SlideShare a Scribd company logo
AWSプロダクトシリーズ|よくわかるクラウドデータベース

AWS データベースサービスアップデート

2014/01/17
アマゾン データ サービス ジャパン株式会社
大久保 順
AWSのデータベースサービス
Amazon RDS

Amazon ElastiCache

Amazon DynamoDB

スケーラブルで高パフォーマンスな
“マネージドデータベース”

Amazon Redshift

Deployment & Administration
Application Services

Compute

Storage

Database

Networking

AWS Global Infrastructure
なぜマネージドデータベースを活用すべきか?
セキュリティ計画

ドキュメント作成
ライセンス管理
トレーニング

コード・スクリプト
作成
5%

インストール、アップグレード
パッチ適用、移行

40%

バックアップ/リカバリー
データロード/アンロード

5%

25%

パフォーマンス
チューニング
リレーショナルデータベース
完全マネージド
Amazon
RDS

MySQL, Oracle, SQL Server,

PostgreSQL
毎月数兆ものI/Oリクエストを処理
Amazon RDSの主要機能
• 管理性

 迅速なデプロイ。パラメーターも汎用に構成済み。
 パッチ適用
 監視メトリクスをCloudWatchに統合

• 可用性と堅牢性





バックアップの自動化とポイント・イン・タイム・リカバリー
データベース・スナップショット
障害発生ホストの自動リプレース(シングルAZ)
マルチAZ構成

• スケーラビリティ

 ワンタッチでスケール

• ストレージ, メモリ, CPU

 リードレプリカ
Amazon RDSのアップデート(各エンジン共通)
CR1インスタンスタイプの提供(cr1.8xlarge)





64 ビットプラットフォーム
244 GiB メモリ
88 ECU (2.75 ECU x 16 ハイパースレッドバーチャルコア)
10 ギガビットイーサネット

リージョン間スナップショットコピー
Amazon RDSのアップデート(MySQL)
MySQL 5.6のサポート
リードレプリカ関連機能の強化
 並列レプリカ作成
 リードレプリカ上でのスナップショット作成&ポイント・イン・タイム・リカ
バリー(5.6 only)
 2階層リードレプリカ(5.6 only)
 クロスリージョン・リードレプリカ
2階層リードレプリカのトポロジー
クロスリージョンサポートの拡充
US West x 2
(N. California
and Oregon)

US East
(Northern
Virginia)

LATAM
(Sao
Paola)

Europe West
(Dublin)

>10 data centers
In US East alone

9 AWS Regions including 25 Availability Zones and growing
46 world-wide points of presence

Asia Pacific
Region
(Singapore)

Asia Pacific
Region
(Tokyo)

Australia
Region
(Australia)

•

リージョン間スナップショット・コピー
全エンジン対応

•

US GovCloud
(US ITAR
Region
-- Oregon)

クロスリージョン・リードレプリカ
MySQL 5.6対応
Amazon RDSのアップデート(Oracle/SQL Server)
Oracle
 Statspackサポート
 パッチセット11.2.0.3への対応
 タイムゾーンサポート(ホストレベルでタイムゾーンを変更可能に)

SQL Server
 Transparent Data Encryption (TDE) をサポート
Amazon RDS for PostgreSQL(1/2)
PostgreSQL 9.3.1をサポート
RDSの主要機能を全リージョンで利用可能









マルチAZ
自動バックアップ、ポイントインタイムリカバリ
スナップショット取得とスナップショットからのリストア
プロビジョンドIOPS
インスタンスサイズの変更(db.t1.micro~db.cr1.8xlarge)
VPCサポート
事前によくチューニングされたパラメータ設定
RDSにおけるイベントの通知

リードレプリカは未サポート
Amazon RDS for PostgreSQL(2/2)
PostgreSQLの機能サポート
 PostGIS
• 地図情報アプリケーション構築時のデファクトデータベース

