 + x – 15 – 3x2 – 11x + 20 Expand Remove brackets and combine
  • 42. Special Binomial Operations Another way to do this is to distribute the negative sign into the first binomial then FOIL. Example C. Expand. a. – (3x – 4)(x + 5) = (–3x + 4)(x + 5) = – 3x2 – 15x + 4x + 20 = – 3x2 – 11x + 20 Distribute the sign. Expand Example D. Expand and simplify. Below we present both versions of the algebra for simplifying the differences of two products of binomials. a. (2x – 5)(x +3) – [(3x – 4)(x + 5)] Insert brackets = 2x2 + x – 15 – [3x2 +11x – 20] = 2x2 + x – 15 – 3x2 – 11x + 20 = –x2 – 10x + 5 Expand Remove brackets and combine
  • 43. Special Binomial Operations b. Expand and simplify. (2x – 5)(x +3) – (3x – 4)(x + 5)
  • 44. Special Binomial Operations b. Expand and simplify. (2x – 5)(x +3) – (3x – 4)(x + 5) = (2x – 5)(x +3) + (–3x + 4)(x + 5) Distribute the “–” sign
  • 45. Special Binomial Operations b. Expand and simplify. (2x – 5)(x +3) – (3x – 4)(x + 5) = (2x – 5)(x +3) + (–3x + 4)(x + 5) = 2x2 + 6x – 5x – 15 – 3x2 –15x + 4x + 20 Distribute the “–” sign Expand
  • 46. Special Binomial Operations b. Expand and simplify. (2x – 5)(x +3) – (3x – 4)(x + 5) = (2x – 5)(x +3) + (–3x + 4)(x + 5) = 2x2 + 6x – 5x – 15 – 3x2 –15x + 4x + 20 = 2x2 + x – 15 – 3x2 – 11x + 20 = –x2 – 10x + 5 Distribute the “–” sign Expand
  • 47. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms.
  • 48. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, (#x + #y)(#x + #y) = #x2 + #xy + #y2
  • 49. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, (#x + #y)(#x + #y) = #x2 + #xy + #y2 The FOIL method is still applicable in this case.
  • 50. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, Example E. Expand. (3x – 4y)(x + 5y) (#x + #y)(#x + #y) = #x2 + #xy + #y2 The FOIL method is still applicable in this case.
  • 51. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, Example E. Expand. (3x – 4y)(x + 5y) = 3x2 (#x + #y)(#x + #y) = #x2 + #xy + #y2 The FOIL method is still applicable in this case. F OI L
  • 52. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, Example E. Expand. (3x – 4y)(x + 5y) = 3x2 + 15xy – 4yx (#x + #y)(#x + #y) = #x2 + #xy + #y2 The FOIL method is still applicable in this case. F OI
  • 53. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, Example E. Expand. (3x – 4y)(x + 5y) = 3x2 + 15xy – 4yx – 20y2 (#x + #y)(#x + #y) = #x2 + #xy + #y2 The FOIL method is still applicable in this case. F OI L
  • 54. Special Binomial Operations If the binomials are in x and y, then the products consist of the x2, xy and y2 terms. That is, Example E. Expand. (3x – 4y)(x + 5y) = 3x2 + 15xy – 4yx – 20y2 = 3x2 + 11xy – 20y2 (#x + #y)(#x + #y) = #x2 + #xy + #y2 The FOIL method is still applicable in this case. F OI L
  • 55. B. Expand and simplify. Special Binomial Operations 1. (x + 5)(x + 7) 2. (x – 5)(x + 7) 3. (x + 5)(x – 7) 4. (x – 5)(x – 7) 5. (3x – 5)(2x + 4) 6. (–x + 5)(3x + 8) 7. (2x – 5)(2x + 5) 8. (3x + 7)(3x – 7) Exercise. A. Expand by FOIL method first. Then do them by inspection. 9. (–3x + 7)(4x + 3) 10. (–5x + 3)(3x – 4) 11. (2x – 5)(2x + 5) 12. (3x + 7)(3x – 7) 13. (9x + 4)(5x – 2) 14. (–5x + 3)(–3x + 1) 15. (5x – 1)(4x – 3) 16. (6x – 5)(–2x + 7) 17. (x + 5y)(x – 7y) 18. (x – 5y)(x – 7y) 19. (3x + 7y)(3x – 7y) 20. (–5x + 3y)(–3x + y) 21. –(2x – 5)(x + 3) 22. –(6x – 1)(3x – 4) 23. –(8x – 3)(2x + 1) 24. –(3x – 4)(4x – 3)
  • 56. C. Expand and simplify. 25. (3x – 4)(x + 5) + (2x – 5)(x + 3) 26. (4x – 1)(2x – 5) + (x + 5)(x + 3) 27. (5x – 3)(x + 3) + (x + 5)(2x – 5) Special Binomial Operations 28. (3x – 4)(x + 5) – (2x – 5)(x + 3) 29. (4x – 4)(2x – 5) – (x + 5)(x + 3) 30. (5x – 3)(x + 3) – (x + 5)(2x – 5) 31. (2x – 7)(2x – 5) – (3x – 1)(2x + 3) 32. (3x – 1)(x – 7) – (x – 7)(3x + 1) 33. (2x – 3)(4x + 3) – (x + 2)(6x – 5) 34. (2x – 5)2 – (3x – 1)2 35. (x – 7)2 – (2x + 3)2 36. (4x + 3)2 – (6x – 5)2