SlideShare a Scribd company logo
2014.12 - Let's Disco - 2 (EDDI 2014)
Controlled Vocabularies
Controlled Vocabularies 
•Existing DDI-CVs are available in RDF 
–Represented in SKOS format 
–Each CV is a skos:ConceptScheme 
–Each CV entry is a skos:Concept 
–Versioning is considered 
•Available at https://github.com/linked- statistics/DDI-controlled-vocabularies 
•Next step: Review by DDI-CV Working Group
skos:Concept 
skos:Concept Scheme 
SummaryStatisticsType_1.0# 
ArithmeticMean 
Variance 
StandardDeviation 
a 
a 
a 
a 
skos:hasTopConcept 
skos:hasTopConcept 
skos:hasTopConcept
<http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#ArithmeticMean> a skos:Concept ; skos:definition "Mathematical average of a set of values. The mean is calculated by adding up two or more values and dividing the total by their number. In social/political science, it is usually the sum of the measurements divided by the number of subjects, or cases."@en ; skos:inScheme <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#CodeList> ; skos:notation "ArithmeticMean" ; skos:prefLabel "Arithmetic mean (X)"@en .
SummaryStatisticsType_2.0# 
skos:Concept Scheme 
SummaryStatisticsType_1.0# 
SummaryStatisticsType# 
a 
a 
a 
dcterms:hasVersion 
dcterms:hasVersion
Versioning 
<http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType#> a skos:ConceptScheme ; 
dcterms:title "Base Scheme of Summary Statistic Type"@en ; dcterms:description "Specifies the type of summary statistic. Summary statistics are a single number representation of the characteristics of a set of values."@en ; owl:versionInfo "1.0" ; dcterms:hasVersion <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0# >, <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_2.0# > .
Variables
Relationships to other Vocabularies
Relationships to other vocabularies 
•Data Cube 
–For representing multidimensional aggregate data 
•DCAT 
–For representing collections (catalogs) of research datasets 
–For providing additional information about physical aspects (file size, file formats) of research data files 
•PROV-O 
–For representing detailed provenance information, e.g. generation and aggregation of data, versioning information, etc.
MicrodataData Set_1 
AggregatedData Set_1 
prov:Entity 
disco:LogicalData Set 
qb:DataSet 
a 
a 
a 
a 
prov:wasDerivedFrom
Simple Case 
ddi:AggregatedDataSet_1 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_1 . 
ddi:MicrodataDataSet_1 a prov:Entity .
Complex Case 
ddi:AggregatedDataSet_2 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_2 ; prov:wasGeneratedBy ddi:AggregationActivity ; prov:qualifiedDerivation [ a prov:Derivation ; prov:entity ddi:MicrodataDataSet_2 ; prov:hadActivity ddi:AggregationActivity ] . 
ddi:AggregationActivity a prov:Activity . 
ddi:MicrodataDataSet_2 a prov:Entity;
European Study_1 
EuropeanData Set_1 
DataCatalog_1 
disco:Logical DataSet 
disco:Study 
dcat:Catalog 
dcat:Catalog Record 
dcat:Dataset 
a 
a 
a 
a 
a 
dcat:record 
dcat:dataset
ddi:DataCatalog_1 a dcat:Catalog ; dcat:record ddi:EuropeanStudy_1 ; dcat:dataset ddi:EuropeanDataSet_1 . 
ddi:EuropeanStudy_1 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_1 . 
ddi:EuropeanDataSet_1 a dcat:Dataset, disco:LogicalDataSet ; dcat:theme ddi:topics/WellBeing ; dcat:theme ddi:topics/PoliticalAttitudes ; dcat:keyword "Europe"@en ; dcat:keyword "Politics"@en .
2014.12 - Let's Disco - 2 (EDDI 2014)
ddi:DataCatalog_2 a dcat:Catalog; dcat:record ddi:EuropeanStudy_2 ; dcat:record ddi:AggregatedEuropeanData_2 ; dcat:dataset ddi:EuropeanDataSet_2 ; dcat:dataset ddi:AggregatedEuropeanDataSet_2 . ddi:EuropeanStudy_2 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_2 . ddi:AggregatedEuropeanData_2 a dcat:CatalogRecord ; foaf:primaryTopic ddi:AggregatedEuropeanDataSet_2. ddi:EuropeanDataSet_2 a dcat:Dataset, disco:LogicalDataSet . ddi:AggregatedEuropeanDataSet_2 a dcat:Dataset, qb:DataSet ; prov:wasDerivedFrom ddi:EuropeanStudy_2 .
PHDD
2014.12 - Let's Disco - 2 (EDDI 2014)
Mapping DDI-XML to Disco
Mapping DDI-XML to Disco 
•Mappings only between Disco and DDI 3.1 of DDI-L in order to avoid inconsistencies 
–existing mapping documents between DDI 3.1 and other DDI versions (like DDI 3.2 and DDI 2.1) can be reused 
•Availability 
–Google Doc with mapping tables as basis for automatic generation 
–Turtle file containing all mappings 
–Mapping tables in HTML specification of Disco 
•Mapping is still ongoing work
XSLT for existing DDI-XML 
•XSLTs for converting any XML output of DDI-C and DDI-L are available at https://github.com/linked-statistics/DDI-RDF- tools 
•Different XSLT for DDI-C and DDI-L
Bidirectional Mappings 
•Only between Disco and DDI-L 
–DDI-L ⤑ Disco: straight-forward mapping for all items used in Disco 
–Disco ⤑ DDI-L: straight-forward mapping for all items in the disco namespace. 
•Only standard XPath expression is defined as mapping 
•Context: 
–Items from other vocabularies - used in Disco - need a context; then there could be a clear mapping path. 
–Context information necessary for mappings, e.g., skos:notation can be mapped to variable labels and to codes. 
–Context information is either a SPARQL query or an informal description as plain literal.
Mapping Representation 
•Mapping ontology available containing all mapping triples 
•generated automatically out of the official mapping document
Mapping Representation 
skos:notation a rdfs:Class, owl:Class ; disco:mapping [ a disco:Mapping ; disco:ddi-L-Xpath "//l:Variable/l:VariableName" ; disco:ddi-L-Documentation "http://www.ddialliance.org/Specification/DDI- Lifecycle/3.1/XMLSchema/FieldLevelDocumentatio n/logicalproduct_xsd/elements/V ariable.html" disco:context "skos:notation represents variable label" ; disco:context "SELECT ?notation WHERE { ?notation rdfs:domain ?variable. ?variable a disco:Variable. }" ]
DDI 4
Let‘s Disco Now!
2014.12 - Let's Disco - 2 (EDDI 2014)
Acknowledgements 
26 experts from the statistical community and the Linked Data community coming from 12 different countries contributed to this work. They were participating in the events mentioned below. 
•1st workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in September 2011 
•Working meeting in the course of the 3rd Annual European DDI Users Group Meeting (EDDI11) in Gothenburg, Sweden in December 2011 
•2nd workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in October 2012 
•Working meeting at GESIS - Leibniz Institute for the Social Sciences in Mannheim, Germany in February 2013

