SlideShare a Scribd company logo
1 of 11
Download to read offline
TELKOMNIKA Telecommunication Computing Electronics and Control
Vol. 20, No. 4, August 2022, pp. 922~932
ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i4.23248  922
Journal homepage: http://telkomnika.uad.ac.id
Simulation model of ANN and PID controller for direct current
servo motor by using Matlab/Simulink
Hashmia S. Dakheel1
, Zainab B. Abdullah1
, Najat Shyaa Jasim1
, Salam Waley Shneen2
1
Department of Electro-mechanical Engineering, University of Technology -Iraq, Baghdad
2
Nanotechnology and Advanced Material Center, University of Technology -Iraq, Baghdad
Article Info ABSTRACT
Article history:
Received Feb 01, 2022
Revised Jun 15, 2022
Accepted Jun 23, 2022
In the current era, researchers have been active in confirming and achieving
their work through simulation using the computer program Matlab,
in addition to the comparison between different control methods is also one
of the prevailing behaviors, and the focus has been on the use of electrical
machines in industry through multiple applications. Researchers in this study
selected type of electric motors and two types of control systems for
comparison, and to verify the possibility of improving the system’s work
performance through the simulation results, the process of achieving the
objectives of the current research is carried out. This paper presents using
conventional proportional-integral-derivative (PID) controller and artificial
neural networks (ANN) with direct current servo motor (DCSM) in order to
obtain good performance characteristics because of efficient and widely use
of this motor in the fields of control. The motor model in addition to the
controller is built using Matlab simulation software. A comparison was
made between these controllers (PID and ANN), where the simulation
results indicate that the neural networks being developmental in the process
of simulating the operation of the servo motor type and got good
performance and better results from the traditional real-time console use
case.
Keywords:
Artificial neural networks
DCSM
Performance characteristics
PID controller
This is an open access article under the CC BY-SA license.
Corresponding Author:
Salam Waley Shneen
Nanotechnology and Advanced Material Center, University of Technology
Baghdad, Iraq
Email: salam.w.shneen@uotechnology.edu.iq
1. INTRODUCTION
In industries, there are many kinds of direct current (DC) servo motors using because of it has very
small rotor inertia that led to very high torque/inertia because of much small time constants and relatively small
power ratings therefore DC servo motors are used in computer-related equipment such as tape drives, printers,
disk drives, and word processors [1], that require speed control accuracy and accurate positioning. In servo
motors, the position and speed of the motor are controlled by signals sent from the feedback controller [2].
In recent years, proportional-integral-derivative (PID) controllers have been used in industrial processes because
it achieve minimize error by modifying process control input [3], one of the advantages of the PID controller is
the quality of its performance as a basic continuous feedback controller [4]. Alzarok and Musbah [2] refer to
optimization strategy for speed control DC servo motor (DCSM) by tuning parameters of PID tuning using
genetic algorithm (GA). In Mezher [5] include using laboratory virtual instrumentation engineering
workbench (LabVIEW) program and PID controller to speed control of the DCSM by using a three basic
processes: Proportional, integrative and derivative. In [6] this study proposed a robust control unit against
load disturbance as a control scheme for a servo motor and used numerical simulation to verify the
TELKOMNIKA Telecommun Comput El Control 
Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel)
923
effectiveness of the scheme. In [7] optimum engine starting performance is obtained and an induction-type
motor is optimized using artificial intelligence (AI), which reduces current, torque and flow. Abdullah et al. [8]
is a comparison between two conventional and expert PID controllers and an artificial neural network for a
three-phase induction motor. To determine the best value of the external resistance that can be added to the
armature circuit in the motor to increase the starting torque and reduce the starting current. Artificial neural
network (ANN) is used to solve problems in a different way than traditional computer techniques. A network
consists of neurons that are a group of elements that process in parallel to solve a specific problem. ANN has
good non-linear learning ability and is a kind of continuous time dynamic system [9]. The traditional PID
control system is usually used with DC motor [10]-[13]. The conventional PID control system is easy and
simple [14]-[16], but the non-linear system differs in its performance, so it is not as efficient or has lower
efficiency than its use with linear systems. Other methods called expert have also appeared, including the
neural network, which has had success in giving performance efficiency with the nonlinear system [17]-[19].
This research included the implementation of a continuous servo motor model using Matlab/Simulink and the
use of both traditional and expert PID controllers represented by ANN in order to simulate and improve the
operating characteristics of the electric motor.
2. MATHEMATICAL MODEL OF DC SERVO MOTOR
Electric motors play an important role, including servo motors, in many industrial applications such as
their use in robotics [20]. In addition to being very suitable for wide range of adjustable speed drives and speed
control [21]. Figure 1 and Figure 2 illustrated each of modeling and a block diagram that represented dynamic
behavior of DCSM respectively, [21], [4] whereas the (1) describes transfer function of motor [22], [23].
Figure 1. Model representation of DCSM
Figure 2. Dynamic behavior of DCSM
𝐺(𝑠) =
𝜃(𝑠)
𝑉𝑎 (𝑠)
=
𝐾𝑡
𝑠(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑚𝑠+𝐵𝑚)+𝐾𝑡𝐾𝑏𝑠
(1)
Where: 𝐽𝑚 = moment of inertia; 𝐵𝑚 = viscous friction coefficient; Ɵ = angular displacement of the
motor shaft; 𝑅𝑎 = armature resistance; 𝐿𝑎 = armature inductance; 𝐾𝑡 = torque constant; 𝐸𝑏 = back emf
constant; 𝐸𝑎 = Electromotive voltage. In Table 1 shows the parameters of DCSM which is depended in this
paper.
Table 1. Parameters of DCSM
Parameter values
Electric resistance (Ra) 1 ohm
Electric inductance (La) 0.5 mH
Torque constant (Ka)
Back emf constant (Kb)
Moment of inertia (Jm)
Friction coefficient (Bm)
0.01 Nm/A
0.01 V/rad s-1
0.01 Kg.m2
0.1 N.ms
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932
924
3. DCSM AND CONTROLLERS
The current research presents a study to develop the operation and performance characteristics of DCSM
by using traditional controller (PID) and the intelligent controller (ANN). PID controller, in industrial control
system. This controller includes three gains: 1) proportional (Kp), 2) derivative (Kd), and 3) integral (Ki) [24].
The objectfor tuning the PID gains is to obtain zero steady state error which refers to low values for each
rising, settling and overshoot time, traditional PID block diagram is shown in Figure 3. In generally PID
controller can be represented in (2) [25], [26].
Figure 3. PID block diagram
𝑅𝑖 (𝑇) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)
𝑑𝑡
𝑡
0
(2)
Where 𝑅𝑖 is the input of the plant 𝐺(𝑠). PID controller, it has three parameters gains (𝐾𝑝 , 𝐾𝑖 ,and
𝐾𝑑) and the error is (𝑒𝑖). In Figure 4 shows the simulink model with PID controller [27]. In Figure 5 of the
structure of PID controller [28], [29].
ANN, it is very effective with the learning pattern based on the train of data, and to imitate and
function to introduce ANN the input and output function is trained, ANN used in identifying and control each
non-linear and linear system, it is the principle feature to allow knowledge of any complex assignment to
output mapping. ANN makes the construction of the sensor data causes it to react to different data, because
its strong against noise compared to with conventional control and using data. Since it has so many inputs
and outputs, it is adequately for multi-input and multi-output systems, and it can improve the control through
learning. Figure 6 and Figure 7 show a model representing neurons signaling to construct and represent the
structure of neurons.
Figure 4. Simulink model with PID controller
Figure 5. Simulink model of structure PID controller
TELKOMNIKA Telecommun Comput El Control 
Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel)
925
Figure 6. Building and representing neural networks
Figure 7. Model of construct and structure of neural network
