SlideShare a Scribd company logo
NIPS2011読み会発表資料
Why The Brain Separates Face Recognition
                From Object Recognition

                         Takuya Minagawa
概要
   “Why The Brain Separates Face Recognition From
    Object Recognition”
       J.Z.Leibo, J.Mutch and T.Poggio (@MIT)
   「なぜ、脳は顔認識と物体認識の回路を分けたの
    か?」
       脳には顔に対して選択的に反応する領域がある。それは
        なぜか。
       解剖学的な観点ではなく、計算モデルの観点から、説明を
        試みる
    結論:
    視点の変化や照明の変化にロバストな認識を行うために、回
    路を分ける必要があった。
概要
   脳の視覚皮質の画像処理プロセス
   顔に選択的に反応する領域
   視覚皮質の計算モデル(HMAXモデル)
   視点/照明変化のためのHMAXモデルの拡張
   拡張HMAXモデルによる顔/物体認識実験
   結論:なぜ顔認識を分けたのか?
視覚皮質の画像処理プロセス

           背側経路(dorsal stream)
           腕を伸ばして何かを掴むな
           どの際に利用される、行動
           に関わる経路。”Where”経
           路


           腹側経路(ventral stream)
           それが犬か、猫か、などを
           認識する、知覚に関わる経
           路。”What”経路
“瞬間的な認識”の画像処理モデル
   霊長類は、目や注意の動きが起こらない程度の短い
    時間(100msec)画像を見せただけで、認識すること
    ができる。
   瞬間的な認識(Rapid Categorization)では腹側経路の
    フィードフォワードパスのみ使用される
       画像が十分な時間提示された場合、「注意」が働きフィー
        ドバックパスが活性化される。
   色情報は瞬間的な認識においては重要ではない。
腹側経路のフィードフォワードパス
腹側経路の階層構造
腹側経路の階層構造
   階層が上位に位置するほど、複雑な刺激に対して選択
    性を持つようになる。
   階層が上位になるほど、位置、サイズなどに対する普遍
    性が上がる。
       カバーする受容野の大きさも同時に広くなる。
   上位の階層ほど可塑性が高い。
       学習に対して早く柔軟に対応する。
顔に選択的に反応する脳の領域
  マカクザルの脳




個人の顔に選択的に反応   顔の向きに選択的に反応
向きの違いには反応せず
視覚皮質の計算モデル
Hubel & Wieselの階層モデル:
   単純型細胞(Simple Cell)
       ある形状に対して選択的に反応


   複雑型細胞(Complex Cell)
       単純細胞からの出力を受け取る。
       位置とスケールの選択性を除去する。


   単純型細胞と複雑型細胞で交互に処理される。
単純型細胞

   ある特定の信号(位置、大きさ、
    形状)に対して最も強く反応する。
       テンプレートマッチング
   信号の形が変わると、それに
    伴って反応も減っていく。
       ガウス関数で近似。


V1において反応する形状の例
複雑型細胞
   ある領域内、あるスケール範囲内にある、同一の形状に
    対する選択性を持つ単純型細胞からの信号受け取る。
       そのうち最大の入力を選択する




              位置とサイズに対する普遍性実現の例
視覚皮質の計算モデル(HMAXモデル)
視覚皮質の計算モデル(HMAXモデル)
  Machine Learning


                           C2
                                   S1, S2: 単純型細胞
                 Max               C1,C2: 複雑型細胞
                           S2      S1 & C1≒ V1 & V2
               Tuning
                                   S2 ≒ PIT
                           C1      C2 ≒ PIT & AIT
                     Max
                                   Machine Learning ≒ AIT
                           S1
                                    & PFC

              Tuning
視覚皮質の計算モデル(HMAXモデル)
  Machine Learning
                                S1:
                           C2   入力画像に対し、様々な方向/スケールの
                 Max
                                ガボールフィルタをかける