More Related Content

What's hot

GDG Meets U event - Big data & Wikidata - no lies codelab
GDG Meets U event - Big data & Wikidata -  no lies codelabGDG Meets U event - Big data & Wikidata -  no lies codelab
GDG Meets U event - Big data & Wikidata - no lies codelab
CAMELIA BOBAN
 
Everything you wanted to know about Dublin Core metadata
Everything you wanted to know about Dublin Core metadataEverything you wanted to know about Dublin Core metadata
Everything you wanted to know about Dublin Core metadata
Eduserv Foundation
 
EAD at Metro 09-25-13
EAD at Metro 09-25-13EAD at Metro 09-25-13
EAD at Metro 09-25-13
Kevin Schlottmann
 
Ontologies in RDF-S/OWL
Ontologies in RDF-S/OWLOntologies in RDF-S/OWL
Ontologies in RDF-S/OWL
Emanuele Della Valle
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
Narni Rajesh
 
Ukgovld registry-intro
Ukgovld registry-introUkgovld registry-intro
Ukgovld registry-intro
Dave Reynolds
 
Database Programming with Perl and DBIx::Class
Database Programming with Perl and DBIx::ClassDatabase Programming with Perl and DBIx::Class
Database Programming with Perl and DBIx::Class
Dave Cross
 
Re-using Media on the Web: Media fragment re-mixing and playout
Re-using Media on the Web: Media fragment re-mixing and playoutRe-using Media on the Web: Media fragment re-mixing and playout
Re-using Media on the Web: Media fragment re-mixing and playout
MediaMixerCommunity
 
AAT LOD Microthesauri
AAT LOD MicrothesauriAAT LOD Microthesauri
AAT LOD Microthesauri
Marcia Zeng
 
Introduction to LDL 2012
Introduction to LDL 2012Introduction to LDL 2012
Introduction to LDL 2012
Sebastian Hellmann
 
The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)
Myungjin Lee
 
Scaling the (evolving) web data –at low cost-
Scaling the (evolving) web data –at low cost-Scaling the (evolving) web data –at low cost-
Scaling the (evolving) web data –at low cost-
WU (Vienna University of Economics and Business)
 
Fedora Migration Considerations
Fedora Migration ConsiderationsFedora Migration Considerations
Fedora Migration Considerations
Avalon Media System
 
Querying the Semantic Web with SPARQL
Querying the Semantic Web with SPARQLQuerying the Semantic Web with SPARQL
Querying the Semantic Web with SPARQL
Emanuele Della Valle
 