4. SIMULINK MODELS
In this section, there are three simulation model. First the simulation model of servo motor without
controller that show in Figure 8. Second the simulation model of DC servo motor with PID controller that
show in Figure 9. Finally the simulation model of servo motor with ANN that show in Figure 10. In Figure 11
the construction of ANN, in Figure 11(a) custom neural and Figure 11(b) layer content. In Figure 12 shows a
flowchart illustrating the steps.
Figure 8. DC Servo motor without controller
Figure 9. DC Servo motor with PID controller
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932
926
Figure 10. Simulink model of DC servo motor with ANN
(a) (b)
Figure 11. The construction of ANN: (a) custom neural and (b) layer content
Figure 12. Flowchart illustrating the steps
TELKOMNIKA Telecommun Comput El Control 
Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel)
927
5. SIMULATION RESULTS
In this section, the simulation is carried out in several steps, the first of which is to test the motor
model and show the simulation results for the characteristics of the motor and include the DCSM
characteristics which are error, torque, theta, velocity, and angular acceleration, respectively, which are
shown in Figure 13. Second, the simulation is to compare the use and non-use of control units. That is,
adding control and testing tools and testing the difference in performance, and there are three test auras in the
simulation results. First the simulation result of a servo motor without control. Second, servo motor
simulation result with PID controller. Finally the result of servo motor simulation with ANN. The Figure 13
shows the simulation results to determine the torque characteristics of the motor using traditional and expert
control techniques, which can indicate the best performance. Other fragments can be observed showing
simulation results for both angular acceleration and velocity, illustrating the difference in performance
between the methods used in the simulation.
Figure 13. Characteristics of DC DCSM
First case without controller and second case with PID controller. Using PID controller led to
improve performance of DCSM. The parameters of PID are represented in Table 2. PID controller is tuned to
obtain better value of performance characteristics of DCSM. Also reduce value for each rise time and over
shoot that show in Table 3. Therefore, the characteristics of DCSM is develop by using PID controller from
the first case without controller.
Table 2. Control parameters
Control parameter Values
𝑃 35.2755
𝐼 4.4005
𝐷 19.45
𝑁 405.4947
Table 3. Performance and robustness
Performance and robustness Values
Rise time 0.411 sec
Settling time 6.1 sec
Overshoot 2.93%
Peak 1.03
Closed-loop stability Stable
The torque characteristic of DCSM by using each of PID controller and ANN as show in Figure 14,
we can see the comparative of these value for torque in Table 4 that refers to the best value can be obtained
by using ANN. The velocity characteristic of DCSM by using each of PID controller and ANN as show in
Figure 15, we can see the comparative of these value for torque in Table 5 that refers to the best value can be
obtained by using ANN. also we can be shown these values of velocity develop by using controllers specially
ANN which reaches to unity smoothly and overshoot equal to zero. The angular acceleration of DCSM by
using each of PID controller and ANN as show in Figure 16, we can see the comparative of these value for
torque in Table 6 that refers to the best value can be obtained by using ANN. The theta of DCSM by using
each of PID controller and ANN as show in Figure 17, we can see the comparative of these value for torque
in Table 7 that refers to the best value can be obtained by using ANN.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932
928
Figure 14. Torque characteristic of DCSM
Figure 15. Velocity characteristic of DCSM
Figure 16. Angular acceleration of DCSM
Figure 17. Theta of DCSM
TELKOMNIKA Telecommun Comput El Control 
Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel)
929
Table 4. Torque characteristic
Time PID ANN
0 0 0
1 0.14 0.536
2 0.1 0.61
3 0.1 0.61
4 0.1 0.62
Table 5. Velocity characteristics
Time PID ANN
0.5 0.852 0.60
0.75 1.122 0.788
1 0.08 0.82
2 1 0.99
3 1 0.1
4 1 1
Table 6. Angular acceleration
Time PID ANN
0.25 8 1.25
0.5 7.5 2.35
1 2.5 0.09
2 0 0
3 0 0
Table 7. Theta of DCSM
Time PID ANN
1 4 6
2 9 10
3 18 17
4 30 20
5 50 28
Data of artificial neural network, the neural network training in this paper can be shown in Figure 18
to Figure 21. In Figure 18 shown the neural network training. In Figure 19 the neural network training
performance. That show the best training performance with mean squared error (MSE). In Figure 20 show
the neural network training state. In Figure 21 show the neural network regression data.
Figure 18. Neural network training
Figure 19. Neural network training performance
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932
930
Figure 20. Neural network training state
Figure 21. Neural network regression data
6. CONCLUSION
Due to the importance of the servo motor in the fields of industrial control, the current paper dealt
with use of Matlab Simulink environment in order to develop and improve the characteristics of operation
and performance of this motor through conventional controller (PID) and artificial neural network, as well as
a comparison study has been done between these two controllers. The simulation results show the difference
in performance between the operating condition without a control unit and the presence of two types of
control units, including the traditional systems represented by the PID control unit and the expert systems.
The improvement of performance using traditional systems showed that in the absence of a control unit and
improvement of performance using expert systems, the simulation was by testing the characteristics of the
motor for both torque, angular acceleration and rotational speed, and observing the response speed and the
time required to obtain the steady state, the amount of overshoot, which was included in the simulation
results in figures and tables. In the field of control, researchers have found that using a neural network is
better than using traditional control devices, as it gives better results with high accuracy.
TELKOMNIKA Telecommun Comput El Control 
Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel)
931
REFERENCES
[1] N. Khongkoom, A. Kanchanathep, S. Nopnakeepong, S. Tanuthong, S. Tunyasirut, and R. Kagawa, “Control of the position DC
servo motor by fuzzy logic,” 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.
00CH37119), 2000, pp. 354-357 vol.3, doi: 10.1109/TENCON.2000.892288.
[2] H. Alzarok and A. H. Musbah, “Tuning of a Speed Control System for DC Servo Motor Using Genetic Algorithm,” The
International Journal of Engineering and Information Technology (IJEIT), vol. 6, no. 2, pp. 141-150, 2020. [Online]. Available:
https://www.researchgate.net/publication/341435059_Tuning_of_a_Speed_Control_System_for_DC_Servo_Motor_Using_Genet
ic_Algorithm
[3] N. V. Quynh and P. V. Toan, “Co-simulation of self-adjusting fuzzy PI controller for the robot with two-axes
system,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 18, no. 6, pp. 3346-3356, 2020. [Online].
Available: http://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/17277/9342
[4] A. M. Alsayed, E. K. Elsayed, “Optimize Position Control of DC Servo Motor using PID Controller Tuning with Krill Herd
algorithm,” International Journal of Engineering and Information Systems (IJEAIS), vol. 4, no. 12, pp. 141-147, 2020. [Online].
Available: http://ijeais.org/wp-content/uploads/2020/12/IJEAIS201229.pdf
[5] L. S. Mezher, “Speed control for servo DC motor with different tuning PID controller with labview,” Journal of Mechanical
Engineering Research and Developments, vol. 44, no. 1, pp. 294-303, 2021. [Online]. Available: https://www.researchgate.net/
publication/346564242_Speed_Control_for_Servo_DC_Motor_with_Different_Tuning_PID_Controller_with_LABVIEW
[6] E. H. Abdelhameed, T. H. Mohamed, M. M. Hamed, and G. Elsady, “Design of Hybrid Fuzzy and Position-Velocity Controller
for Precise Positioning of a Servo System,” International Journal of Applied Energy Systems, vol. 2, no.2, pp. 111-115, 2020,
doi: 10.21608/ijaes.2020.169928.
[7] M. Magdy, S. A. -Zaid, and M. A. Elwany, “Artificial intelligent techniques based on direct torque control of induction
machines,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 4, pp. 2070-2082, 2020,
doi: 10.11591/ijpeds.v12.i4.pp2070-2082.
[8] F. N. Abdullah, G. A. Aziz, and S. W. Shneen. “Simulation Model of Servo Motor by Using Matlab,” Journal of Robotics and
