SlideShare a Scribd company logo
1 of 95
Addition and Subtraction of Rational Expressions
Addition and Subtraction of Rational Expressions
Only fractions with the same denominator may be added or
subtracted directly.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
b. 3x
2x – 3
– 6 – x
2x – 3
=
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
b. 3x
2x – 3
– 6 – x
2x – 3
=
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
=
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
=
2(2x – 3)
2x – 3
Addition and Subtraction of Rational Expressions
Addition and Subtraction Rule
(for rational expressions with the same denominator)
Only fractions with the same denominator may be added or
subtracted directly.
A B
D D
Β± =
AΒ±B
D
Write the result in the factored form, cancel the common
factor and give the simplified answer.
Example A. Add and subtract and simplify the answer.
a. 5 7
8 8
+ =
5 + 7
8
=
12
8
=
3
2
3
2
b. 3x
2x – 3
– 6 – x
2x – 3
= 3x – (6 – x)
2x – 3
= 3x – 6 + x
2x – 3
=
4x – 6
2x – 3
=
2(2x – 3)
2x – 3
= 2
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator.
Addition and Subtraction of Rational Expressions
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
=
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
* 12
5
4
= 12
the new numerator
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Example B.
a. Convert to a fraction with denominator 12.5
4
5
4
* 12
35
4
= 12
the new numerator
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
A
B
A
B * D.
In practice, we write that
A
B
=> A
B
* D D.
new numerator N
N
D
To add or subtract rational expressions with different
denominators, they have to be converted to expressions with
a common denominator. The easiest common denominator to
work with is their LCM.
Addition and Subtraction of Rational Expressions
Multiplier Method
Given the fraction , to convert it into denominator D as ,
the new numerator N =
Example B.
a. Convert to a fraction with denominator 12.
A
B
A
B * D.
5
4
5
4
* 12
3 15
12
In practice, we write that
A
B
=> A
B
* D D.
5
4
= 12 =
new numerator N
the new numerator
with the new denominator 12.
N
D
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
Addition and Subtraction of Rational Expressions
3x
4y
3x
4y
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2
the new numerator
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy23x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
new numerator
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
= (x + 1)(2x – 3) (4x2 – 9)
b. Convert into an expression with denominator 12xy2.
c. Convert into an expression denominator 4x2 – 9.
Addition and Subtraction of Rational Expressions
3x
4y
*12xy2
c. Convert into an expression denominator 4x2 – 9.
x + 1
2x + 3
x + 1
2x + 3
3x
4y
=
3x
4y
12xy2 =
9x2y
12xy2
3xy
=
x + 1
2x + 3
* (4x2 – 9) (4x2 – 9)
=
x + 1
2x + 3
* (2x + 3)(2x – 3) (4x2 – 9)
= (x + 1)(2x – 3) (4x2 – 9)
=
2x2 – x – 3
4x2 – 9
b. Convert into an expression with denominator 12xy2.
Addition and Subtraction of Rational Expressions
We give two methods of combining rational expressions below.
Addition and Subtraction of Rational Expressions
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The Multiplier Method (Adding/Subtracting Fractions)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72.
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate 7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
= (42 + 45 – 32) 72
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
Addition and Subtraction of Rational Expressions
Example C. Calculate
6 9 8
7
12
+
5
8
–
4
9
The LCD is 72. Multiply the problem by the LCD,
then put the result over the new LCD denominator.
(i.e. * LCD/LCD.)
7
12
+
5
8
–
4
9
( )* 72 72 Distribute the multiplication
= (42 + 45 – 32) 72
55
=
The Multiplier Method (Adding/Subtracting Fractions)
The Multiplier Method finds the answer by converting the
entire problem to a new denominator, the LCD of all the terms.
(i.e. * LCD/LCD to the problem.)
We give two methods of combining rational expressions below.
The first one is an extension of the above Multiplier Method,
the lengthier traditional method is given later.
72
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2)
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
= [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4)