Efficient RDF Interchange (ERI) Format for RDF Data Streams
Efficient RDF Interchange (ERI) Format for RDF Data StreamsEfficient RDF Interchange (ERI) Format for RDF Data Streams
Efficient RDF Interchange (ERI) Format for RDF Data Streams
WU (Vienna University of Economics and Business)
 
RDF and OWL
RDF and OWLRDF and OWL
RDF and OWL
Rachel Lovinger
 
DLF 2015 Presentation, "RDF in the Real World."
DLF 2015 Presentation, "RDF in the Real World." DLF 2015 Presentation, "RDF in the Real World."
DLF 2015 Presentation, "RDF in the Real World."
Avalon Media System
 
RDF SHACL, Annotations, and Data Frames
RDF SHACL, Annotations, and Data FramesRDF SHACL, Annotations, and Data Frames
RDF SHACL, Annotations, and Data Frames
Kurt Cagle
 
RDFa Tutorial
RDFa TutorialRDFa Tutorial
RDFa Tutorial
Ivan Herman
 
Rdf Overview Presentation
Rdf Overview PresentationRdf Overview Presentation
Rdf Overview Presentation
Ken Varnum
 

What's hot (20)

GDG Meets U event - Big data & Wikidata - no lies codelab
GDG Meets U event - Big data & Wikidata -  no lies codelabGDG Meets U event - Big data & Wikidata -  no lies codelab
GDG Meets U event - Big data & Wikidata - no lies codelab
 
Everything you wanted to know about Dublin Core metadata
Everything you wanted to know about Dublin Core metadataEverything you wanted to know about Dublin Core metadata
Everything you wanted to know about Dublin Core metadata
 
EAD at Metro 09-25-13
EAD at Metro 09-25-13EAD at Metro 09-25-13
EAD at Metro 09-25-13
 
Ontologies in RDF-S/OWL
Ontologies in RDF-S/OWLOntologies in RDF-S/OWL
Ontologies in RDF-S/OWL
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
 
Ukgovld registry-intro
Ukgovld registry-introUkgovld registry-intro
Ukgovld registry-intro
 
Database Programming with Perl and DBIx::Class
Database Programming with Perl and DBIx::ClassDatabase Programming with Perl and DBIx::Class
Database Programming with Perl and DBIx::Class
 
Re-using Media on the Web: Media fragment re-mixing and playout
Re-using Media on the Web: Media fragment re-mixing and playoutRe-using Media on the Web: Media fragment re-mixing and playout
Re-using Media on the Web: Media fragment re-mixing and playout
 
AAT LOD Microthesauri
AAT LOD MicrothesauriAAT LOD Microthesauri
AAT LOD Microthesauri
 
Introduction to LDL 2012
Introduction to LDL 2012Introduction to LDL 2012
Introduction to LDL 2012
 
The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)The Semantic Web #9 - Web Ontology Language (OWL)
The Semantic Web #9 - Web Ontology Language (OWL)
 
Scaling the (evolving) web data –at low cost-
Scaling the (evolving) web data –at low cost-Scaling the (evolving) web data –at low cost-
Scaling the (evolving) web data –at low cost-
 
Fedora Migration Considerations
Fedora Migration ConsiderationsFedora Migration Considerations
Fedora Migration Considerations
 
Querying the Semantic Web with SPARQL
Querying the Semantic Web with SPARQLQuerying the Semantic Web with SPARQL
Querying the Semantic Web with SPARQL
 
Efficient RDF Interchange (ERI) Format for RDF Data Streams
Efficient RDF Interchange (ERI) Format for RDF Data StreamsEfficient RDF Interchange (ERI) Format for RDF Data Streams
Efficient RDF Interchange (ERI) Format for RDF Data Streams
 
RDF and OWL
RDF and OWLRDF and OWL
RDF and OWL
 
DLF 2015 Presentation, "RDF in the Real World."
DLF 2015 Presentation, "RDF in the Real World." DLF 2015 Presentation, "RDF in the Real World."
DLF 2015 Presentation, "RDF in the Real World."
 
RDF SHACL, Annotations, and Data Frames
RDF SHACL, Annotations, and Data FramesRDF SHACL, Annotations, and Data Frames
RDF SHACL, Annotations, and Data Frames
 
RDFa Tutorial
RDFa TutorialRDFa Tutorial
RDFa Tutorial
 
Rdf Overview Presentation
Rdf Overview PresentationRdf Overview Presentation
Rdf Overview Presentation
 

Viewers also liked

2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3
Dr.-Ing. Thomas Hartmann
 
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
Dr.-Ing. Thomas Hartmann
 
2012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 12012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 1
Dr.-Ing. Thomas Hartmann
 
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Dr.-Ing. Thomas Hartmann
 
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
Dr.-Ing. Thomas Hartmann
 
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
Dr.-Ing. Thomas Hartmann
 
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Dr.-Ing. Thomas Hartmann
 
2014.12 - Let's Disco (EDDI 2014)
2014.12 - Let's Disco (EDDI 2014)2014.12 - Let's Disco (EDDI 2014)
2014.12 - Let's Disco (EDDI 2014)
Dr.-Ing. Thomas Hartmann
 
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
Dr.-Ing. Thomas Hartmann
 

Viewers also liked (9)

2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3
 
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
 
2012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 12012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 1
 
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
Workshop on Semantic Statistics - Generic Multilevel Approach Designing Domai...
 