Control (JRC), vol. 3, no. 2, pp. 176-179, 2022, doi: 10.18196/jrc.v3i2.13959.
[9] M. A. H. Azman, J. M. Aris, Z. Hussain, A. A. A. Samat, and A. M. Nazelan, “A comparative study of fuzzy logic controller and
artificial neural network in speed control of separately excited DC motor,” 2017 7th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE), 2017, pp. 336-341, doi: 10.1109/ICCSCE.2017.8284430.
[10] S. W. Shneen, M. Q. Sulttan, and M. H. Jaber, “Variable speed control for 2Ph-HSM in RGS: a comparative simulation
study,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp. 2285-2295, 2020,
doi: 10.11591/ijece.v10i3.pp2285-2295.
[11] Aseem K. and S. Kumar S., “Closed loop control of DC-DC converters using PID and FOPID controllers,” International Journal
of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 3, pp. 1323-1332, 2020, doi: 10.11591/ijpeds.v11.i3.pp1323-1332.
[12] Z. Q. Zhu, A. L. Shuraiji, and Q. F. Lu, “Comparative study of tubular partitioned stator permanent magnet machines,” 2015
Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2015, pp. 1-7,
doi: 10.1109/EVER.2015.7112953.
[13] M. Dasari, A. S. Reddy, and M. V. Kumar, “GA-ANFIS PID compensated model reference adaptive control for BLDC
motor,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 1, pp. 265-276, 2019,
doi: 10.11591/ijpeds.v10.i1.pp265-276.
[14] S. W. Shneen, H. Sh Dakheel, and Z. B. Abdulla, “Design and implementation of variable and constant load for induction
motor,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 2, pp. 762-773, 2020,
doi: 10.11591/ijpeds.v11.i2.pp762-773.
[15] H. Maghfiroh, M. Nizam, and S. Praptodiyono, “PID optimal control to reduce energy consumption in DC-drive
system,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 4, pp. 2164-2172, 2020,
doi: 10.11591/ijpeds.v11.i4.pp2164-2172.
[16] J. A. -K. Mohammed, “Modeling, Analysis and Speed Control Design Methods of a DC Motor,” Engineering and Technology
Journal, vol. 29, pp. 141-155, 2011.
[17] F. A. Hassan and L. J. Rashad, “Fractional-order PID controller for permanent magnet DC motor based on PSO
algorithm,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 4, pp. 1724-1733, 2019,
doi: 10.11591/ijpeds.v10.i4.pp1724-1733.
[18] J. A. K. Mohammed, “Influence of Inverter Switching Conditions on PMBLDC Motor Performance,” Engineering and
Technology Journal, vol. 30, no. 19, pp. 3394-3409, 2012. [Online]. Available:
https://www.iasj.net/iasj?func=fulltext&aId=66169
[19] S. J. Hammoodi, K. S. Flayyih, and A. R. Hamad, “Design and implementation speed control system of DC motor based on PID
control and matlab Simulink,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 1,
pp. 127-134, 2020, doi: 10.11591/ijpeds.v11.i1.pp127-134.
[20] X. Z. Gao and S. J. Ovaska, “Friction Compensation in Servo Motor Systems Using Neural Networks,” SMCia/99 Proceedings of
the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications, 1999, pp.146-151,
doi: 10.1109/SMCIA.1999.782725.
[21] Munadi and M. A. Akbar, “Simulation of fuzzy logic control for DC servo motor using Arduino based on Matlab/Simulink,” 2014
International Conference on Intelligent Autonomous Agents, Networks and Systems, 2014, pp. 42-46,
doi: 10.1109/INAGENTSYS.2014.7005723.
[22] L. S. Mezher, “Characteristics of Servo DC Motor with PID Controller,” Journal of Mechanical Engineering Research and
Developments, vol. 44, no. 2, pp. 392-400, 2021. [Online]. Available: https://jmerd.net/Paper/Vol.44,No.2(2021)/392-400.pdf
[23] M. Akar and I. Temiz, “Motion controller design for the speed control of dc servo motor,” International Journal of Applied
Mathematics and Informatics, vol. 1, no. 4, pp. 131-137, 2007. [Online]. Available: http://www.wseas.us/journals/ami/ami-19.pdf
[24] M. H. Saleh and S. Z. Saad, “Artificial immune system based PID tuning for DC servo speed control,” International Journal of
Computer Applications, vol. 155, no. 2, pp. 23-26, 2016, doi: 10.5120/ijca2016912265.
[25] F. A. Raheem, B. F. Midhat, and H. S. Mohammed, “PID and fuzzy logic controller design for balancing robot
stabilization,” Iraqi Journal of Computers, Communications, Control and Systems Engineering, vol. 18, no. 1, 2018. [Online].
Available: https://www.researchgate.net/publication/328466508_PID_and_Fuzzy_Logic_Controller_Design_for_Balancing_
Robot_Stabilization
[26] S. W. Shneen, A. Z. Salman, Q. A. Jawad, and H. Shareef, “Advanced optimal by PSO-PI for DC motor,” Indonesian Journal of
Electrical Engineering and Computer Scienc (IJEECS), vol. 16, no. 1, pp. 165-175, 2019, doi: 10.11591/ijeecs.v16.i1.pp165-175.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932
932
[27] F. R Yasien and Z. M Khudher, “Design of Fuzzy-Like Position Controller for Permanent Magnet Stepper Motor,” Iraqi Journal
of Computers, Communications, Control and Systems Engineering (IJCCCE), vol. 16, no. 1, pp. 84-91, 2016. [Online]. Available:
https://ijccce.uotechnology.edu.iq/article_110471.html#downloadTab
[28] S. W. Shneen, C. Mao, and N. K. Bachache, “Biogeography based optimization for tuning FLC controller of
PMSM,” International Conference in Swarm Intelligence (ICSI), 2015, pp. 395-402, doi: 10.1007/978-3-319-20466-6_42.
[29] J. A. Mohammed and A. L. Shuraiji, “Modeling of DC elevator motor drive for mid-rise building,” Engineering and Technology
Journal, vol. 31, no. 12A, pp. 2320-2342, 2013. [Online]. Available: https://www.iasj.net/iasj/article/82608
BIOGRAPHIES OF AUTHORS
Hashmia S. Dakheel she is a lecturer at the department of Electromechanical
Engineering / University of Technology / Iraq, she obtained Master degree in Electrical
Engineering from University of Technology in 2000, and Bachelor’s degree in Electrical
Engineering from University of Technology – Iraq in 1994, her research areas are Electrical
Engineering / Electrical Machines. She can be contacted at email:
Hashmia.S.Dakheel@uotechnology.edu.iq.
Zainab B. Abdullah she is a lecturer at the department of Electromechanical
Engineering University of Technology-Iraq She obtained Bachelor’s degree in electrical engineering
from University of Technology, Iraq, in 1994, and Master degree in Engineering Educational
Technology / electrical engineering from University of Technology, Iraq, in 2001. Her research areas
are electrical engineering and electric machines. She can be contacted at:
Zainab.B.Abdullah@uotechnology.edu.iq, https://www.researchgate.net/profile/Zainab_Basheer.
Najat Shyaa Jasim she is a lecturer at the department of Electromechanical
Engineering University of Technology-Iraq. She obtained Bachelor’s degree in electrical
engineering from University of Technology, Iraq, in 1994, and Master degree in electrical
engineering from University of Technology, Iraq, in 2001. Her research areas are communications,
electronics, electrical engineering. She can be contacted at: 50031@uotechnology.edu.iq.
Assist. Prof. Dr. Salam Waley Shneen Educational Background: July 2016 PhD,
Degree in Electrical Engineering-Power Electronic, School of Electrical and Electronic
Engineering, Huazhong University of Science and Technology (HUST). Nov 2005 MSc, Degree in
Engineering Educational Technology-Electrical Engineering, Technical Education Department,
University of Technology, Iraq-Baghdad. July 1998 B.Sc., Degree in Electrical Engineering and
Education, Technical Education Department, University of Technology, Iraq-Baghdad. Oct 1994
Diploma in Electrical Technology, Technical Instructors Training Institute, Iraq Baghdad. 1992
High School Bakaloria Degree Preparatory Technical School (Electrical Section), Almashtal
Technical Secondary School Iraq-Baghdad. Work Experience 1998-2005 Engineer in: Electronic
Lab., Digital Electronic Lab., Communication Lap., Fundamental of Electric Engineering Lab. Cad
Lab. In Technical Education Department, University of Technology, Iraq-Baghdad. 2005-2016
Assistant Lecturer in: Electronic Lab., Lecturer Advanced Electronic, Lecturer Fundamental of
Electric Engineering, Technical Education Department, Electromechanical Department University
of Technology, Iraq-Baghdad. 2016-2017 Lecturer in: Electronic Lab. Fundamental of Electric
Engineering Lab., Lecturer Electronic Circuits, Lecturer Fundamental of Electric Engineering with
Electrical and Electronic Circuits Electromechanical Department University of Technology, Iraq-
Baghdad. 2017-10Apr.2022 Lecturer in: Energy and Renewable Energies Technology Center,
University of Technology, Iraq-Baghdad. 10Apr.2022- today Lecturer in: Nanotechnology and
advanced material research Center, University of Technology, Iraq-Baghdad. He can be contacted
at: salam.w.shneen@uotechnology.edu.iq, https://www.researchgate.net/profile/Salam_Shneen2.