 言語エクステンション
• Perl、pgSQL、TCLでプロシージャ作成を可能に

 フルテキストインデクシング
• 自然言語処理で使いやすいように
インメモリキャッシュ

弾力性と堅牢性を兼備
Amazon
ElastiCache

Memcached & Redis
完全マネージド
ElastiCache: 完全マネージドのキャッシュサービス
デプロイが
容易

数クリック/APIコー
ルでマスター/ス
レーブ構成に

移行が
容易
memcached/R
edisと完全互換

エンドポイントを変
更するだけで既存
のコードが動作

管理が
容易

セキュア化
が容易

スケールが
容易

VPCとセキュリティ
グループに対応

処理能力のスケー
ルアップ・スケールア
ウトが可能

障害ノードの自動リ
プレース
必要に応じて自動
でパッチを適用
CloudWatchでパ
フォーマンス監視
Amazon ElastiCacheのアップデート
2013年9月よりMemcachedに加えてRedisを提供開始
Redisの特長
 高速なインメモリ型キー・バリュー・ストア
 豊富なデータ型対応 –文字列型, リスト型, セット型, ソート済みセット
型, ハッシュ型
 非同期レプリケーション
 スナップショットあるいは追記型ファイルによるデータ永続化
 Pub/Sub機能
ElastiCache for Redis構成例
読取りクエリーの大部分を
インメモリで高速に処理

Read Replica (Redis)

Master

App
Reads
Cache
Updates

Clients
Elastic Load
Balancing

EC2 App
Instances

RDS
MySQL DB
Instance
with PIOPS
NoSQLデータベース

堅牢かつ低レイテンシー
Amazon
DynamoDB

完全マネージド
圧倒的でシームレスなスケーラビリティ
圧倒的なスケーラビリティ

=

分散キー
・バリュー

データベースサービス
予測可能なパフォーマンス
運用の手間いらず
堅牢で低レイテンシー
高いコストパフォーマンス

シンプルなAPI
素早く開発
リレーショナル? それともNoSQL?
アプリケーションやワークロードの特性に応じて、柔軟に使い分ける
要素

リレーショナル (RDS)

NoSQL (DynamoDB)

• 既存のデータベースアプリケーション
• ビジネスプロセスを処理するアプリケーション

• 新規のWebアプリケーション
• 大量の小さなサイズの読込/書込

例:金融トランザクション, ERPアプリケーション,
承認ワークフロー

例:Web, ソーシャル, モバイルアプリ, ショッピ
ングカート, オーダー管理, ユーザー属性保存

アプリケーション
特性

• リレーショナルデータモデル, トランザクション処理
• 複雑なクエリ, 結合, 更新

• 単純なデータモデル
• 範囲(レンジ)クエリ, 単純な更新

スケーラビリティ

アプリケーション開発者かDB管理者が設計
例:クラスタリング, パーティション化, シャーディン
グ, キャッシュ

シームレスかつマネージド
必要に応じてスケール

サービス
品質

• パフォーマンス – データモデル, インデックス, ク
エリ, ストレージの最適化に依存
• 信頼性・可用性 – マネージド
• 耐久性 – マネージド

• パフォーマンス – 自動的に最適化
• 信頼性・可用性 – マネージド
• 耐久性 – マネージド

既存の運用・プログラミングスキル
SQLとプログラミング言語の知識

Web系のプログラミングスキルと言語知識

アプリケーション
種別

スキルセット

1つのアプリケーションでRDBMSとNoSQLを併用するケースも増えつつある
Amazon DynamoDBのアップデート
トランザクションライブラリを公開
 AWS SDK for Java用

ジオライブラリを公開
 AWS SDK for Java用

AWS Data Pipelineを使って、DynamoDBのデータをリージョン
間でコピー可能に
 DynamoDBのテーブルを別のリージョンに定期的にコピーできる

ファイングレインアクセス制御
 格納データへのアクセス制御をDynamoDB側で設定可能に
Amazon DynamoDBのアップデート
デスクトップ開発を可能にする DynamoDB Localリリース
 AWSに接続せずに、オフラインでDynamoDBアプリケーションを開発す
ることが可能
 DynamoDB APIの動きをシミュレート
 エンドポイントを書き換えるだけで、開発したアプリケーションコードを
そのままAWS上で動かすことが出来る
Amazon DynamoDBのアップデート
グローバルセカンダリーインデックス(GSI)のサポート
 クエリーの柔軟性を向上
ローカルセカンダリインデックス(LSI)との比較
ローカルセカンダリインデックス
(LSI)

グローバルセカンダリインデックス
(GSI)

テーブル当たりの最大数

5つ

5つ

キャパシティの指定

不要(テーブルに指定)

単独で必要

検索方法

テーブルのハッシュキーと組み合わ
せて検索

テーブルの任意のアトリビュートで検
索可能

整合性モデル

強い整合性(strong
consistency)と結果整合性
(eventual consistency)