                           S2


               Tuning

                           C1

                     Max


                           S1


              Tuning
視覚皮質の計算モデル(HMAXモデル)
  Machine Learning
                                C1:
                           C2   近傍位置/スケールのS1から入力を受け取
                 Max
                                り、最大値を出力

                           S2


               Tuning
                                                C1
                           C1

                     Max
                                      Max
                           S1                   S1


              Tuning
視覚皮質の計算モデル(HMAXモデル)
  Machine Learning
                                S2:
                           C2   C1からの入力と、事前に取得したN個の形
                 Max
                                状パッチとの類似度を出力する。

                                                                    Shape patch
                           S2
                                                                        Pi



                                                               
               Tuning

                                       r  exp   X  Pi
                                                            2
                           C1

                     Max
                                C1 Output
                                   X
                           S1


              Tuning
                                形状パッチは事前に学習画像からランダムに
                                取得しておく。
視覚皮質の計算モデル(HMAXモデル)
  Machine Learning
                                C2:
                           C2   S2から入力を受け取り、各形状毎に全ての
                 Max
                                位置/スケールで最大の信号を出力する

                           S2
                                                 C2

                                  Max   Max
               Tuning

                           C1
                                                 S2
                     Max


                           S1
                                Machine Learning:
                                C2の出力ベクトル(各形状の最大類似度)
              Tuning            から機械学習を用いてカテゴリを学習。
物体の変形への耐性
   以下の変形は、どの物体のカテゴリにも共通




     位置の変化     スケールの変化    回転(画像平面上)

   以下の変形は、物体のカテゴリ毎に見えが違う




       向きの変化             照明の変化
HMAXモデルの拡張
             視点に変化に頑健なHMAXモデル
             • S3/C3層を追加
             • S3層は様々な顔の向きのテンプレー
               トを持つ
             • C3層では、すべての顔の向きを統合


              S/Cユニットの出力モデル

                                                              
                                          w           xj 
                                         n
             rw ( x)  max  exp   1                      2
                                                                
                        t        2           t, j            
                                       j 1                   

             応答          テンプレート                 Sユニットへの
                         (位置t)                  入力
実験
        視点変化および照明変化につい
         て実験
        視点変化:
            S2パッチx2000
            S3パッチx10人x71視点
            C3ユニットx10
        照明変化:
            S2パッチx80
            S3パッチx80人x15照明
            C3ユニットx80
        パッチ作成に使用した画像と学
         習/試験画像は別
        学習画像数:1枚
            (1-shot learning)
        試験画像を入力し、学習画像と
         の類似度を算出
視点変化に対する実験(試験/学習画像例)
視点変化に対する実験結果
照明変化に対する実験(試験/学習画像例)




   木     金属     ガラス
照明変化に対する実験
結論
   視覚皮質の腹側経路における生理学の知見に基づいた
    モデルを用いて、視点や照明に頑健な認識を行うために
    は、そのカテゴリ専用のモジュール(回路)を構築してや
    る必要がある。
   マカクザルのML/MF、およびAM領域は拡張HMAXモデ
    ルのC2, S3, C3ユニットに対応する。
   顔のような3次元的構造を持つものは、視点の変化に
    よって見え方が大きく変わるため、独自のモジュールを
    持つ必要がある。
       顔認識は、専用のリソースを与える必要があるほど重要
       人体認識のモジュールも見つかっているが、同様の理由と推
        察できる。
Any Questions?