More Related Content

Similar to 25. 23248.pdf

Analysis and investigation of different advanced control strategies for high-...
Analysis and investigation of different advanced control strategies for high-...Analysis and investigation of different advanced control strategies for high-...
Analysis and investigation of different advanced control strategies for high-...TELKOMNIKA JOURNAL
 
Speed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approachSpeed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approachIAEME Publication
 
Identification and Real Time Control of a DC Motor
Identification and Real Time Control of a DC MotorIdentification and Real Time Control of a DC Motor
Identification and Real Time Control of a DC MotorIOSR Journals
 
Simulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID ControllerSimulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID Controllerijtsrd
 
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC SchemeSpeed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC SchemeIRJET Journal
 
D0255033039
D0255033039D0255033039
D0255033039theijes
 
To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...
To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...
To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...ijsrd.com
 
CONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTC
CONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTCCONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTC
CONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTCcsandit
 
IRJET - Flyback Converter based BLDC Motor Drives for Power Device Applications
IRJET - Flyback Converter based BLDC Motor Drives for Power Device ApplicationsIRJET - Flyback Converter based BLDC Motor Drives for Power Device Applications
IRJET - Flyback Converter based BLDC Motor Drives for Power Device ApplicationsIRJET Journal
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...
Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...
Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...PUBLISHERJOURNAL
 
Hybrid fuzzy-PID like optimal control to reduce energy consumption
Hybrid fuzzy-PID like optimal control to reduce energy consumptionHybrid fuzzy-PID like optimal control to reduce energy consumption
Hybrid fuzzy-PID like optimal control to reduce energy consumptionTELKOMNIKA JOURNAL
 
Design and Implementation of an Electrical Lift Controlled using PLC
Design and Implementation of an Electrical Lift Controlled using PLC Design and Implementation of an Electrical Lift Controlled using PLC
Design and Implementation of an Electrical Lift Controlled using PLC IJECEIAES
 
LIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATION
LIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATIONLIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATION
LIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATIONijujournal
 
SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC
SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTCSPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC
SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTCijics
 

Similar to 25. 23248.pdf (20)

Analysis and investigation of different advanced control strategies for high-...
Analysis and investigation of different advanced control strategies for high-...Analysis and investigation of different advanced control strategies for high-...
Analysis and investigation of different advanced control strategies for high-...
 