結果整合性のみ

インデックスサイズ

ハッシュキーの各値あたり10GBま
で

制約なし
ローカルセカンダリインデックスの例
Images Table

User

Image

Date

Link

Bob

aed4c

2013-10-01

s3://…

Bob

cf2e2

2013-09-05

s3://…

Bob

f93bae

2013-10-08

s3://…

Alice

ca61a

2013-09-12

s3://…

Table

Local to a Hash Key value
ローカルセカンダリインデックスの例
Local Secondary Index on Date
Images Table

User

Image

Date

Link

User

Date

Image

Bob

aed4c

2013-10-01

s3://…

Bob

2013-09-05

cf2e2

Bob

cf2e2

2013-09-05

s3://…

Bob

2013-10-01

aed4c

Bob

f93bae

2013-10-08

s3://…

Bob

2013-10-08

f93bae

Alice

ca61a

2013-09-12

s3://…

Alice

2013-09-12

ca61a

Table

ByDate Local Secondary Index
ローカルセカンダリインデックスの例
Query for Bob’s two most recent images
Images Table

User

Image

Date

Link

User

Date

Image

Bob

aed4c

2013-10-01

s3://…

Bob

2013-09-05

cf2e2

Bob

cf2e2

2013-09-05

s3://…

Bob

2013-10-01

aed4c

Bob

f93bae

2013-10-08

s3://…

Bob

2013-10-08

f93bae

Alice

ca61a

2013-09-12

s3://…

Alice

2013-09-12

ca61a

Table

ByDate Local Secondary Index
グローバルセカンダリインデックスの例
ImageTags Table

Image

User

aed4c

Alice

aed4c

Bob

f93bae

Alice

f93bae

Bob

Table
グローバルセカンダリインデックスの例
Global Secondary Index on User, Image
ImageTags Table

Image

User

User

Image

aed4c

Alice

Bob

aed4c

aed4c

Bob

Bob

f93bae

f93bae

Alice

Alice

aed4c

f93bae

Bob

Alice

f93bae

Table

ByUser Global Secondary Index
グローバルセカンダリインデックスの例
ImageTags Table

Image

User

User

Image

aed4c

Alice

Bob

aed4c

aed4c

Bob

Bob

f93bae

f93bae

Alice

Alice

aed4c

f93bae

Bob

Alice

f93bae

Table

ByUser Global Secondary Index

Alternate Hash and Range Keys
グローバルセカンダリインデックスの例
Query for images tagged Alice
ImageTags Table

Image

User

User

Image

aed4c

Alice

Bob

aed4c

aed4c

Bob

Bob

f93bae

f93bae

Alice

Alice

aed4c

f93bae

Bob

Alice

f93bae

Table

ByUser Global Secondary Index

Alice
ペタバイト級のデータをハンドル

超並列処理
Amazon
Redshift

リレーショナルなデータウェアハウス
完全マネージド
セキュリティ機能の強化

•
•

Audit logging
SNS Alerts

Redshift
監査記録機能の強化
•

HSM/CloudHSM

•

Audit logging

•

SNS Alerts

AWS
CloudTrail
System Activity
Creates, Changes,
Deletes, Resizes

Amazon Redshift

Database Activity
Logins, Login failures,
Queries, Loads

Amazon S3
イベント通知の強化
•

HSM/CloudHSM

•

Audit logging

•

Monitoring
Security
Maintenance
Errors

SNS Alerts
Amazon
Redshift

SNS
Topic
データロード機能の強化

•

Cluster Creation

•

Faster Resize

Amazon Corporate Amazon
EC2
Data Center
EMR

Amazon
Redshift

Amazon S3
データロード機能の強化

•

Cluster Creation

•

Faster Resize

Amazon Corporate Amazon
EC2
Data Center
EMR

Amazon
Redshift

Amazon S3
クラスタ作成の高速化
•

COPY from SSH

•

Cluster Creation

•

Faster Resize

15-20 min

3 min
クラスタサイズ変更の高速化
•

COPY from SSH

•

Cluster Creation

•

Faster Resize

29 hours

7 hours
パフォーマンスと同時実行性の改善
パフォーマンスと同時実行性の改善

692.8s

34.9s
誤差

< 2%
パフォーマンスと同時実行性の改善

5,951.7s
2,151.9s
パフォーマンスと同時実行性の改善

15

50
Questions

More Related Content

What's hot

Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)
Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)
Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)Amazon Web Services Japan
 