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
 
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
IASSIST 2011 - Representation of the Data Documentation Initiative using Sema...
 
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
 
2014.12 - Let's Disco (EDDI 2014)
2014.12 - Let's Disco (EDDI 2014)2014.12 - Let's Disco (EDDI 2014)
2014.12 - Let's Disco (EDDI 2014)
 
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
OCAS @ ISWC 2011 - Generic Multilevel Approach Designing Domain Ontologies Ba...
 

Similar to 2014.12 - Let's Disco - 2 (EDDI 2014)

Force11 JDDCP workshop presentation, @ Force2015, Oxford
Force11 JDDCP workshop presentation, @ Force2015, OxfordForce11 JDDCP workshop presentation, @ Force2015, Oxford
Force11 JDDCP workshop presentation, @ Force2015, Oxford
Mark Wilkinson
 
Intro to apache spark stand ford
Intro to apache spark stand fordIntro to apache spark stand ford
Intro to apache spark stand ford
Thu Hiền
 
Apache spark sneha challa- google pittsburgh-aug 25th
Apache spark  sneha challa- google pittsburgh-aug 25thApache spark  sneha challa- google pittsburgh-aug 25th
Apache spark sneha challa- google pittsburgh-aug 25th
Sneha Challa
 
Data Integration And Visualization
Data Integration And VisualizationData Integration And Visualization
Data Integration And Visualization
Ivan Ermilov
 
Code as Data workshop: Using source{d} Engine to extract insights from git re...
Code as Data workshop: Using source{d} Engine to extract insights from git re...Code as Data workshop: Using source{d} Engine to extract insights from git re...
Code as Data workshop: Using source{d} Engine to extract insights from git re...
source{d}
 
Big Data Processing using Apache Spark and Clojure
Big Data Processing using Apache Spark and ClojureBig Data Processing using Apache Spark and Clojure
Big Data Processing using Apache Spark and Clojure
Dr. Christian Betz
 
R tutorial
R tutorialR tutorial
R tutorial
Richard Vidgen
 
Data integration with a façade. The case of knowledge graph construction.
Data integration with a façade. The case of knowledge graph construction.Data integration with a façade. The case of knowledge graph construction.
Data integration with a façade. The case of knowledge graph construction.
Enrico Daga
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
Anyscale
 
Putting Historical Data in Context: how to use DSpace-GLAM
Putting Historical Data in Context: how to use DSpace-GLAMPutting Historical Data in Context: how to use DSpace-GLAM
Putting Historical Data in Context: how to use DSpace-GLAM
4Science
 
Apache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.pptApache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.ppt
bhargavi804095
 
How to describe a dataset. Interoperability issues
How to describe a dataset. Interoperability issuesHow to describe a dataset. Interoperability issues
How to describe a dataset. Interoperability issues
Valeria Pesce
 
How to Describe a Dataset. Interoperability Issues, by Valeria Pesce
How to Describe a Dataset. Interoperability Issues, by Valeria PesceHow to Describe a Dataset. Interoperability Issues, by Valeria Pesce
How to Describe a Dataset. Interoperability Issues, by Valeria Pesce
AIMS (Agricultural Information Management Standards)
 
Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Spark & Cassandra at DataStax Meetup on Jan 29, 2015 Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Sameer Farooqui
 
Producing, publishing and consuming linked data - CSHALS 2013
Producing, publishing and consuming linked data - CSHALS 2013Producing, publishing and consuming linked data - CSHALS 2013
Producing, publishing and consuming linked data - CSHALS 2013
François Belleau
 
Linked Census Data
Linked Census DataLinked Census Data
Linked Census Data
Albert Meroño-Peñuela
 
20160818 Semantics and Linkage of Archived Catalogs
20160818 Semantics and Linkage of Archived Catalogs20160818 Semantics and Linkage of Archived Catalogs
20160818 Semantics and Linkage of Archived Catalogs
andrea huang
 
20150716 introduction to apache spark v3
20150716 introduction to apache spark v3 20150716 introduction to apache spark v3
20150716 introduction to apache spark v3
Andrey Vykhodtsev
 
Orchestrating the Intelligent Web with Apache Mahout
Orchestrating the Intelligent Web with Apache MahoutOrchestrating the Intelligent Web with Apache Mahout
Orchestrating the Intelligent Web with Apache Mahout
aneeshabakharia
 