Speed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approachSpeed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approach
 
Identification and Real Time Control of a DC Motor
Identification and Real Time Control of a DC MotorIdentification and Real Time Control of a DC Motor
Identification and Real Time Control of a DC Motor
 
Simulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID ControllerSimulation DC Motor Speed Control System by using PID Controller
Simulation DC Motor Speed Control System by using PID Controller
 
L010237985
L010237985L010237985
L010237985
 
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC SchemeSpeed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
 
D0255033039
D0255033039D0255033039
D0255033039
 
[000007]
[000007][000007]
[000007]
 
To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...
To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...
To Perform SIL And PIL Testing on Fast Dynamic System using Economical AVR Co...
 
CONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTC
CONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTCCONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTC
CONTROL OF AN INDUCTION MOTOR WITH DOUBLE ANN MODEL BASED DTC
 
IRJET - Flyback Converter based BLDC Motor Drives for Power Device Applications
IRJET - Flyback Converter based BLDC Motor Drives for Power Device ApplicationsIRJET - Flyback Converter based BLDC Motor Drives for Power Device Applications
IRJET - Flyback Converter based BLDC Motor Drives for Power Device Applications
 
Design of H_∞ for induction motor
Design of H_∞ for induction motorDesign of H_∞ for induction motor
Design of H_∞ for induction motor
 
Gl3311371146
Gl3311371146Gl3311371146
Gl3311371146
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
E1103024045
E1103024045E1103024045
E1103024045
 
Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...
Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...
Design-and-Implementation-of-an-Improved-Automatic-DC-Motor-Speed-Control-Sys...
 
Hybrid fuzzy-PID like optimal control to reduce energy consumption
Hybrid fuzzy-PID like optimal control to reduce energy consumptionHybrid fuzzy-PID like optimal control to reduce energy consumption
Hybrid fuzzy-PID like optimal control to reduce energy consumption
 
Design and Implementation of an Electrical Lift Controlled using PLC
Design and Implementation of an Electrical Lift Controlled using PLC Design and Implementation of an Electrical Lift Controlled using PLC
Design and Implementation of an Electrical Lift Controlled using PLC
 
LIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATION
LIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATIONLIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATION
LIGHTWEIGHT MOBILE WEB SERVICE PROVISIONING FOR THE INTERNET OF THINGS MEDIATION
 
SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC
SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTCSPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC
SPEED AND TORQUE CONTROL OF AN INDUCTION MOTOR WITH ANN BASED DTC
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 