AWS Black Belt Techシリーズ Amazon EMR
AWS Black Belt Techシリーズ  Amazon EMRAWS Black Belt Techシリーズ  Amazon EMR
AWS Black Belt Techシリーズ Amazon EMR
Amazon Web Services Japan
 
オンプレミスRDBMSをAWSへ移行する手法
オンプレミスRDBMSをAWSへ移行する手法オンプレミスRDBMSをAWSへ移行する手法
オンプレミスRDBMSをAWSへ移行する手法
Amazon Web Services Japan
 
AWSのデータベースサービス全体像
AWSのデータベースサービス全体像AWSのデータベースサービス全体像
AWSのデータベースサービス全体像
Amazon Web Services Japan
 
2017年1月のAWSサービスアップデートまとめ
 2017年1月のAWSサービスアップデートまとめ 2017年1月のAWSサービスアップデートまとめ
2017年1月のAWSサービスアップデートまとめ
Amazon Web Services Japan
 
IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)
IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)
IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)
Akira Shimosako
 
Db2をAWS上に構築する際のヒント&TIPS 2020年6月版
Db2をAWS上に構築する際のヒント&TIPS 2020年6月版Db2をAWS上に構築する際のヒント&TIPS 2020年6月版
Db2をAWS上に構築する際のヒント&TIPS 2020年6月版
Akira Shimosako
 
NoSQL on AWSで作る最新ソーシャルゲームアーキテクチャ
NoSQL on AWSで作る最新ソーシャルゲームアーキテクチャNoSQL on AWSで作る最新ソーシャルゲームアーキテクチャ
NoSQL on AWSで作る最新ソーシャルゲームアーキテクチャYasuhiro Matsuo
 
SAPでクラウドはじめてみませんか? AWS and Azure
SAPでクラウドはじめてみませんか? AWS and AzureSAPでクラウドはじめてみませんか? AWS and Azure
SAPでクラウドはじめてみませんか? AWS and AzureMasaru Hiroki
 
データレイクを基盤としたAWS上での機械学習サービス構築
データレイクを基盤としたAWS上での機械学習サービス構築データレイクを基盤としたAWS上での機械学習サービス構築
データレイクを基盤としたAWS上での機械学習サービス構築
Amazon Web Services Japan
 
[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...
[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...
[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...
Masahiro Tomisugi
 
スケーラブルな Deep Leaning フレームワーク "Apache MXNet” を AWS で学ぶ
スケーラブルな Deep Leaning  フレームワーク "Apache MXNet” を AWS で学ぶスケーラブルな Deep Leaning  フレームワーク "Apache MXNet” を AWS で学ぶ
スケーラブルな Deep Leaning フレームワーク "Apache MXNet” を AWS で学ぶ
Amazon Web Services Japan
 
Amazon Athena で実現する データ分析の広がり
Amazon Athena で実現する データ分析の広がりAmazon Athena で実現する データ分析の広がり
Amazon Athena で実現する データ分析の広がり
Amazon Web Services Japan
 
20111215_第1回EMR勉強会発表資料
20111215_第1回EMR勉強会発表資料20111215_第1回EMR勉強会発表資料
20111215_第1回EMR勉強会発表資料
Kotaro Tsukui
 
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまでやりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
Daisuke Masubuchi
 
オンプレからAuroraへの移行とその効果
オンプレからAuroraへの移行とその効果オンプレからAuroraへの移行とその効果
オンプレからAuroraへの移行とその効果
Masato Kataoka
 
クラウド上のデータ活用デザインパターン
クラウド上のデータ活用デザインパターンクラウド上のデータ活用デザインパターン
クラウド上のデータ活用デザインパターン
Amazon Web Services Japan
 
Dbts2015 tokyo vector_in_hadoop_vortex
Dbts2015 tokyo vector_in_hadoop_vortexDbts2015 tokyo vector_in_hadoop_vortex
Dbts2015 tokyo vector_in_hadoop_vortex
Koji Shinkubo
 
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 FallAmazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 FallShinpei Ohtani
 
AWSでのバースト ― GP2 T2 ご紹介資料
AWSでのバースト ― GP2 T2 ご紹介資料AWSでのバースト ― GP2 T2 ご紹介資料
AWSでのバースト ― GP2 T2 ご紹介資料
Rasmus Ekman
 

What's hot (20)

Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)
Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)
Amazon Elastic MapReduce with Hive/Presto ハンズオン(講義)
 
AWS Black Belt Techシリーズ Amazon EMR
AWS Black Belt Techシリーズ  Amazon EMRAWS Black Belt Techシリーズ  Amazon EMR
AWS Black Belt Techシリーズ Amazon EMR
 
オンプレミスRDBMSをAWSへ移行する手法
オンプレミスRDBMSをAWSへ移行する手法オンプレミスRDBMSをAWSへ移行する手法
オンプレミスRDBMSをAWSへ移行する手法
 
AWSのデータベースサービス全体像
AWSのデータベースサービス全体像AWSのデータベースサービス全体像
AWSのデータベースサービス全体像
 
2017年1月のAWSサービスアップデートまとめ
 2017年1月のAWSサービスアップデートまとめ 2017年1月のAWSサービスアップデートまとめ
2017年1月のAWSサービスアップデートまとめ
 
IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)
IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)
IBM版Hadoop - BigInsights/Big SQL (2013/07/26 CLUB DB2発表資料)
 
Db2をAWS上に構築する際のヒント&TIPS 2020年6月版
Db2をAWS上に構築する際のヒント&TIPS 2020年6月版Db2をAWS上に構築する際のヒント&TIPS 2020年6月版
Db2をAWS上に構築する際のヒント&TIPS 2020年6月版
 
NoSQL on AWSで作る最新ソーシャルゲームアーキテクチャ
NoSQL on AWSで作る最新ソーシャルゲームアーキテクチャNoSQL on AWSで作る最新ソーシャルゲームアーキテクチャ
NoSQL on AWSで作る最新ソーシャルゲームアーキテクチャ
 
SAPでクラウドはじめてみませんか? AWS and Azure
SAPでクラウドはじめてみませんか? AWS and AzureSAPでクラウドはじめてみませんか? AWS and Azure
SAPでクラウドはじめてみませんか? AWS and Azure
 
データレイクを基盤としたAWS上での機械学習サービス構築
データレイクを基盤としたAWS上での機械学習サービス構築データレイクを基盤としたAWS上での機械学習サービス構築
データレイクを基盤としたAWS上での機械学習サービス構築
 
[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...
[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...
[db tech showcase Tokyo 2015] E26 Couchbaseの最新情報/JBoss Data Virtualizationで仮想...
 
スケーラブルな Deep Leaning フレームワーク "Apache MXNet” を AWS で学ぶ
スケーラブルな Deep Leaning  フレームワーク "Apache MXNet” を AWS で学ぶスケーラブルな Deep Leaning  フレームワーク "Apache MXNet” を AWS で学ぶ
スケーラブルな Deep Leaning フレームワーク "Apache MXNet” を AWS で学ぶ
 
Amazon Athena で実現する データ分析の広がり
Amazon Athena で実現する データ分析の広がりAmazon Athena で実現する データ分析の広がり
Amazon Athena で実現する データ分析の広がり
 
20111215_第1回EMR勉強会発表資料
20111215_第1回EMR勉強会発表資料20111215_第1回EMR勉強会発表資料
20111215_第1回EMR勉強会発表資料
 
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまでやりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
やりたいことから考えるMicrosoft Azure 上の データストアの選び方とデータサイエンティスト向け活用法。KVSからDWHまで
 
オンプレからAuroraへの移行とその効果
オンプレからAuroraへの移行とその効果オンプレからAuroraへの移行とその効果
オンプレからAuroraへの移行とその効果
 
クラウド上のデータ活用デザインパターン
クラウド上のデータ活用デザインパターンクラウド上のデータ活用デザインパターン
クラウド上のデータ活用デザインパターン
 
Dbts2015 tokyo vector_in_hadoop_vortex
Dbts2015 tokyo vector_in_hadoop_vortexDbts2015 tokyo vector_in_hadoop_vortex
Dbts2015 tokyo vector_in_hadoop_vortex
 
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 FallAmazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
Amazon Elastic MapReduce@Hadoop Conference Japan 2011 Fall
 
AWSでのバースト ― GP2 T2 ご紹介資料
AWSでのバースト ― GP2 T2 ご紹介資料AWSでのバースト ― GP2 T2 ご紹介資料
AWSでのバースト ― GP2 T2 ご紹介資料
 