More Related Content

What's hot

【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
Hirokatsu Kataoka
 
オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011
オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011
オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011Preferred Networks
 
深層強化学習でマルチエージェント学習(前篇)
深層強化学習でマルチエージェント学習(前篇)深層強化学習でマルチエージェント学習(前篇)
深層強化学習でマルチエージェント学習(前篇)
Junichiro Katsuta
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
 
[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
Deep Learning JP
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
Masahiro Suzuki
 
論文紹介「A Perspective View and Survey of Meta-Learning」
論文紹介「A Perspective View and Survey of Meta-Learning」論文紹介「A Perspective View and Survey of Meta-Learning」
論文紹介「A Perspective View and Survey of Meta-Learning」
Kota Matsui
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
Taiji Suzuki
 
強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類
佑 甲野
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII
 
物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)
cvpaper. challenge
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning
Masahiro Suzuki
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
Deep Learning JP
 
[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論
Deep Learning JP
 
シンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るなシンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るな
hoxo_m
 
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
Yusuke Uchida
 
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
Deep Learning JP
 
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
Masatoshi Yoshida
 
自由エネルギー原理から エナクティヴィズムへ
自由エネルギー原理から エナクティヴィズムへ自由エネルギー原理から エナクティヴィズムへ
自由エネルギー原理から エナクティヴィズムへ
Masatoshi Yoshida
 
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret MinimizationDeep Counterfactual Regret Minimization
Deep Counterfactual Regret Minimization
Kenshi Abe
 

What's hot (20)

【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
 
オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011
オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011
オンライン凸最適化と線形識別モデル学習の最前線_IBIS2011
 
深層強化学習でマルチエージェント学習(前篇)
深層強化学習でマルチエージェント学習(前篇)深層強化学習でマルチエージェント学習(前篇)
深層強化学習でマルチエージェント学習(前篇)
 
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
 
[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
[DL輪読会]Autonomous Reinforcement Learning: Formalism and Benchmarking
 
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
(DL輪読)Variational Dropout Sparsifies Deep Neural Networks
 
論文紹介「A Perspective View and Survey of Meta-Learning」
論文紹介「A Perspective View and Survey of Meta-Learning」論文紹介「A Perspective View and Survey of Meta-Learning」
論文紹介「A Perspective View and Survey of Meta-Learning」
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
 
強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類強化学習の基礎的な考え方と問題の分類
強化学習の基礎的な考え方と問題の分類
 
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
SSII2022 [SS2] 少ないデータやラベルを効率的に活用する機械学習技術 〜 足りない情報をどのように補うか?〜
 
物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)物体検知(Meta Study Group 発表資料)
物体検知(Meta Study Group 発表資料)
 
(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning(DL hacks輪読) Deep Kernel Learning
(DL hacks輪読) Deep Kernel Learning
 
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
 
[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論[DL輪読会] マルチエージェント強化学習と心の理論
[DL輪読会] マルチエージェント強化学習と心の理論
 
シンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るなシンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るな
 
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
 
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
[DL輪読会]“SimPLe”,“Improved Dynamics Model”,“PlaNet” 近年のVAEベース系列モデルの進展とそのモデルベース...
 
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
駒場学部講義2018 「意識の神経科学と自由エネルギー原理」講義スライド
 
自由エネルギー原理から エナクティヴィズムへ
自由エネルギー原理から エナクティヴィズムへ自由エネルギー原理から エナクティヴィズムへ
自由エネルギー原理から エナクティヴィズムへ
 
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret MinimizationDeep Counterfactual Regret Minimization
Deep Counterfactual Regret Minimization
 

Viewers also liked

自然な知覚を支える脳情報表現の定量理解
自然な知覚を支える脳情報表現の定量理解自然な知覚を支える脳情報表現の定量理解
自然な知覚を支える脳情報表現の定量理解
shinjinishimoto
 
ランダムフォレストとそのコンピュータビジョンへの応用
ランダムフォレストとそのコンピュータビジョンへの応用ランダムフォレストとそのコンピュータビジョンへの応用
ランダムフォレストとそのコンピュータビジョンへの応用
Kinki University
 