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
Addition and Subtraction of Rational Expressions
Example D. Combine 3
4xy2
– 5x
6y
The LCD is 12 xy2.
Multiply then divide the problem by the LCD.
3
4xy2
– 5x
6y
( ) * 12xy2 / (12xy2) Distribute
3 2xy
9 – 10x2y
12xy2=
Example E. Combine 5
x– 2
– 3
x + 4
The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
= [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4)
5
x– 2
– 3
x + 4
( ) (x – 2)(x + 4) / (x – 2)(x + 4)
(x + 4) (x – 2)
2x + 26
(x – 2)(x + 4)
= 2(x + 13)
(x – 2)(x + 4)
or
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
= [x2 + 2x – x2 + x)] LCD
=
3x
x (x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Example F. Combine x
x2 – 2x
– x – 1
x2 – 4
Factor each denominator to find the LCD.
x2 – 2x = x(x – 2)
x2 – 4 = (x – 2)(x + 2)
Hence the LCD = x(x – 2)(x + 2).
* x( x – 2)(x + 2)
(x + 2) x
x
x(x – 2)
– (x – 1)
(x – 2)(x + 2)
[ ] LCD=
x
x2 – 2x
– x – 1
x2 – 4
= [x(x + 2) – x(x – 1)] LCD
= [x2 + 2x – x2 + x)] LCD
=
3x
x (x – 2)(x + 2)
=
3
(x – 2)(x + 2)
Addition and Subtraction of Rational Expressions
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
2
3xy
–
x
2y2
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
2
3xy
–
x
2y2 =
4y
6xy2 –
3x2
6xy2 =Hence
4y – 3x2
6xy2
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example G. Combine
The LCM of the denominators {3xy, 2y2} is 6xy2.
Convert
Addition and Subtraction of Rational Expressions
Traditional Method (Optional)
(Combining fractions with different denominators)
I. Find the LCD of the expressions.
II. Convert each expression into the LCD.
III. Add or subtract the new numerators.
IV. Simplify the result.
2
3xy
–
x
2y2
2
3xy = 6xy2
x
2y2 =
3x2
6xy2
2
3xy
–
x
2y2 =
4y
6xy2 –
3x2
6xy2 =Hence
4y – 3x2
6xy2
This is simplified because the numerator is not factorable.
4y
Traditionally, we add/subtract fractions by converting each
fraction separately. (The multiplier–method keeps all the
calculation in one place and shortens the process.)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 =
2x2 + x – 2 =
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 =
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
Example H. Combine
Example D. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) =
2x – 2
LCD LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
Factor each denominator to find the LCD.
4x – 2 = 2(2x – 1),
2x2 + x – 2 = (2x – 1)(x + 1)
Hence the LCD = 2(2x – 1)(x + 1)
Next, convert each fraction into the LCD
x
4x – 2 = x
2(2x – 1) * 2(2x – 1)(x + 1) LCD
= x(x + 1) =
x2 + x
LCD
LCD
x – 1
2x2 + x – 1
=
x – 1
(2x – 1)(x + 1)
* 2(2x – 1)(x + 1) LCD
= 2(x – 1) =
2x – 2
LCD LCD
Hence
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD
–
2x – 2
LCD
Example H. Combine
Addition and Subtraction of Rational Expressions
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
=
x2 + x – 2x + 2
LCD
Addition and Subtraction of Rational Expressions
=
x2 + x – (2x – 2)
LCD
x
4x – 2
–
x – 1
2x2 + x – 1
=
x2 + x
LCD –
2x – 2
LCD
=
x2 + x – 2x + 2
LCD
=
x2 – x + 2
2(2x – 1)(x + 1)
Self–Check:
Do it by the multiplier method to see which way you prefer.
x
2(2x – 1)
–
x – 1
( x + 1)(2x – 1)
[ ]* 2(2x – 1)(x + 1) / LCD
Ex. A. Combine and simplify the answers.
Addition and Subtraction of Rational Expressions
x
x – 2
– 2
x – 2
1.
2x
x – 2
+
4
x – 2
2.
3x
x + 3
+ 6
x + 3
3. – 2x
x – 4
+ 8
x – 4
4.
x + 2
2x – 1
–
2x – 1
5.
2x + 5
x – 2
–
4 – 3x
2 – x
6.
x2 – 2
x – 2
– x
x – 27.
9x2
3x – 2 –
4
3x – 28.
Ex. B. Combine and simplify the answers.
3
12
+ 5
6
– 2
3
9. 11
12
+
5
8
– 7
6
10. –5
6
+ 3
8
– 311.
12.
6
5xy2
– x
6y13.
3
4xy2
– 5x
6y
15. 7
12xy
– 5x
8y316.
5
4xy
– 7x
6y214.
3
4xy2
– 5y
12x217.
–5
6 –
7
12+ 2
+ 1 – 7x
9y2
4 – 3x
Ex. C. Combine and simplify the answers.
Addition and Subtraction of Rational Expressions
x
2x – 4
– 2
3x – 6
18.
2x
3x + 9
–
4
2x + 6
19.
–3
2x + 1
+ 2x
4x + 2
20. 2x – 3
x – 2
– 3x + 4
5 – 10x
21.
3x + 1
6x – 4
– 2x + 3
2 – 3x22.
–5x + 7
3x – 12+
4x – 3
–2x + 823.
x
x – 2
– 2
x – 3
24. 2x
3x + 1
+ 4
x – 6
25.
–3
2x + 1
+ 2x
3x + 2
26.
2x – 3
x – 2
+
3x + 4
x – 5
27.
3x + 1
+
x + 3
x2 – 428.
x2 – 4x + 4
x – 4
–
x + 5
x2 – x – 2
29.
x2 – 5x + 6
3x + 1
+
2x + 3
9 – x230.
x2 – x – 6
3x – 4
–
2x + 5
x2 + x – 6
31.
x2 + 5x + 6
3x + 4
+
2x – 3
–x2 – 2x + 3
32.
x2 – x
5x – 4
–
3x – 5
1 – x233.
x2 + 2x – 3