Similar to [よくわかるクラウドデータベース] AWSデータベースアップデート 20140117

AWS Blackbelt 2015シリーズ RDS
AWS Blackbelt 2015シリーズ RDSAWS Blackbelt 2015シリーズ RDS
AWS Blackbelt 2015シリーズ RDS
Amazon Web Services Japan
 
非エンジニアのための「今さら聞けない」AWS講座資料
非エンジニアのための「今さら聞けない」AWS講座資料非エンジニアのための「今さら聞けない」AWS講座資料
非エンジニアのための「今さら聞けない」AWS講座資料
NHN テコラス株式会社
 
クラウドを積極活用した サービスの開発のために
クラウドを積極活用したサービスの開発のためにクラウドを積極活用したサービスの開発のために
クラウドを積極活用した サービスの開発のために
Yuichiro Saito
 
DLLAB Ignite Update Data Platform
DLLAB  Ignite Update Data PlatformDLLAB  Ignite Update Data Platform
M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]
M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]
M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]
日本マイクロソフト株式会社
 
CloudStack Overview@OSC2012Fukuoka
CloudStack Overview@OSC2012FukuokaCloudStack Overview@OSC2012Fukuoka
CloudStack Overview@OSC2012Fukuoka
Satoshi Shimazaki
 
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
Amazon Web Services Japan
 
エンターテイメント業界におけるAWS活用事例
エンターテイメント業界におけるAWS活用事例エンターテイメント業界におけるAWS活用事例
エンターテイメント業界におけるAWS活用事例Amazon Web Services Japan
 
Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう!
Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう! Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう!
Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう!
Yoichi Kawasaki
 
Data discoveryを支えるawsのbig data技術と最新事例
Data discoveryを支えるawsのbig data技術と最新事例Data discoveryを支えるawsのbig data技術と最新事例
Data discoveryを支えるawsのbig data技術と最新事例
Takashi Koyanagawa
 
[AWS Summit 2012] 基調講演 Day1: Go Global !
[AWS Summit 2012] 基調講演 Day1: Go Global ! [AWS Summit 2012] 基調講演 Day1: Go Global !
[AWS Summit 2012] 基調講演 Day1: Go Global !
Amazon Web Services Japan
 
ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...
ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...
ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...
Amazon Web Services Japan
 
AWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイント
AWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイントAWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイント
AWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイント
Denodo
 
データ活用を加速するAWS分析サービスのご紹介
データ活用を加速するAWS分析サービスのご紹介データ活用を加速するAWS分析サービスのご紹介
データ活用を加速するAWS分析サービスのご紹介
Amazon Web Services Japan
 
TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現
TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現
TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現
YosukeIshii6
 
Denali ctp3 always on availability groups 概要
Denali ctp3 always on  availability groups 概要Denali ctp3 always on  availability groups 概要
Denali ctp3 always on availability groups 概要Masayuki Ozawa
 
20170510aws blackbeltrds-170510101017
20170510aws blackbeltrds-17051010101720170510aws blackbeltrds-170510101017
20170510aws blackbeltrds-170510101017
anzhong70
 
Best Practices for Running PostgreSQL on AWS
Best Practices for Running PostgreSQL on AWSBest Practices for Running PostgreSQL on AWS
Best Practices for Running PostgreSQL on AWS
Amazon Web Services Japan
 

Similar to [よくわかるクラウドデータベース] AWSデータベースアップデート 20140117 (20)

AWS Blackbelt 2015シリーズ RDS
AWS Blackbelt 2015シリーズ RDSAWS Blackbelt 2015シリーズ RDS
AWS Blackbelt 2015シリーズ RDS
 
非エンジニアのための「今さら聞けない」AWS講座資料
非エンジニアのための「今さら聞けない」AWS講座資料非エンジニアのための「今さら聞けない」AWS講座資料
非エンジニアのための「今さら聞けない」AWS講座資料
 
20120409 aws meister-reloaded-dynamo-db
20120409 aws meister-reloaded-dynamo-db20120409 aws meister-reloaded-dynamo-db
20120409 aws meister-reloaded-dynamo-db
 
20120508 aws meister-rds-public
20120508 aws meister-rds-public20120508 aws meister-rds-public
20120508 aws meister-rds-public
 
クラウドを積極活用した サービスの開発のために
クラウドを積極活用したサービスの開発のためにクラウドを積極活用したサービスの開発のために
クラウドを積極活用した サービスの開発のために
 
DLLAB Ignite Update Data Platform
DLLAB  Ignite Update Data PlatformDLLAB  Ignite Update Data Platform
DLLAB Ignite Update Data Platform
 
M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]
M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]
M03_Azure PaaS データベースの全体像と適切な選び方 [Microsoft Japan Digital Days]
 
CloudStack Overview@OSC2012Fukuoka
CloudStack Overview@OSC2012FukuokaCloudStack Overview@OSC2012Fukuoka
CloudStack Overview@OSC2012Fukuoka
 
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
20180425 AWS Black Belt Online Seminar Amazon Relational Database Service (Am...
 