人工知能研究のための視覚情報処理
人工知能研究のための視覚情報処理人工知能研究のための視覚情報処理
人工知能研究のための視覚情報処理
Koki Nakamura
 
全脳関西編(松尾)
全脳関西編(松尾)全脳関西編(松尾)
全脳関西編(松尾)Yutaka Matsuo
 
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
at grandpa
 
201205016 deformablemodelfitting
201205016 deformablemodelfitting201205016 deformablemodelfitting
201205016 deformablemodelfitting
Takuya Minagawa
 
スパースモデリング入門
スパースモデリング入門スパースモデリング入門
スパースモデリング入門
Hideo Terada
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
nlab_utokyo
 

Viewers also liked (8)

自然な知覚を支える脳情報表現の定量理解
自然な知覚を支える脳情報表現の定量理解自然な知覚を支える脳情報表現の定量理解
自然な知覚を支える脳情報表現の定量理解
 
ランダムフォレストとそのコンピュータビジョンへの応用
ランダムフォレストとそのコンピュータビジョンへの応用ランダムフォレストとそのコンピュータビジョンへの応用
ランダムフォレストとそのコンピュータビジョンへの応用
 
人工知能研究のための視覚情報処理
人工知能研究のための視覚情報処理人工知能研究のための視覚情報処理
人工知能研究のための視覚情報処理
 
全脳関西編(松尾)
全脳関西編(松尾)全脳関西編(松尾)
全脳関西編(松尾)
 
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
機械学習プロフェッショナルシリーズ輪読会 #2 Chapter 5 「自己符号化器」 資料
 
201205016 deformablemodelfitting
201205016 deformablemodelfitting201205016 deformablemodelfitting
201205016 deformablemodelfitting
 
スパースモデリング入門
スパースモデリング入門スパースモデリング入門
スパースモデリング入門
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
 

More from Takuya Minagawa

Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and ArchitectureMachine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Takuya Minagawa
 
MobileNeRF
MobileNeRFMobileNeRF
MobileNeRF
Takuya Minagawa
 
点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ
Takuya Minagawa
 
Learning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal ProblemsLearning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal Problems
Takuya Minagawa
 
ConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdfConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdf
Takuya Minagawa
 
楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事
Takuya Minagawa
 
20210711 deepI2P
20210711 deepI2P20210711 deepI2P
20210711 deepI2P
Takuya Minagawa
 
20201010 personreid
20201010 personreid20201010 personreid
20201010 personreid
Takuya Minagawa
 
20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)
Takuya Minagawa
 
2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)
Takuya Minagawa
 
20200704 bsp net
20200704 bsp net20200704 bsp net
20200704 bsp net
Takuya Minagawa
 
20190825 vins mono
20190825 vins mono20190825 vins mono
20190825 vins mono
Takuya Minagawa
 
20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation
Takuya Minagawa
 
20190307 visualslam summary
20190307 visualslam summary20190307 visualslam summary
20190307 visualslam summary
Takuya Minagawa
 
Visual slam
Visual slamVisual slam
Visual slam
Takuya Minagawa
 
20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey
Takuya Minagawa
 
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
Takuya Minagawa
 
run Keras model on opencv
run Keras model on opencvrun Keras model on opencv
run Keras model on opencv
Takuya Minagawa
 
20181130 lidar object detection survey
20181130 lidar object detection survey20181130 lidar object detection survey
20181130 lidar object detection survey
Takuya Minagawa
 
object detection with lidar-camera fusion: survey (updated)
object detection with lidar-camera fusion: survey (updated)object detection with lidar-camera fusion: survey (updated)
object detection with lidar-camera fusion: survey (updated)
Takuya Minagawa
 

More from Takuya Minagawa (20)

Machine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and ArchitectureMachine Learning Operations (MLOps): Overview, Definition, and Architecture
Machine Learning Operations (MLOps): Overview, Definition, and Architecture
 
MobileNeRF
MobileNeRFMobileNeRF
MobileNeRF
 
点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ点群SegmentationのためのTransformerサーベイ
点群SegmentationのためのTransformerサーベイ
 