11. From Hadoop to Spark 1:2
11. From Hadoop to Spark 1:211. From Hadoop to Spark 1:2
11. From Hadoop to Spark 1:2
Fabio Fumarola
 

Similar to 2014.12 - Let's Disco - 2 (EDDI 2014) (20)

Force11 JDDCP workshop presentation, @ Force2015, Oxford
Force11 JDDCP workshop presentation, @ Force2015, OxfordForce11 JDDCP workshop presentation, @ Force2015, Oxford
Force11 JDDCP workshop presentation, @ Force2015, Oxford
 
Intro to apache spark stand ford
Intro to apache spark stand fordIntro to apache spark stand ford
Intro to apache spark stand ford
 
Apache spark sneha challa- google pittsburgh-aug 25th
Apache spark  sneha challa- google pittsburgh-aug 25thApache spark  sneha challa- google pittsburgh-aug 25th
Apache spark sneha challa- google pittsburgh-aug 25th
 
Data Integration And Visualization
Data Integration And VisualizationData Integration And Visualization
Data Integration And Visualization
 
Code as Data workshop: Using source{d} Engine to extract insights from git re...
Code as Data workshop: Using source{d} Engine to extract insights from git re...Code as Data workshop: Using source{d} Engine to extract insights from git re...
Code as Data workshop: Using source{d} Engine to extract insights from git re...
 
Big Data Processing using Apache Spark and Clojure
Big Data Processing using Apache Spark and ClojureBig Data Processing using Apache Spark and Clojure
Big Data Processing using Apache Spark and Clojure
 
R tutorial
R tutorialR tutorial
R tutorial
 
Data integration with a façade. The case of knowledge graph construction.
Data integration with a façade. The case of knowledge graph construction.Data integration with a façade. The case of knowledge graph construction.
Data integration with a façade. The case of knowledge graph construction.
 
Jump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with DatabricksJump Start on Apache Spark 2.2 with Databricks
Jump Start on Apache Spark 2.2 with Databricks
 
Putting Historical Data in Context: how to use DSpace-GLAM
Putting Historical Data in Context: how to use DSpace-GLAMPutting Historical Data in Context: how to use DSpace-GLAM
Putting Historical Data in Context: how to use DSpace-GLAM
 
Apache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.pptApache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.ppt
 
How to describe a dataset. Interoperability issues
How to describe a dataset. Interoperability issuesHow to describe a dataset. Interoperability issues
How to describe a dataset. Interoperability issues
 
How to Describe a Dataset. Interoperability Issues, by Valeria Pesce
How to Describe a Dataset. Interoperability Issues, by Valeria PesceHow to Describe a Dataset. Interoperability Issues, by Valeria Pesce
How to Describe a Dataset. Interoperability Issues, by Valeria Pesce
 
Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Spark & Cassandra at DataStax Meetup on Jan 29, 2015 Spark & Cassandra at DataStax Meetup on Jan 29, 2015
Spark & Cassandra at DataStax Meetup on Jan 29, 2015
 
Producing, publishing and consuming linked data - CSHALS 2013
Producing, publishing and consuming linked data - CSHALS 2013Producing, publishing and consuming linked data - CSHALS 2013
Producing, publishing and consuming linked data - CSHALS 2013
 
Linked Census Data
Linked Census DataLinked Census Data
Linked Census Data
 
20160818 Semantics and Linkage of Archived Catalogs
20160818 Semantics and Linkage of Archived Catalogs20160818 Semantics and Linkage of Archived Catalogs
20160818 Semantics and Linkage of Archived Catalogs
 
20150716 introduction to apache spark v3
20150716 introduction to apache spark v3 20150716 introduction to apache spark v3
20150716 introduction to apache spark v3
 
Orchestrating the Intelligent Web with Apache Mahout
Orchestrating the Intelligent Web with Apache MahoutOrchestrating the Intelligent Web with Apache Mahout
Orchestrating the Intelligent Web with Apache Mahout
 
11. From Hadoop to Spark 1:2
11. From Hadoop to Spark 1:211. From Hadoop to Spark 1:2
11. From Hadoop to Spark 1:2
 

More from Dr.-Ing. Thomas Hartmann

KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016
Dr.-Ing. Thomas Hartmann
 
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
Dr.-Ing. Thomas Hartmann
 
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
Dr.-Ing. Thomas Hartmann
 
2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)
Dr.-Ing. Thomas Hartmann
 
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
Dr.-Ing. Thomas Hartmann
 
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
Dr.-Ing. Thomas Hartmann
 
The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...
Dr.-Ing. Thomas Hartmann
 
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
Dr.-Ing. Thomas Hartmann
 
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Dr.-Ing. Thomas Hartmann
 
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Dr.-Ing. Thomas Hartmann
 
2013.05 - IASSIST 2013 - 3
2013.05 - IASSIST 2013 - 32013.05 - IASSIST 2013 - 3
2013.05 - IASSIST 2013 - 3
Dr.-Ing. Thomas Hartmann
 