エンターテイメント業界におけるAWS活用事例
エンターテイメント業界におけるAWS活用事例エンターテイメント業界におけるAWS活用事例
エンターテイメント業界におけるAWS活用事例
 
Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう!
Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう! Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう!
Web App for Containers + MySQLでコンテナ対応したPHPアプリを作ろう!
 
Data discoveryを支えるawsのbig data技術と最新事例
Data discoveryを支えるawsのbig data技術と最新事例Data discoveryを支えるawsのbig data技術と最新事例
Data discoveryを支えるawsのbig data技術と最新事例
 
[AWS Summit 2012] 基調講演 Day1: Go Global !
[AWS Summit 2012] 基調講演 Day1: Go Global ! [AWS Summit 2012] 基調講演 Day1: Go Global !
[AWS Summit 2012] 基調講演 Day1: Go Global !
 
ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...
ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...
ATC301 AWS re:Invent 2017/11/27 - 1 Million Bids in 100ms - Using AWS to Powe...
 
AWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイント
AWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイントAWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイント
AWS と Denodo で実現するデータ活用基盤 - データ民主化を加速するクラウド活用のポイント
 
データ活用を加速するAWS分析サービスのご紹介
データ活用を加速するAWS分析サービスのご紹介データ活用を加速するAWS分析サービスのご紹介
データ活用を加速するAWS分析サービスのご紹介
 
TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現
TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現
TidalScaleで複数の物理サーバを集約しインメモリーコンピューティングを実現
 
Denali ctp3 always on availability groups 概要
Denali ctp3 always on  availability groups 概要Denali ctp3 always on  availability groups 概要
Denali ctp3 always on availability groups 概要
 
20170510aws blackbeltrds-170510101017
20170510aws blackbeltrds-17051010101720170510aws blackbeltrds-170510101017
20170510aws blackbeltrds-170510101017
 
Best Practices for Running PostgreSQL on AWS
Best Practices for Running PostgreSQL on AWSBest Practices for Running PostgreSQL on AWS
Best Practices for Running PostgreSQL on AWS
 

More from Amazon Web Services Japan

202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
Amazon Web Services Japan
 
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
202204 AWS Black Belt Online Seminar AWS IoT Device Defender202204 AWS Black Belt Online Seminar AWS IoT Device Defender
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
Amazon Web Services Japan
 
Infrastructure as Code (IaC) 談義 2022
Infrastructure as Code (IaC) 談義 2022Infrastructure as Code (IaC) 談義 2022
Infrastructure as Code (IaC) 談義 2022
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
Amazon Web Services Japan
 
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
Amazon Web Services Japan
 
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデートAmazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Web Services Japan
 
20220409 AWS BLEA 開発にあたって検討したこと
20220409 AWS BLEA 開発にあたって検討したこと20220409 AWS BLEA 開発にあたって検討したこと
20220409 AWS BLEA 開発にあたって検討したこと
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
Amazon Web Services Japan
 
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
Amazon Web Services Japan
 
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
Amazon Web Services Japan
 
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon QuickSight の組み込み方法をちょっぴりDDAmazon QuickSight の組み込み方法をちょっぴりDD
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon Web Services Japan
 
マルチテナント化で知っておきたいデータベースのこと
マルチテナント化で知っておきたいデータベースのことマルチテナント化で知っておきたいデータベースのこと
マルチテナント化で知っておきたいデータベースのこと
Amazon Web Services Japan
 
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
Amazon Web Services Japan
 
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
Amazon Web Services Japan
 
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するためにAmazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Web Services Japan
 
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
Amazon Web Services Japan
 
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
Amazon Web Services Japan
 
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
Amazon Web Services Japan
 

More from Amazon Web Services Japan (20)

202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
202205 AWS Black Belt Online Seminar Amazon VPC IP Address Manager (IPAM)
 
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
202205 AWS Black Belt Online Seminar Amazon FSx for OpenZFS
 