More Related Content

What's hot

Ch06 se
Ch06 seCh06 se
Ch06 separulian
Β 
Rational expressions and equations
Rational expressions and equationsRational expressions and equations
Rational expressions and equationsJessica Garcia
Β 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersLawrence De Vera
Β 
Rational expressions
Rational expressionsRational expressions
Rational expressionsLeslie Amoguis
Β 
2 7 variations
2 7 variations2 7 variations
2 7 variationsmath123b
Β 
Applications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansionsApplications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansionskanyuma jitjumnong
Β 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressionsHazel Joy Chong
Β 
Kyle Galli PowerPoint
Kyle Galli PowerPointKyle Galli PowerPoint
Kyle Galli PowerPointgalli1kj
Β 
Radicals
RadicalsRadicals
RadicalsMark Ryder
Β 
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicalsMIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicalsLawrence De Vera
Β 
boolean algebra(continued)
boolean algebra(continued)boolean algebra(continued)
boolean algebra(continued)kanyuma jitjumnong
Β 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1ahartcher
Β 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1ahartcher
Β 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1ahartcher
Β 
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : PolynomialsMIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : PolynomialsLawrence De Vera
Β 
Quant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, LogarithmsQuant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, LogarithmsCPT Success
Β 
Solving rational inequalities
Solving rational inequalitiesSolving rational inequalities
Solving rational inequalitiesrey castro
Β 
Kahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing PangKahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing PangRyan Lok-Wing Pang
Β 

What's hot (20)