2013.05 - IASSIST 2013 - 2
2013.05 - IASSIST 2013 - 22013.05 - IASSIST 2013 - 2
2013.05 - IASSIST 2013 - 2
Dr.-Ing. Thomas Hartmann
 
2013.05 - IASSIST 2013
2013.05 - IASSIST 20132013.05 - IASSIST 2013
2013.05 - IASSIST 2013
Dr.-Ing. Thomas Hartmann
 
2013.05 - LDOW 2013 @ WWW 2013
2013.05 - LDOW 2013 @ WWW 20132013.05 - LDOW 2013 @ WWW 2013
2013.05 - LDOW 2013 @ WWW 2013
Dr.-Ing. Thomas Hartmann
 
2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys
Dr.-Ing. Thomas Hartmann
 
2012.12 - EDDI 2012 - Poster Demo
2012.12 - EDDI 2012 - Poster Demo2012.12 - EDDI 2012 - Poster Demo
2012.12 - EDDI 2012 - Poster Demo
Dr.-Ing. Thomas Hartmann
 
2012.12 - EDDI 2012 - Workshop
2012.12 - EDDI 2012 - Workshop2012.12 - EDDI 2012 - Workshop
2012.12 - EDDI 2012 - Workshop
Dr.-Ing. Thomas Hartmann
 
2012.11 - ISWC 2012 - DC - 2
2012.11 - ISWC 2012 - DC -  22012.11 - ISWC 2012 - DC -  2
2012.11 - ISWC 2012 - DC - 2
Dr.-Ing. Thomas Hartmann
 
2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3
Dr.-Ing. Thomas Hartmann
 
2012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 22012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 2
Dr.-Ing. Thomas Hartmann
 

More from Dr.-Ing. Thomas Hartmann (20)

KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016
 
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
 
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
 
2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)
 
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
 
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
 
The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...
 
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
 
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
 
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
 
2013.05 - IASSIST 2013 - 3
2013.05 - IASSIST 2013 - 32013.05 - IASSIST 2013 - 3
2013.05 - IASSIST 2013 - 3
 
2013.05 - IASSIST 2013 - 2
2013.05 - IASSIST 2013 - 22013.05 - IASSIST 2013 - 2
2013.05 - IASSIST 2013 - 2
 
2013.05 - IASSIST 2013
2013.05 - IASSIST 20132013.05 - IASSIST 2013
2013.05 - IASSIST 2013
 
2013.05 - LDOW 2013 @ WWW 2013
2013.05 - LDOW 2013 @ WWW 20132013.05 - LDOW 2013 @ WWW 2013
2013.05 - LDOW 2013 @ WWW 2013
 
2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys
 
2012.12 - EDDI 2012 - Poster Demo
2012.12 - EDDI 2012 - Poster Demo2012.12 - EDDI 2012 - Poster Demo
2012.12 - EDDI 2012 - Poster Demo
 
2012.12 - EDDI 2012 - Workshop
2012.12 - EDDI 2012 - Workshop2012.12 - EDDI 2012 - Workshop
2012.12 - EDDI 2012 - Workshop
 
2012.11 - ISWC 2012 - DC - 2
2012.11 - ISWC 2012 - DC -  22012.11 - ISWC 2012 - DC -  2
2012.11 - ISWC 2012 - DC - 2
 
2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3
 
2012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 22012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 2
 

Recently uploaded

Password Rotation in 2024 is still Relevant
Password Rotation in 2024 is still RelevantPassword Rotation in 2024 is still Relevant
Password Rotation in 2024 is still Relevant
Bert Blevins
 
Recent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS InfrastructureRecent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS Infrastructure
KAMAL CHOUDHARY
 
ARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdf
ARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdfARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdf
ARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdf
Inglês no Mundo Digital
 
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - MydbopsScaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Mydbops
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
Priyanka Aash
 
Observability For You and Me with OpenTelemetry
Observability For You and Me with OpenTelemetryObservability For You and Me with OpenTelemetry
Observability For You and Me with OpenTelemetry
Eric D. Schabell
 
DealBook of Ukraine: 2024 edition
DealBook of Ukraine: 2024 editionDealBook of Ukraine: 2024 edition
DealBook of Ukraine: 2024 edition
Yevgen Sysoyev
 
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Muhammad Ali
 
How RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptxHow RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptx
SynapseIndia
 
Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...
chetankumar9855
 
Best Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdfBest Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdf
Tatiana Al-Chueyr
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
HackersList
 
The Evolution of Remote Server Management
The Evolution of Remote Server ManagementThe Evolution of Remote Server Management
The Evolution of Remote Server Management
Bert Blevins
 
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyyActive Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
RaminGhanbari2
 
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Bert Blevins
 
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptxRPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
SynapseIndia
 
find out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challengesfind out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challenges
huseindihon
 