Learning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal ProblemsLearning to Solve Hard Minimal Problems
Learning to Solve Hard Minimal Problems
 
ConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdfConditionalPointDiffusion.pdf
ConditionalPointDiffusion.pdf
 
楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事楽しいコンピュータビジョンの受託仕事
楽しいコンピュータビジョンの受託仕事
 
20210711 deepI2P
20210711 deepI2P20210711 deepI2P
20210711 deepI2P
 
20201010 personreid
20201010 personreid20201010 personreid
20201010 personreid
 
20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)20200910コンピュータビジョン今昔物語(JPTA講演資料)
20200910コンピュータビジョン今昔物語(JPTA講演資料)
 
2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)2020/07/04 BSP-Net (CVPR2020)
2020/07/04 BSP-Net (CVPR2020)
 
20200704 bsp net
20200704 bsp net20200704 bsp net
20200704 bsp net
 
20190825 vins mono
20190825 vins mono20190825 vins mono
20190825 vins mono
 
20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation
 
20190307 visualslam summary
20190307 visualslam summary20190307 visualslam summary
20190307 visualslam summary
 
Visual slam
Visual slamVisual slam
Visual slam
 
20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey20190131 lidar-camera fusion semantic segmentation survey
20190131 lidar-camera fusion semantic segmentation survey
 
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
2018/12/28 LiDARで取得した道路上点群に対するsemantic segmentation
 
run Keras model on opencv
run Keras model on opencvrun Keras model on opencv
run Keras model on opencv
 
20181130 lidar object detection survey
20181130 lidar object detection survey20181130 lidar object detection survey
20181130 lidar object detection survey
 
object detection with lidar-camera fusion: survey (updated)
object detection with lidar-camera fusion: survey (updated)object detection with lidar-camera fusion: survey (updated)
object detection with lidar-camera fusion: survey (updated)
 

Recently uploaded

【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
harmonylab
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
Toru Tamaki
 
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdfFIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdfFIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdfFIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
Matsushita Laboratory
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
chiefujita1
 
CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料
Yuuitirou528 default
 
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdfFIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance
 
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdfFIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance
 
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさJSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
0207sukipio
 
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
Matsushita Laboratory
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
CRI Japan, Inc.
 
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
Fukuoka Institute of Technology
 

Recently uploaded (14)

【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
 
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdfFIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
FIDO Alliance Osaka Seminar: NEC & Yubico Panel.pdf
 
FIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdfFIDO Alliance Osaka Seminar: CloudGate.pdf
FIDO Alliance Osaka Seminar: CloudGate.pdf
 
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdfFIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
FIDO Alliance Osaka Seminar: PlayStation Passkey Deployment Case Study.pdf
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
 
CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料CS集会#13_なるほどわからん通信技術 発表資料
CS集会#13_なるほどわからん通信技術 発表資料
 
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdfFIDO Alliance Osaka Seminar: Welcome Slides.pdf
FIDO Alliance Osaka Seminar: Welcome Slides.pdf
 
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdfFIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
FIDO Alliance Osaka Seminar: LY-DOCOMO-KDDI-Mercari Panel.pdf
 
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさJSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
 
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
TaketoFujikawa_物語のコンセプトに基づく情報アクセス手法の基礎検討_JSAI2024
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
 
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
単腕マニピュレータによる 複数物体の同時組み立ての 基礎的考察 / Basic Approach to Robotic Assembly of Multi...
 