Ch06 se
Ch06 seCh06 se
Ch06 se
Β 
Rational expressions and equations
Rational expressions and equationsRational expressions and equations
Rational expressions and equations
Β 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
Β 
Rational expressions
Rational expressionsRational expressions
Rational expressions
Β 
2 7 variations
2 7 variations2 7 variations
2 7 variations
Β 
Applications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansionsApplications of boolean algebra minterm and maxterm expansions
Applications of boolean algebra minterm and maxterm expansions
Β 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressions
Β 
Kyle Galli PowerPoint
Kyle Galli PowerPointKyle Galli PowerPoint
Kyle Galli PowerPoint
Β 
Radicals
RadicalsRadicals
Radicals
Β 
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicalsMIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
Β 
boolean algebra(continued)
boolean algebra(continued)boolean algebra(continued)
boolean algebra(continued)
Β 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
Β 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
Β 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
Β 
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : PolynomialsMIT Math Syllabus 10-3 Lesson 2 : Polynomials
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
Β 
Quant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, LogarithmsQuant01. Ratio & Proportion, Indices, Logarithms
Quant01. Ratio & Proportion, Indices, Logarithms
Β 
Solving rational inequalities
Solving rational inequalitiesSolving rational inequalities
Solving rational inequalities
Β 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
Β 
Kahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing PangKahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Kahler Differential and Application to Ramification - Ryan Lok-Wing Pang
Β 
Lar calc10 ch04_sec1
Lar calc10 ch04_sec1Lar calc10 ch04_sec1
Lar calc10 ch04_sec1
Β 

Similar to 5 addition and subtraction i x

variables_expressions
variables_expressionsvariables_expressions
variables_expressionsOrlando Calderon
Β 
1.3 variables and expressions 1
1.3 variables and expressions 11.3 variables and expressions 1
1.3 variables and expressions 1bweldon
Β 
303B Section 09.1
303B Section 09.1303B Section 09.1
303B Section 09.1goldenratio618
Β 
Operations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptxOperations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptxDynaAlonsagayLabinda
Β 
Bmb12e ppt 1_1
Bmb12e ppt 1_1Bmb12e ppt 1_1
Bmb12e ppt 1_1John Hani
Β 
Online Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic ExpressionsOnline Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic Expressionsapayne12
Β 
Chapter3.2
Chapter3.2Chapter3.2
Chapter3.2nglaze10
Β 
4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptxPrinCess534001
Β 
Rational expressions and rational equations
Rational expressions and rational equationsRational expressions and rational equations
Rational expressions and rational equationsarvin efriani
Β 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplicationitutor
Β 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressionssmiller5
Β 
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptxAALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptxMilesUbaldo
Β 
Lesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational NumbersLesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational Numbershamlet1988
Β 
CollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxCollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxKarenGardose
Β 
Algebra 2 Section 1-1
Algebra 2 Section 1-1Algebra 2 Section 1-1
Algebra 2 Section 1-1Jimbo Lamb
Β 
1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponentssmiller5
Β 
Simplifying algebraic expressions
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressionsMalini Sharma
Β 
Math for 800 08 algebra
Math for 800   08 algebraMath for 800   08 algebra
Math for 800 08 algebraEdwin Lapuerta
Β 

Similar to 5 addition and subtraction i x (20)

variables_expressions
variables_expressionsvariables_expressions
variables_expressions
Β 
1.3 variables and expressions 1
1.3 variables and expressions 11.3 variables and expressions 1
1.3 variables and expressions 1
Β 
303B Section 09.1
303B Section 09.1303B Section 09.1
303B Section 09.1
Β 
Operations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptxOperations on Integers [Autosaved].pptx
Operations on Integers [Autosaved].pptx
Β 
Bmb12e ppt 1_1
Bmb12e ppt 1_1Bmb12e ppt 1_1
Bmb12e ppt 1_1
Β 
Online Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic ExpressionsOnline Lecture Chapter R Algebraic Expressions
Online Lecture Chapter R Algebraic Expressions
Β 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
Β 
Chapter3.2
Chapter3.2Chapter3.2
Chapter3.2
Β 
4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx4_Rational_Equations_and_Inequalities.pptx
4_Rational_Equations_and_Inequalities.pptx
Β 
Rational expressions and rational equations
Rational expressions and rational equationsRational expressions and rational equations
Rational expressions and rational equations
Β 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplication
Β 
0.7 Radical Expressions
0.7 Radical Expressions0.7 Radical Expressions
0.7 Radical Expressions
Β 
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptxAALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
AALGTRIG-W4-Radical Expressions and Rational Exponents.pptx
Β 
Lesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational NumbersLesson 2 3 Multiplying Rational Numbers
Lesson 2 3 Multiplying Rational Numbers
Β 
CollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxCollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptx
Β 
Hprec2 5
Hprec2 5Hprec2 5
Hprec2 5
Β 
Algebra 2 Section 1-1
Algebra 2 Section 1-1Algebra 2 Section 1-1
Algebra 2 Section 1-1
Β 
1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents1.3 Radicals and Rational Exponents
1.3 Radicals and Rational Exponents
Β 
Simplifying algebraic expressions
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
Β 
Math for 800 08 algebra
Math for 800   08 algebraMath for 800   08 algebra
Math for 800 08 algebra
Β 