25. 23248.pdf

  • 1. TELKOMNIKA Telecommunication Computing Electronics and Control Vol. 20, No. 4, August 2022, pp. 922~932 ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v20i4.23248  922 Journal homepage: http://telkomnika.uad.ac.id Simulation model of ANN and PID controller for direct current servo motor by using Matlab/Simulink Hashmia S. Dakheel1 , Zainab B. Abdullah1 , Najat Shyaa Jasim1 , Salam Waley Shneen2 1 Department of Electro-mechanical Engineering, University of Technology -Iraq, Baghdad 2 Nanotechnology and Advanced Material Center, University of Technology -Iraq, Baghdad Article Info ABSTRACT Article history: Received Feb 01, 2022 Revised Jun 15, 2022 Accepted Jun 23, 2022 In the current era, researchers have been active in confirming and achieving their work through simulation using the computer program Matlab, in addition to the comparison between different control methods is also one of the prevailing behaviors, and the focus has been on the use of electrical machines in industry through multiple applications. Researchers in this study selected type of electric motors and two types of control systems for comparison, and to verify the possibility of improving the system’s work performance through the simulation results, the process of achieving the objectives of the current research is carried out. This paper presents using conventional proportional-integral-derivative (PID) controller and artificial neural networks (ANN) with direct current servo motor (DCSM) in order to obtain good performance characteristics because of efficient and widely use of this motor in the fields of control. The motor model in addition to the controller is built using Matlab simulation software. A comparison was made between these controllers (PID and ANN), where the simulation results indicate that the neural networks being developmental in the process of simulating the operation of the servo motor type and got good performance and better results from the traditional real-time console use case. Keywords: Artificial neural networks DCSM Performance characteristics PID controller This is an open access article under the CC BY-SA license. Corresponding Author: Salam Waley Shneen Nanotechnology and Advanced Material Center, University of Technology Baghdad, Iraq Email: salam.w.shneen@uotechnology.edu.iq 1. INTRODUCTION In industries, there are many kinds of direct current (DC) servo motors using because of it has very small rotor inertia that led to very high torque/inertia because of much small time constants and relatively small power ratings therefore DC servo motors are used in computer-related equipment such as tape drives, printers, disk drives, and word processors [1], that require speed control accuracy and accurate positioning. In servo motors, the position and speed of the motor are controlled by signals sent from the feedback controller [2]. In recent years, proportional-integral-derivative (PID) controllers have been used in industrial processes because it achieve minimize error by modifying process control input [3], one of the advantages of the PID controller is the quality of its performance as a basic continuous feedback controller [4]. Alzarok and Musbah [2] refer to optimization strategy for speed control DC servo motor (DCSM) by tuning parameters of PID tuning using genetic algorithm (GA). In Mezher [5] include using laboratory virtual instrumentation engineering workbench (LabVIEW) program and PID controller to speed control of the DCSM by using a three basic processes: Proportional, integrative and derivative. In [6] this study proposed a robust control unit against load disturbance as a control scheme for a servo motor and used numerical simulation to verify the
  • 2. TELKOMNIKA Telecommun Comput El Control  Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel) 923 effectiveness of the scheme. In [7] optimum engine starting performance is obtained and an induction-type motor is optimized using artificial intelligence (AI), which reduces current, torque and flow. Abdullah et al. [8] is a comparison between two conventional and expert PID controllers and an artificial neural network for a three-phase induction motor. To determine the best value of the external resistance that can be added to the armature circuit in the motor to increase the starting torque and reduce the starting current. Artificial neural network (ANN) is used to solve problems in a different way than traditional computer techniques. A network consists of neurons that are a group of elements that process in parallel to solve a specific problem. ANN has good non-linear learning ability and is a kind of continuous time dynamic system [9]. The traditional PID control system is usually used with DC motor [10]-[13]. The conventional PID control system is easy and simple [14]-[16], but the non-linear system differs in its performance, so it is not as efficient or has lower efficiency than its use with linear systems. Other methods called expert have also appeared, including the neural network, which has had success in giving performance efficiency with the nonlinear system [17]-[19]. This research included the implementation of a continuous servo motor model using Matlab/Simulink and the use of both traditional and expert PID controllers represented by ANN in order to simulate and improve the operating characteristics of the electric motor. 2. MATHEMATICAL MODEL OF DC SERVO MOTOR Electric motors play an important role, including servo motors, in many industrial applications such as their use in robotics [20]. In addition to being very suitable for wide range of adjustable speed drives and speed control [21]. Figure 1 and Figure 2 illustrated each of modeling and a block diagram that represented dynamic behavior of DCSM respectively, [21], [4] whereas the (1) describes transfer function of motor [22], [23]. Figure 1. Model representation of DCSM Figure 2. Dynamic behavior of DCSM 𝐺(𝑠) = 𝜃(𝑠) 𝑉𝑎 (𝑠) = 𝐾𝑡 𝑠(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑚𝑠+𝐵𝑚)+𝐾𝑡𝐾𝑏𝑠 (1) Where: 𝐽𝑚 = moment of inertia; 𝐵𝑚 = viscous friction coefficient; Ɵ = angular displacement of the motor shaft; 𝑅𝑎 = armature resistance; 𝐿𝑎 = armature inductance; 𝐾𝑡 = torque constant; 𝐸𝑏 = back emf constant; 𝐸𝑎 = Electromotive voltage. In Table 1 shows the parameters of DCSM which is depended in this paper. Table 1. Parameters of DCSM Parameter values Electric resistance (Ra) 1 ohm Electric inductance (La) 0.5 mH Torque constant (Ka) Back emf constant (Kb) Moment of inertia (Jm) Friction coefficient (Bm) 0.01 Nm/A 0.01 V/rad s-1 0.01 Kg.m2 0.1 N.ms
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932 924 3. DCSM AND CONTROLLERS The current research presents a study to develop the operation and performance characteristics of DCSM by using traditional controller (PID) and the intelligent controller (ANN). PID controller, in industrial control system. This controller includes three gains: 1) proportional (Kp), 2) derivative (Kd), and 3) integral (Ki) [24]. The objectfor tuning the PID gains is to obtain zero steady state error which refers to low values for each rising, settling and overshoot time, traditional PID block diagram is shown in Figure 3. In generally PID controller can be represented in (2) [25], [26]. Figure 3. PID block diagram 𝑅𝑖 (𝑇) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑 𝑑𝑒(𝑡) 𝑑𝑡 𝑡 0 (2) Where 𝑅𝑖 is the input of the plant 𝐺(𝑠). PID controller, it has three parameters gains (𝐾𝑝 , 𝐾𝑖 ,and 𝐾𝑑) and the error is (𝑒𝑖). In Figure 4 shows the simulink model with PID controller [27]. In Figure 5 of the structure of PID controller [28], [29]. ANN, it is very effective with the learning pattern based on the train of data, and to imitate and function to introduce ANN the input and output function is trained, ANN used in identifying and control each non-linear and linear system, it is the principle feature to allow knowledge of any complex assignment to output mapping. ANN makes the construction of the sensor data causes it to react to different data, because its strong against noise compared to with conventional control and using data. Since it has so many inputs and outputs, it is adequately for multi-input and multi-output systems, and it can improve the control through learning. Figure 6 and Figure 7 show a model representing neurons signaling to construct and represent the structure of neurons. Figure 4. Simulink model with PID controller Figure 5. Simulink model of structure PID controller