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
202204 AWS Black Belt Online Seminar AWS IoT Device Defender202204 AWS Black Belt Online Seminar AWS IoT Device Defender
202204 AWS Black Belt Online Seminar AWS IoT Device Defender
 
Infrastructure as Code (IaC) 談義 2022
Infrastructure as Code (IaC) 談義 2022Infrastructure as Code (IaC) 談義 2022
Infrastructure as Code (IaC) 談義 2022
 
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
202204 AWS Black Belt Online Seminar Amazon Connect を活用したオンコール対応の実現
 
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
202204 AWS Black Belt Online Seminar Amazon Connect Salesforce連携(第1回 CTI Adap...
 
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデートAmazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
Amazon Game Tech Night #25 ゲーム業界向け機械学習最新状況アップデート
 
20220409 AWS BLEA 開発にあたって検討したこと
20220409 AWS BLEA 開発にあたって検討したこと20220409 AWS BLEA 開発にあたって検討したこと
20220409 AWS BLEA 開発にあたって検討したこと
 
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
202202 AWS Black Belt Online Seminar AWS Managed Rules for AWS WAF の活用
 
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
202203 AWS Black Belt Online Seminar Amazon Connect Tasks.pdf
 
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
SaaS テナント毎のコストを把握するための「AWS Application Cost Profiler」のご紹介
 
Amazon QuickSight の組み込み方法をちょっぴりDD
Amazon QuickSight の組み込み方法をちょっぴりDDAmazon QuickSight の組み込み方法をちょっぴりDD
Amazon QuickSight の組み込み方法をちょっぴりDD
 
マルチテナント化で知っておきたいデータベースのこと
マルチテナント化で知っておきたいデータベースのことマルチテナント化で知っておきたいデータベースのこと
マルチテナント化で知っておきたいデータベースのこと
 
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
機密データとSaaSは共存しうるのか!?セキュリティー重視のユーザー層を取り込む為のネットワーク通信のアプローチ
 
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
パッケージソフトウェアを簡単にSaaS化!?既存の資産を使ったSaaS化手法のご紹介
 
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
202202 AWS Black Belt Online Seminar Amazon Connect Customer Profiles
 
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するためにAmazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
Amazon Game Tech Night #24 KPIダッシュボードを最速で用意するために
 
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
202202 AWS Black Belt Online Seminar AWS SaaS Boost で始めるSaaS開発⼊⾨
 
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
[20220126] JAWS-UG 2022初頭までに葬ったAWSアンチパターン大紹介
 
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
202111 AWS Black Belt Online Seminar AWSで構築するSmart Mirrorのご紹介
 

Recently uploaded

ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
azuma satoshi
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptxiMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
kitamisetagayaxxx
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
sugiuralab
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
Osaka University
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
ARISE analytics
 
Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。
Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。
Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。
iPride Co., Ltd.
 
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
Takuya Minagawa
 
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
Osaka University
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
osamut
 
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDDなぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
ssuserfcafd1
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
Yuki Miyazaki
 
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
Shinichi Hirauchi
 
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
Seiya Shimabukuro
 

Recently uploaded (14)

ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptxiMacwoSu_Gong_de_barabaranishitaHua_.pptx
iMacwoSu_Gong_de_barabaranishitaHua_.pptx
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
 
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
協働AIがもたらす業務効率革命 -日本企業が押さえるべきポイント-Collaborative AI Revolutionizing Busines...
 
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
【JSAI2024】LLMエージェントの人間との対話における反芻的返答の親近感向上効果_v1.1.pdf
 
Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。
Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。
Microsoft Azureで生成AIを使ってみた話 2024/6/14の勉強会で発表されたものです。
 
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT  vol112 発表資料)
ろくに電子工作もしたことない人間がIoT用ミドルウェアを作った話(IoTLT vol112 発表資料)
 
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
生成AIの実利用に必要なこと-Practical Requirements for the Deployment of Generative AI
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
 
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDDなぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
なぜそのDDDは効果が薄いのか?名ばかりDX案件での経験を踏まえて培った他の思考を交えた現代風?のDDD
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
 
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
気ままなLLMをAgents for Amazon Bedrockでちょっとだけ飼いならす
 
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
20240621_AI事業者ガイドライン_セキュリティパートの紹介_SeiyaShimabukuro
 

[よくわかるクラウドデータベース] AWSデータベースアップデート 20140117