More from Tzenma

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient xTzenma
Β 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functionsTzenma
Β 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circlesTzenma
Β 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions xTzenma
Β 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions xTzenma
Β 
1 functions
1 functions1 functions
1 functionsTzenma
Β 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-xTzenma
Β 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-xTzenma
Β 
7 proportions x
7 proportions x7 proportions x
7 proportions xTzenma
Β 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions xTzenma
Β 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii xTzenma
Β 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators xTzenma
Β 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions xTzenma
Β 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation xTzenma
Β 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions xTzenma
Β 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y xTzenma
Β 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii xTzenma
Β 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i xTzenma
Β 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines xTzenma
Β 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes xTzenma
Β 

More from Tzenma (20)

6 slopes and difference quotient x
6 slopes and difference quotient x6 slopes and difference quotient x
6 slopes and difference quotient x
Β 
5 algebra of functions
5 algebra of functions5 algebra of functions
5 algebra of functions
Β 
4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles4 graphs of equations conic sections-circles
4 graphs of equations conic sections-circles
Β 
3 graphs of second degree functions x
3 graphs of second degree functions x3 graphs of second degree functions x
3 graphs of second degree functions x
Β 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
Β 
1 functions
1 functions1 functions
1 functions
Β 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Β 
9 rational equations word problems-x
9 rational equations word problems-x9 rational equations word problems-x
9 rational equations word problems-x
Β 
7 proportions x
7 proportions x7 proportions x
7 proportions x
Β 
10 complex fractions x
10 complex fractions x10 complex fractions x
10 complex fractions x
Β 
6 addition and subtraction ii x
6 addition and subtraction ii x6 addition and subtraction ii x
6 addition and subtraction ii x
Β 
4 the lcm and clearing denominators x
4 the lcm and clearing denominators x4 the lcm and clearing denominators x
4 the lcm and clearing denominators x
Β 
3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x3 multiplication and division of rational expressions x
3 multiplication and division of rational expressions x
Β 
2 cancellation x
2 cancellation x2 cancellation x
2 cancellation x
Β 
1 rational expressions x
1 rational expressions x1 rational expressions x
1 rational expressions x
Β 
8 linear word problems in x&y x
8 linear word problems in x&y x8 linear word problems in x&y x
8 linear word problems in x&y x
Β 
7 system of linear equations ii x
7 system of linear equations ii x7 system of linear equations ii x
7 system of linear equations ii x
Β 
6 system of linear equations i x
6 system of linear equations i x6 system of linear equations i x
6 system of linear equations i x
Β 
5 equations of lines x
5 equations of lines x5 equations of lines x
5 equations of lines x
Β 
4 more on slopes x
4 more on slopes x4 more on slopes x
4 more on slopes x
Β 

Recently uploaded

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Β 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
Β 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
Β 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
Β 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
Β 

Recently uploaded (20)

How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Β 
Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
Β 
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
Β 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Β 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
Β 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
Β 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
Β 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
Β 