  • 4. TELKOMNIKA Telecommun Comput El Control  Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel) 925 Figure 6. Building and representing neural networks Figure 7. Model of construct and structure of neural network 4. SIMULINK MODELS In this section, there are three simulation model. First the simulation model of servo motor without controller that show in Figure 8. Second the simulation model of DC servo motor with PID controller that show in Figure 9. Finally the simulation model of servo motor with ANN that show in Figure 10. In Figure 11 the construction of ANN, in Figure 11(a) custom neural and Figure 11(b) layer content. In Figure 12 shows a flowchart illustrating the steps. Figure 8. DC Servo motor without controller Figure 9. DC Servo motor with PID controller
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932 926 Figure 10. Simulink model of DC servo motor with ANN (a) (b) Figure 11. The construction of ANN: (a) custom neural and (b) layer content Figure 12. Flowchart illustrating the steps
  • 6. TELKOMNIKA Telecommun Comput El Control  Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel) 927 5. SIMULATION RESULTS In this section, the simulation is carried out in several steps, the first of which is to test the motor model and show the simulation results for the characteristics of the motor and include the DCSM characteristics which are error, torque, theta, velocity, and angular acceleration, respectively, which are shown in Figure 13. Second, the simulation is to compare the use and non-use of control units. That is, adding control and testing tools and testing the difference in performance, and there are three test auras in the simulation results. First the simulation result of a servo motor without control. Second, servo motor simulation result with PID controller. Finally the result of servo motor simulation with ANN. The Figure 13 shows the simulation results to determine the torque characteristics of the motor using traditional and expert control techniques, which can indicate the best performance. Other fragments can be observed showing simulation results for both angular acceleration and velocity, illustrating the difference in performance between the methods used in the simulation. Figure 13. Characteristics of DC DCSM First case without controller and second case with PID controller. Using PID controller led to improve performance of DCSM. The parameters of PID are represented in Table 2. PID controller is tuned to obtain better value of performance characteristics of DCSM. Also reduce value for each rise time and over shoot that show in Table 3. Therefore, the characteristics of DCSM is develop by using PID controller from the first case without controller. Table 2. Control parameters Control parameter Values 𝑃 35.2755 𝐼 4.4005 𝐷 19.45 𝑁 405.4947 Table 3. Performance and robustness Performance and robustness Values Rise time 0.411 sec Settling time 6.1 sec Overshoot 2.93% Peak 1.03 Closed-loop stability Stable The torque characteristic of DCSM by using each of PID controller and ANN as show in Figure 14, we can see the comparative of these value for torque in Table 4 that refers to the best value can be obtained by using ANN. The velocity characteristic of DCSM by using each of PID controller and ANN as show in Figure 15, we can see the comparative of these value for torque in Table 5 that refers to the best value can be obtained by using ANN. also we can be shown these values of velocity develop by using controllers specially ANN which reaches to unity smoothly and overshoot equal to zero. The angular acceleration of DCSM by using each of PID controller and ANN as show in Figure 16, we can see the comparative of these value for torque in Table 6 that refers to the best value can be obtained by using ANN. The theta of DCSM by using each of PID controller and ANN as show in Figure 17, we can see the comparative of these value for torque in Table 7 that refers to the best value can be obtained by using ANN.
  • 7.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932 928 Figure 14. Torque characteristic of DCSM Figure 15. Velocity characteristic of DCSM Figure 16. Angular acceleration of DCSM Figure 17. Theta of DCSM
  • 8. TELKOMNIKA Telecommun Comput El Control  Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel) 929 Table 4. Torque characteristic Time PID ANN 0 0 0 1 0.14 0.536 2 0.1 0.61 3 0.1 0.61 4 0.1 0.62 Table 5. Velocity characteristics Time PID ANN 0.5 0.852 0.60 0.75 1.122 0.788 1 0.08 0.82 2 1 0.99 3 1 0.1 4 1 1 Table 6. Angular acceleration Time PID ANN 0.25 8 1.25 0.5 7.5 2.35 1 2.5 0.09 2 0 0 3 0 0 Table 7. Theta of DCSM Time PID ANN 1 4 6 2 9 10 3 18 17 4 30 20 5 50 28 Data of artificial neural network, the neural network training in this paper can be shown in Figure 18 to Figure 21. In Figure 18 shown the neural network training. In Figure 19 the neural network training performance. That show the best training performance with mean squared error (MSE). In Figure 20 show the neural network training state. In Figure 21 show the neural network regression data. Figure 18. Neural network training Figure 19. Neural network training performance
  • 9.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932 930 Figure 20. Neural network training state Figure 21. Neural network regression data 6. CONCLUSION Due to the importance of the servo motor in the fields of industrial control, the current paper dealt with use of Matlab Simulink environment in order to develop and improve the characteristics of operation and performance of this motor through conventional controller (PID) and artificial neural network, as well as a comparison study has been done between these two controllers. The simulation results show the difference in performance between the operating condition without a control unit and the presence of two types of control units, including the traditional systems represented by the PID control unit and the expert systems. The improvement of performance using traditional systems showed that in the absence of a control unit and improvement of performance using expert systems, the simulation was by testing the characteristics of the motor for both torque, angular acceleration and rotational speed, and observing the response speed and the time required to obtain the steady state, the amount of overshoot, which was included in the simulation results in figures and tables. In the field of control, researchers have found that using a neural network is better than using traditional control devices, as it gives better results with high accuracy.
  • 10. TELKOMNIKA Telecommun Comput El Control  Simulation model of ANN and PID controller for direct current servo motor by … (Hashmia S. Dakheel) 931 REFERENCES [1] N. Khongkoom, A. Kanchanathep, S. Nopnakeepong, S. Tanuthong, S. Tunyasirut, and R. Kagawa, “Control of the position DC servo motor by fuzzy logic,” 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No. 00CH37119), 2000, pp. 354-357 vol.3, doi: 10.1109/TENCON.2000.892288. [2] H. Alzarok and A. H. Musbah, “Tuning of a Speed Control System for DC Servo Motor Using Genetic Algorithm,” The International Journal of Engineering and Information Technology (IJEIT), vol. 6, no. 2, pp. 141-150, 2020. [Online]. Available: https://www.researchgate.net/publication/341435059_Tuning_of_a_Speed_Control_System_for_DC_Servo_Motor_Using_Genet ic_Algorithm [3] N. V. Quynh and P. V. Toan, “Co-simulation of self-adjusting fuzzy PI controller for the robot with two-axes system,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 18, no. 6, pp. 3346-3356, 2020. [Online]. Available: http://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/17277/9342 [4] A. M. Alsayed, E. K. Elsayed, “Optimize Position Control of DC Servo Motor using PID Controller Tuning with Krill Herd algorithm,” International Journal of Engineering and Information Systems (IJEAIS), vol. 4, no. 12, pp. 141-147, 2020. [Online]. Available: http://ijeais.org/wp-content/uploads/2020/12/IJEAIS201229.pdf [5] L. S. Mezher, “Speed control for servo DC motor with different tuning PID controller with labview,” Journal of Mechanical Engineering Research and Developments, vol. 44, no. 1, pp. 294-303, 2021. [Online]. Available: https://www.researchgate.net/ publication/346564242_Speed_Control_for_Servo_DC_Motor_with_Different_Tuning_PID_Controller_with_LABVIEW [6] E. H. Abdelhameed, T. H. Mohamed, M. M. Hamed, and G. Elsady, “Design of Hybrid Fuzzy and Position-Velocity Controller for Precise Positioning of a Servo System,” International Journal of Applied Energy Systems, vol. 2, no.2, pp. 111-115, 2020, doi: 10.21608/ijaes.2020.169928. [7] M. Magdy, S. A. -Zaid, and M. A. Elwany, “Artificial intelligent techniques based on direct torque control of induction machines,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 12, no. 4, pp. 2070-2082, 2020, doi: 10.11591/ijpeds.v12.i4.pp2070-2082. [8] F. N. Abdullah, G. A. Aziz, and