Implementations of Fused Deposition Modeling in real world
Implementations of Fused Deposition Modeling  in real worldImplementations of Fused Deposition Modeling  in real world
Implementations of Fused Deposition Modeling in real world
Emerging Tech
 
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
aslasdfmkhan4750
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
maigasapphire
 

Recently uploaded (20)

Password Rotation in 2024 is still Relevant
Password Rotation in 2024 is still RelevantPassword Rotation in 2024 is still Relevant
Password Rotation in 2024 is still Relevant
 
Recent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS InfrastructureRecent Advancements in the NIST-JARVIS Infrastructure
Recent Advancements in the NIST-JARVIS Infrastructure
 
ARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdf
ARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdfARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdf
ARTIFICIAL INTELLIGENCE (AI) IN MUSIC.pdf
 
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - MydbopsScaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
Scaling Connections in PostgreSQL Postgres Bangalore(PGBLR) Meetup-2 - Mydbops
 
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
(CISOPlatform Summit & SACON 2024) Digital Personal Data Protection Act.pdf
 
Observability For You and Me with OpenTelemetry
Observability For You and Me with OpenTelemetryObservability For You and Me with OpenTelemetry
Observability For You and Me with OpenTelemetry
 
DealBook of Ukraine: 2024 edition
DealBook of Ukraine: 2024 editionDealBook of Ukraine: 2024 edition
DealBook of Ukraine: 2024 edition
 
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
Litestack talk at Brighton 2024 (Unleashing the power of SQLite for Ruby apps)
 
How RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptxHow RPA Help in the Transportation and Logistics Industry.pptx
How RPA Help in the Transportation and Logistics Industry.pptx
 
Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...
 
Best Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdfBest Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdf
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
 
The Evolution of Remote Server Management
The Evolution of Remote Server ManagementThe Evolution of Remote Server Management
The Evolution of Remote Server Management
 
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyyActive Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
Active Inference is a veryyyyyyyyyyyyyyyyyyyyyyyy
 
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
Understanding Insider Security Threats: Types, Examples, Effects, and Mitigat...
 
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptxRPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
 
find out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challengesfind out more about the role of autonomous vehicles in facing global challenges
find out more about the role of autonomous vehicles in facing global challenges
 
Implementations of Fused Deposition Modeling in real world
Implementations of Fused Deposition Modeling  in real worldImplementations of Fused Deposition Modeling  in real world
Implementations of Fused Deposition Modeling in real world
 
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
High Profile Girls Call ServiCe Hyderabad 0000000000 Tanisha Best High Class ...
 
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
Girls Call Churchgate 9910780858 Provide Best And Top Girl Service And No1 in...
 

2014.12 - Let's Disco - 2 (EDDI 2014)