5 addition and subtraction i x

  • 1. Addition and Subtraction of Rational Expressions
  • 2. Addition and Subtraction of Rational Expressions Only fractions with the same denominator may be added or subtracted directly. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 3. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 4. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 5. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 b. 3x 2x – 3 – 6 – x 2x – 3 =
  • 6. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 b. 3x 2x – 3 – 6 – x 2x – 3 = Write the result in the factored form, cancel the common factor and give the simplified answer.
  • 7. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = Write the result in the factored form, cancel the common factor and give the simplified answer.
  • 8. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3
  • 9. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3
  • 10. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3
  • 11. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3 = 2(2x – 3) 2x – 3
  • 12. Addition and Subtraction of Rational Expressions Addition and Subtraction Rule (for rational expressions with the same denominator) Only fractions with the same denominator may be added or subtracted directly. A B D D Β± = AΒ±B D Write the result in the factored form, cancel the common factor and give the simplified answer. Example A. Add and subtract and simplify the answer. a. 5 7 8 8 + = 5 + 7 8 = 12 8 = 3 2 3 2 b. 3x 2x – 3 – 6 – x 2x – 3 = 3x – (6 – x) 2x – 3 = 3x – 6 + x 2x – 3 = 4x – 6 2x – 3 = 2(2x – 3) 2x – 3 = 2
  • 13. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. Addition and Subtraction of Rational Expressions
  • 14. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions
  • 15. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. N D
  • 16. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 17. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 18. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 = Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 19. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 * 12 5 4 = 12 the new numerator Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 20. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Example B. a. Convert to a fraction with denominator 12.5 4 5 4 * 12 35 4 = 12 the new numerator Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = A B A B * D. In practice, we write that A B => A B * D D. new numerator N N D
  • 21. To add or subtract rational expressions with different denominators, they have to be converted to expressions with a common denominator. The easiest common denominator to work with is their LCM. Addition and Subtraction of Rational Expressions Multiplier Method Given the fraction , to convert it into denominator D as , the new numerator N = Example B. a. Convert to a fraction with denominator 12. A B A B * D. 5 4 5 4 * 12 3 15 12 In practice, we write that A B => A B * D D. 5 4 = 12 = new numerator N the new numerator with the new denominator 12. N D
  • 22. b. Convert into an expression with denominator 12xy2. Addition and Subtraction of Rational Expressions 3x 4y
  • 23. Addition and Subtraction of Rational Expressions 3x 4y 3x 4y b. Convert into an expression with denominator 12xy2.
  • 24. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 the new numerator b. Convert into an expression with denominator 12xy2.
  • 25. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 3xy b. Convert into an expression with denominator 12xy2.
  • 26. Addition and Subtraction of Rational Expressions 3x 4y *12xy23x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy b. Convert into an expression with denominator 12xy2.
  • 27. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 28. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) new numerator b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 29. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 30. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 31. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) = (x + 1)(2x – 3) (4x2 – 9) b. Convert into an expression with denominator 12xy2. c. Convert into an expression denominator 4x2 – 9.
  • 32. Addition and Subtraction of Rational Expressions 3x 4y *12xy2 c. Convert into an expression denominator 4x2 – 9. x + 1 2x + 3 x + 1 2x + 3 3x 4y = 3x 4y 12xy2 = 9x2y 12xy2 3xy = x + 1 2x + 3 * (4x2 – 9) (4x2 – 9) = x + 1 2x + 3 * (2x + 3)(2x – 3) (4x2 – 9) = (x + 1)(2x – 3) (4x2 – 9) = 2x2 – x – 3 4x2 – 9 b. Convert into an expression with denominator 12xy2.