S. W. Shneen. “Simulation Model of Servo Motor by Using Matlab,” Journal of Robotics and Control (JRC), vol. 3, no. 2, pp. 176-179, 2022, doi: 10.18196/jrc.v3i2.13959. [9] M. A. H. Azman, J. M. Aris, Z. Hussain, A. A. A. Samat, and A. M. Nazelan, “A comparative study of fuzzy logic controller and artificial neural network in speed control of separately excited DC motor,” 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2017, pp. 336-341, doi: 10.1109/ICCSCE.2017.8284430. [10] S. W. Shneen, M. Q. Sulttan, and M. H. Jaber, “Variable speed control for 2Ph-HSM in RGS: a comparative simulation study,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp. 2285-2295, 2020, doi: 10.11591/ijece.v10i3.pp2285-2295. [11] Aseem K. and S. Kumar S., “Closed loop control of DC-DC converters using PID and FOPID controllers,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 3, pp. 1323-1332, 2020, doi: 10.11591/ijpeds.v11.i3.pp1323-1332. [12] Z. Q. Zhu, A. L. Shuraiji, and Q. F. Lu, “Comparative study of tubular partitioned stator permanent magnet machines,” 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), 2015, pp. 1-7, doi: 10.1109/EVER.2015.7112953. [13] M. Dasari, A. S. Reddy, and M. V. Kumar, “GA-ANFIS PID compensated model reference adaptive control for BLDC motor,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 1, pp. 265-276, 2019, doi: 10.11591/ijpeds.v10.i1.pp265-276. [14] S. W. Shneen, H. Sh Dakheel, and Z. B. Abdulla, “Design and implementation of variable and constant load for induction motor,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 2, pp. 762-773, 2020, doi: 10.11591/ijpeds.v11.i2.pp762-773. [15] H. Maghfiroh, M. Nizam, and S. Praptodiyono, “PID optimal control to reduce energy consumption in DC-drive system,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 4, pp. 2164-2172, 2020, doi: 10.11591/ijpeds.v11.i4.pp2164-2172. [16] J. A. -K. Mohammed, “Modeling, Analysis and Speed Control Design Methods of a DC Motor,” Engineering and Technology Journal, vol. 29, pp. 141-155, 2011. [17] F. A. Hassan and L. J. Rashad, “Fractional-order PID controller for permanent magnet DC motor based on PSO algorithm,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 4, pp. 1724-1733, 2019, doi: 10.11591/ijpeds.v10.i4.pp1724-1733. [18] J. A. K. Mohammed, “Influence of Inverter Switching Conditions on PMBLDC Motor Performance,” Engineering and Technology Journal, vol. 30, no. 19, pp. 3394-3409, 2012. [Online]. Available: https://www.iasj.net/iasj?func=fulltext&aId=66169 [19] S. J. Hammoodi, K. S. Flayyih, and A. R. Hamad, “Design and implementation speed control system of DC motor based on PID control and matlab Simulink,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 1, pp. 127-134, 2020, doi: 10.11591/ijpeds.v11.i1.pp127-134. [20] X. Z. Gao and S. J. Ovaska, “Friction Compensation in Servo Motor Systems Using Neural Networks,” SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications, 1999, pp.146-151, doi: 10.1109/SMCIA.1999.782725. [21] Munadi and M. A. Akbar, “Simulation of fuzzy logic control for DC servo motor using Arduino based on Matlab/Simulink,” 2014 International Conference on Intelligent Autonomous Agents, Networks and Systems, 2014, pp. 42-46, doi: 10.1109/INAGENTSYS.2014.7005723. [22] L. S. Mezher, “Characteristics of Servo DC Motor with PID Controller,” Journal of Mechanical Engineering Research and Developments, vol. 44, no. 2, pp. 392-400, 2021. [Online]. Available: https://jmerd.net/Paper/Vol.44,No.2(2021)/392-400.pdf [23] M. Akar and I. Temiz, “Motion controller design for the speed control of dc servo motor,” International Journal of Applied Mathematics and Informatics, vol. 1, no. 4, pp. 131-137, 2007. [Online]. Available: http://www.wseas.us/journals/ami/ami-19.pdf [24] M. H. Saleh and S. Z. Saad, “Artificial immune system based PID tuning for DC servo speed control,” International Journal of Computer Applications, vol. 155, no. 2, pp. 23-26, 2016, doi: 10.5120/ijca2016912265. [25] F. A. Raheem, B. F. Midhat, and H. S. Mohammed, “PID and fuzzy logic controller design for balancing robot stabilization,” Iraqi Journal of Computers, Communications, Control and Systems Engineering, vol. 18, no. 1, 2018. [Online]. Available: https://www.researchgate.net/publication/328466508_PID_and_Fuzzy_Logic_Controller_Design_for_Balancing_ Robot_Stabilization [26] S. W. Shneen, A. Z. Salman, Q. A. Jawad, and H. Shareef, “Advanced optimal by PSO-PI for DC motor,” Indonesian Journal of Electrical Engineering and Computer Scienc (IJEECS), vol. 16, no. 1, pp. 165-175, 2019, doi: 10.11591/ijeecs.v16.i1.pp165-175.
  • 11.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 20, No. 4, August 2022: 922-932 932 [27] F. R Yasien and Z. M Khudher, “Design of Fuzzy-Like Position Controller for Permanent Magnet Stepper Motor,” Iraqi Journal of Computers, Communications, Control and Systems Engineering (IJCCCE), vol. 16, no. 1, pp. 84-91, 2016. [Online]. Available: https://ijccce.uotechnology.edu.iq/article_110471.html#downloadTab [28] S. W. Shneen, C. Mao, and N. K. Bachache, “Biogeography based optimization for tuning FLC controller of PMSM,” International Conference in Swarm Intelligence (ICSI), 2015, pp. 395-402, doi: 10.1007/978-3-319-20466-6_42. [29] J. A. Mohammed and A. L. Shuraiji, “Modeling of DC elevator motor drive for mid-rise building,” Engineering and Technology Journal, vol. 31, no. 12A, pp. 2320-2342, 2013. [Online]. Available: https://www.iasj.net/iasj/article/82608 BIOGRAPHIES OF AUTHORS Hashmia S. Dakheel she is a lecturer at the department of Electromechanical Engineering / University of Technology / Iraq, she obtained Master degree in Electrical Engineering from University of Technology in 2000, and Bachelor’s degree in Electrical Engineering from University of Technology – Iraq in 1994, her research areas are Electrical Engineering / Electrical Machines. She can be contacted at email: Hashmia.S.Dakheel@uotechnology.edu.iq. Zainab B. Abdullah she is a lecturer at the department of Electromechanical Engineering University of Technology-Iraq She obtained Bachelor’s degree in electrical engineering from University of Technology, Iraq, in 1994, and Master degree in Engineering Educational Technology / electrical engineering from University of Technology, Iraq, in 2001. Her research areas are electrical engineering and electric machines. She can be contacted at: Zainab.B.Abdullah@uotechnology.edu.iq, https://www.researchgate.net/profile/Zainab_Basheer. Najat Shyaa Jasim she is a lecturer at the department of Electromechanical Engineering University of Technology-Iraq. She obtained Bachelor’s degree in electrical engineering from University of Technology, Iraq, in 1994, and Master degree in electrical engineering from University of Technology, Iraq, in 2001. Her research areas are communications, electronics, electrical engineering. She can be contacted at: 50031@uotechnology.edu.iq. Assist. Prof. Dr. Salam Waley Shneen Educational Background: July 2016 PhD, Degree in Electrical Engineering-Power Electronic, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology (HUST). Nov 2005 MSc, Degree in Engineering Educational Technology-Electrical Engineering, Technical Education Department, University of Technology, Iraq-Baghdad. July 1998 B.Sc., Degree in Electrical Engineering and Education, Technical Education Department, University of Technology, Iraq-Baghdad. Oct 1994 Diploma in Electrical Technology, Technical Instructors Training Institute, Iraq Baghdad. 1992 High School Bakaloria Degree Preparatory Technical School (Electrical Section), Almashtal Technical Secondary School Iraq-Baghdad. Work Experience 1998-2005 Engineer in: Electronic Lab., Digital Electronic Lab., Communication Lap., Fundamental of Electric Engineering Lab. Cad Lab. In Technical Education Department, University of Technology, Iraq-Baghdad. 2005-2016 Assistant Lecturer in: Electronic Lab., Lecturer Advanced Electronic, Lecturer Fundamental of Electric Engineering, Technical Education Department, Electromechanical Department University of Technology, Iraq-Baghdad. 2016-2017 Lecturer in: Electronic Lab. Fundamental of Electric Engineering Lab., Lecturer Electronic Circuits, Lecturer Fundamental of Electric Engineering with Electrical and Electronic Circuits Electromechanical Department University of Technology, Iraq- Baghdad. 2017-10Apr.2022 Lecturer in: Energy and Renewable Energies Technology Center, University of Technology, Iraq-Baghdad. 10Apr.2022- today Lecturer in: Nanotechnology and advanced material research Center, University of Technology, Iraq-Baghdad. He can be contacted at: salam.w.shneen@uotechnology.edu.iq, https://www.researchgate.net/profile/Salam_Shneen2.