  • 3. Controlled Vocabularies •Existing DDI-CVs are available in RDF –Represented in SKOS format –Each CV is a skos:ConceptScheme –Each CV entry is a skos:Concept –Versioning is considered •Available at https://github.com/linked- statistics/DDI-controlled-vocabularies •Next step: Review by DDI-CV Working Group
  • 4. skos:Concept skos:Concept Scheme SummaryStatisticsType_1.0# ArithmeticMean Variance StandardDeviation a a a a skos:hasTopConcept skos:hasTopConcept skos:hasTopConcept
  • 5. <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#ArithmeticMean> a skos:Concept ; skos:definition "Mathematical average of a set of values. The mean is calculated by adding up two or more values and dividing the total by their number. In social/political science, it is usually the sum of the measurements divided by the number of subjects, or cases."@en ; skos:inScheme <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0#CodeList> ; skos:notation "ArithmeticMean" ; skos:prefLabel "Arithmetic mean (X)"@en .
  • 6. SummaryStatisticsType_2.0# skos:Concept Scheme SummaryStatisticsType_1.0# SummaryStatisticsType# a a a dcterms:hasVersion dcterms:hasVersion
  • 7. Versioning <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType#> a skos:ConceptScheme ; dcterms:title "Base Scheme of Summary Statistic Type"@en ; dcterms:description "Specifies the type of summary statistic. Summary statistics are a single number representation of the characteristics of a set of values."@en ; owl:versionInfo "1.0" ; dcterms:hasVersion <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_1.0# >, <http://rdf- vocabulary.ddialliance.org/DDICV/SummaryStatisticType_2.0# > .
  • 9. Relationships to other Vocabularies
  • 10. Relationships to other vocabularies •Data Cube –For representing multidimensional aggregate data •DCAT –For representing collections (catalogs) of research datasets –For providing additional information about physical aspects (file size, file formats) of research data files •PROV-O –For representing detailed provenance information, e.g. generation and aggregation of data, versioning information, etc.
  • 11. MicrodataData Set_1 AggregatedData Set_1 prov:Entity disco:LogicalData Set qb:DataSet a a a a prov:wasDerivedFrom
  • 12. Simple Case ddi:AggregatedDataSet_1 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_1 . ddi:MicrodataDataSet_1 a prov:Entity .
  • 13. Complex Case ddi:AggregatedDataSet_2 a prov:Entity ; prov:wasDerivedFrom ddi:MicrodataDataSet_2 ; prov:wasGeneratedBy ddi:AggregationActivity ; prov:qualifiedDerivation [ a prov:Derivation ; prov:entity ddi:MicrodataDataSet_2 ; prov:hadActivity ddi:AggregationActivity ] . ddi:AggregationActivity a prov:Activity . ddi:MicrodataDataSet_2 a prov:Entity;
  • 14. European Study_1 EuropeanData Set_1 DataCatalog_1 disco:Logical DataSet disco:Study dcat:Catalog dcat:Catalog Record dcat:Dataset a a a a a dcat:record dcat:dataset
  • 15. ddi:DataCatalog_1 a dcat:Catalog ; dcat:record ddi:EuropeanStudy_1 ; dcat:dataset ddi:EuropeanDataSet_1 . ddi:EuropeanStudy_1 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_1 . ddi:EuropeanDataSet_1 a dcat:Dataset, disco:LogicalDataSet ; dcat:theme ddi:topics/WellBeing ; dcat:theme ddi:topics/PoliticalAttitudes ; dcat:keyword "Europe"@en ; dcat:keyword "Politics"@en .
  • 17. ddi:DataCatalog_2 a dcat:Catalog; dcat:record ddi:EuropeanStudy_2 ; dcat:record ddi:AggregatedEuropeanData_2 ; dcat:dataset ddi:EuropeanDataSet_2 ; dcat:dataset ddi:AggregatedEuropeanDataSet_2 . ddi:EuropeanStudy_2 a dcat:CatalogRecord, disco:Study ; disco:product ddi:EuropeanDataSet_2 . ddi:AggregatedEuropeanData_2 a dcat:CatalogRecord ; foaf:primaryTopic ddi:AggregatedEuropeanDataSet_2. ddi:EuropeanDataSet_2 a dcat:Dataset, disco:LogicalDataSet . ddi:AggregatedEuropeanDataSet_2 a dcat:Dataset, qb:DataSet ; prov:wasDerivedFrom ddi:EuropeanStudy_2 .
  • 18. PHDD
  • 21. Mapping DDI-XML to Disco •Mappings only between Disco and DDI 3.1 of DDI-L in order to avoid inconsistencies –existing mapping documents between DDI 3.1 and other DDI versions (like DDI 3.2 and DDI 2.1) can be reused •Availability –Google Doc with mapping tables as basis for automatic generation –Turtle file containing all mappings –Mapping tables in HTML specification of Disco •Mapping is still ongoing work
  • 22. XSLT for existing DDI-XML •XSLTs for converting any XML output of DDI-C and DDI-L are available at https://github.com/linked-statistics/DDI-RDF- tools •Different XSLT for DDI-C and DDI-L
  • 23. Bidirectional Mappings •Only between Disco and DDI-L –DDI-L ⤑ Disco: straight-forward mapping for all items used in Disco –Disco ⤑ DDI-L: straight-forward mapping for all items in the disco namespace. •Only standard XPath expression is defined as mapping •Context: –Items from other vocabularies - used in Disco - need a context; then there could be a clear mapping path. –Context information necessary for mappings, e.g., skos:notation can be mapped to variable labels and to codes. –Context information is either a SPARQL query or an informal description as plain literal.
  • 24. Mapping Representation •Mapping ontology available containing all mapping triples •generated automatically out of the official mapping document
  • 25. Mapping Representation skos:notation a rdfs:Class, owl:Class ; disco:mapping [ a disco:Mapping ; disco:ddi-L-Xpath "//l:Variable/l:VariableName" ; disco:ddi-L-Documentation "http://www.ddialliance.org/Specification/DDI- Lifecycle/3.1/XMLSchema/FieldLevelDocumentatio n/logicalproduct_xsd/elements/V ariable.html" disco:context "skos:notation represents variable label" ; disco:context "SELECT ?notation WHERE { ?notation rdfs:domain ?variable. ?variable a disco:Variable. }" ]
  • 26. DDI 4
  • 29. Acknowledgements 26 experts from the statistical community and the Linked Data community coming from 12 different countries contributed to this work. They were participating in the events mentioned below. •1st workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in September 2011 •Working meeting in the course of the 3rd Annual European DDI Users Group Meeting (EDDI11) in Gothenburg, Sweden in December 2011 •2nd workshop on 'Semantic Statistics for Social, Behavioural, and Economic Sciences: Leveraging the DDI Model for the Linked Data Web' at Schloss Dagstuhl - Leibniz Center for Informatics, Germany in October 2012 •Working meeting at GESIS - Leibniz Institute for the Social Sciences in Mannheim, Germany in February 2013