  • 33. Addition and Subtraction of Rational Expressions We give two methods of combining rational expressions below.
  • 34. Addition and Subtraction of Rational Expressions We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 35. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The Multiplier Method (Adding/Subtracting Fractions) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 36. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 37. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 38. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( ) The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 39. Addition and Subtraction of Rational Expressions Example C. Calculate 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 40. Addition and Subtraction of Rational Expressions Example C. Calculate 6 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 41. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 42. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication = (42 + 45 – 32) 72 The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later.
  • 43. Addition and Subtraction of Rational Expressions Example C. Calculate 6 9 8 7 12 + 5 8 – 4 9 The LCD is 72. Multiply the problem by the LCD, then put the result over the new LCD denominator. (i.e. * LCD/LCD.) 7 12 + 5 8 – 4 9 ( )* 72 72 Distribute the multiplication = (42 + 45 – 32) 72 55 = The Multiplier Method (Adding/Subtracting Fractions) The Multiplier Method finds the answer by converting the entire problem to a new denominator, the LCD of all the terms. (i.e. * LCD/LCD to the problem.) We give two methods of combining rational expressions below. The first one is an extension of the above Multiplier Method, the lengthier traditional method is given later. 72
  • 44. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y Example E. Combine 5 x– 2 – 3 x + 4
  • 45. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Example E. Combine 5 x– 2 – 3 x + 4
  • 46. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Example E. Combine 5 x– 2 – 3 x + 4
  • 47. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 Example E. Combine 5 x– 2 – 3 x + 4
  • 48. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy Example E. Combine 5 x– 2 – 3 x + 4
  • 49. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4
  • 50. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD:
  • 51. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4)
  • 52. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2)
  • 53. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: = [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4) 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2)
  • 54. Addition and Subtraction of Rational Expressions Example D. Combine 3 4xy2 – 5x 6y The LCD is 12 xy2. Multiply then divide the problem by the LCD. 3 4xy2 – 5x 6y ( ) * 12xy2 / (12xy2) Distribute 3 2xy 9 – 10x2y 12xy2= Example E. Combine 5 x– 2 – 3 x + 4 The LCD is (x – 2)(x + 4), multiplying the problem by LCD/LCD: = [5(x + 4) – 3(x – 2)] / (x – 2)(x + 4) 5 x– 2 – 3 x + 4 ( ) (x – 2)(x + 4) / (x – 2)(x + 4) (x + 4) (x – 2) 2x + 26 (x – 2)(x + 4) = 2(x + 13) (x – 2)(x + 4) or
  • 55. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4
  • 56. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD.
  • 57. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2)
  • 58. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2)
  • 59. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2).
  • 60. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2)x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4
  • 61. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4
  • 62. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD
  • 63. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD = [x2 + 2x – x2 + x)] LCD = 3x x (x – 2)(x + 2)
  • 64. Addition and Subtraction of Rational Expressions Example F. Combine x x2 – 2x – x – 1 x2 – 4 Factor each denominator to find the LCD. x2 – 2x = x(x – 2) x2 – 4 = (x – 2)(x + 2) Hence the LCD = x(x – 2)(x + 2). * x( x – 2)(x + 2) (x + 2) x x x(x – 2) – (x – 1) (x – 2)(x + 2) [ ] LCD= x x2 – 2x – x – 1 x2 – 4 = [x(x + 2) – x(x – 1)] LCD = [x2 + 2x – x2 + x)] LCD = 3x x (x – 2)(x + 2) = 3 (x – 2)(x + 2)
  • 65. Addition and Subtraction of Rational Expressions Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 66. Example G. Combine Addition and Subtraction of Rational Expressions Traditional Method (Optional) 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 67. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 68. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. 2 3xy – x 2y2 Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 69. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 70. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 71. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 2 3xy – x 2y2 = 4y 6xy2 – 3x2 6xy2 =Hence 4y – 3x2 6xy2 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 72. Example G. Combine The LCM of the denominators {3xy, 2y2} is 6xy2. Convert Addition and Subtraction of Rational Expressions Traditional Method (Optional) (Combining fractions with different denominators) I. Find the LCD of the expressions. II. Convert each expression into the LCD. III. Add or subtract the new numerators. IV. Simplify the result. 2 3xy – x 2y2 2 3xy = 6xy2 x 2y2 = 3x2 6xy2 2 3xy – x 2y2 = 4y 6xy2 – 3x2 6xy2 =Hence 4y – 3x2 6xy2 This is simplified because the numerator is not factorable. 4y Traditionally, we add/subtract fractions by converting each fraction separately. (The multiplier–method keeps all the calculation in one place and shortens the process.)
  • 73. Example H. Combine Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1
  • 74. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2x2 + x – 2 = Example H. Combine
  • 75. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = Example H. Combine
  • 76. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Example H. Combine
  • 77. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Example H. Combine
  • 78. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD Example H. Combine
  • 79. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) Example H. Combine
  • 80. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 81. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 82. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) LCD Example H. Combine
  • 83. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD Example H. Combine
  • 84. Example D. Combine Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) Example H. Combine
  • 85. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 86. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD Example H. Combine
  • 87. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) LCD Example H. Combine
  • 88. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) = 2x – 2 LCD LCD Example H. Combine
  • 89. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 Factor each denominator to find the LCD. 4x – 2 = 2(2x – 1), 2x2 + x – 2 = (2x – 1)(x + 1) Hence the LCD = 2(2x – 1)(x + 1) Next, convert each fraction into the LCD x 4x – 2 = x 2(2x – 1) * 2(2x – 1)(x + 1) LCD = x(x + 1) = x2 + x LCD LCD x – 1 2x2 + x – 1 = x – 1 (2x – 1)(x + 1) * 2(2x – 1)(x + 1) LCD = 2(x – 1) = 2x – 2 LCD LCD Hence x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD Example H. Combine
  • 90. Addition and Subtraction of Rational Expressions x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD
  • 91. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD
  • 92. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD = x2 + x – 2x + 2 LCD
  • 93. Addition and Subtraction of Rational Expressions = x2 + x – (2x – 2) LCD x 4x – 2 – x – 1 2x2 + x – 1 = x2 + x LCD – 2x – 2 LCD = x2 + x – 2x + 2 LCD = x2 – x + 2 2(2x – 1)(x + 1) Self–Check: Do it by the multiplier method to see which way you prefer. x 2(2x – 1) – x – 1 ( x + 1)(2x – 1) [ ]* 2(2x – 1)(x + 1) / LCD
  • 94. Ex. A. Combine and simplify the answers. Addition and Subtraction of Rational Expressions x x – 2 – 2 x – 2 1. 2x x – 2 + 4 x – 2 2. 3x x + 3 + 6 x + 3 3. – 2x x – 4 + 8 x – 4 4. x + 2 2x – 1 – 2x – 1 5. 2x + 5 x – 2 – 4 – 3x 2 – x 6. x2 – 2 x – 2 – x x – 27. 9x2 3x – 2 – 4 3x – 28. Ex. B. Combine and simplify the answers. 3 12 + 5 6 – 2 3 9. 11 12 + 5 8 – 7 6 10. –5 6 + 3 8 – 311. 12. 6 5xy2 – x 6y13. 3 4xy2 – 5x 6y 15. 7 12xy – 5x 8y316. 5 4xy – 7x 6y214. 3 4xy2 – 5y 12x217. –5 6 – 7 12+ 2 + 1 – 7x 9y2 4 – 3x
  • 95. Ex. C. Combine and simplify the answers. Addition and Subtraction of Rational Expressions x 2x – 4 – 2 3x – 6 18. 2x 3x + 9 – 4 2x + 6 19. –3 2x + 1 + 2x 4x + 2 20. 2x – 3 x – 2 – 3x + 4 5 – 10x 21. 3x + 1 6x – 4 – 2x + 3 2 – 3x22. –5x + 7 3x – 12+ 4x – 3 –2x + 823. x x – 2 – 2 x – 3 24. 2x 3x + 1 + 4 x – 6 25. –3 2x + 1 + 2x 3x + 2 26. 2x – 3 x – 2 + 3x + 4 x – 5 27. 3x + 1 + x + 3 x2 – 428. x2 – 4x + 4 x – 4 – x + 5 x2 – x – 2 29. x2 – 5x + 6 3x + 1 + 2x + 3 9 – x230. x2 – x – 6 3x – 4 – 2x + 5 x2 + x – 6 31. x2 + 5x + 6 3x + 4 + 2x – 3 –x2 – 2x + 3 32. x2 – x 5x – 4 – 3x – 5 1 – x233. x2 + 2x – 3