20120408発表資料

  • 1. NIPS2011読み会発表資料 Why The Brain Separates Face Recognition From Object Recognition Takuya Minagawa
  • 2. 概要  “Why The Brain Separates Face Recognition From Object Recognition”  J.Z.Leibo, J.Mutch and T.Poggio (@MIT)  「なぜ、脳は顔認識と物体認識の回路を分けたの か?」  脳には顔に対して選択的に反応する領域がある。それは なぜか。  解剖学的な観点ではなく、計算モデルの観点から、説明を 試みる 結論: 視点の変化や照明の変化にロバストな認識を行うために、回 路を分ける必要があった。
  • 3. 概要  脳の視覚皮質の画像処理プロセス  顔に選択的に反応する領域  視覚皮質の計算モデル(HMAXモデル)  視点/照明変化のためのHMAXモデルの拡張  拡張HMAXモデルによる顔/物体認識実験  結論:なぜ顔認識を分けたのか?
  • 4. 視覚皮質の画像処理プロセス 背側経路(dorsal stream) 腕を伸ばして何かを掴むな どの際に利用される、行動 に関わる経路。”Where”経 路 腹側経路(ventral stream) それが犬か、猫か、などを 認識する、知覚に関わる経 路。”What”経路
  • 5. “瞬間的な認識”の画像処理モデル  霊長類は、目や注意の動きが起こらない程度の短い 時間(100msec)画像を見せただけで、認識すること ができる。  瞬間的な認識(Rapid Categorization)では腹側経路の フィードフォワードパスのみ使用される  画像が十分な時間提示された場合、「注意」が働きフィー ドバックパスが活性化される。  色情報は瞬間的な認識においては重要ではない。
  • 8. 腹側経路の階層構造  階層が上位に位置するほど、複雑な刺激に対して選択 性を持つようになる。  階層が上位になるほど、位置、サイズなどに対する普遍 性が上がる。  カバーする受容野の大きさも同時に広くなる。  上位の階層ほど可塑性が高い。  学習に対して早く柔軟に対応する。
  • 9. 顔に選択的に反応する脳の領域 マカクザルの脳 個人の顔に選択的に反応 顔の向きに選択的に反応 向きの違いには反応せず
  • 10. 視覚皮質の計算モデル Hubel & Wieselの階層モデル:  単純型細胞(Simple Cell)  ある形状に対して選択的に反応  複雑型細胞(Complex Cell)  単純細胞からの出力を受け取る。  位置とスケールの選択性を除去する。  単純型細胞と複雑型細胞で交互に処理される。
  • 11. 単純型細胞  ある特定の信号(位置、大きさ、 形状)に対して最も強く反応する。  テンプレートマッチング  信号の形が変わると、それに 伴って反応も減っていく。  ガウス関数で近似。 V1において反応する形状の例
  • 12. 複雑型細胞  ある領域内、あるスケール範囲内にある、同一の形状に 対する選択性を持つ単純型細胞からの信号受け取る。  そのうち最大の入力を選択する 位置とサイズに対する普遍性実現の例
  • 14. 視覚皮質の計算モデル(HMAXモデル) Machine Learning C2  S1, S2: 単純型細胞 Max  C1,C2: 複雑型細胞 S2  S1 & C1≒ V1 & V2 Tuning  S2 ≒ PIT C1  C2 ≒ PIT & AIT Max  Machine Learning ≒ AIT S1 & PFC Tuning
  • 15. 視覚皮質の計算モデル(HMAXモデル) Machine Learning S1: C2 入力画像に対し、様々な方向/スケールの Max ガボールフィルタをかける S2 Tuning C1 Max S1 Tuning
  • 16. 視覚皮質の計算モデル(HMAXモデル) Machine Learning C1: C2 近傍位置/スケールのS1から入力を受け取 Max り、最大値を出力 S2 Tuning C1 C1 Max Max S1 S1 Tuning
  • 17. 視覚皮質の計算モデル(HMAXモデル) Machine Learning S2: C2 C1からの入力と、事前に取得したN個の形 Max 状パッチとの類似度を出力する。 Shape patch S2 Pi   Tuning r  exp   X  Pi 2 C1 Max C1 Output X S1 Tuning 形状パッチは事前に学習画像からランダムに 取得しておく。
  • 18. 視覚皮質の計算モデル(HMAXモデル) Machine Learning C2: C2 S2から入力を受け取り、各形状毎に全ての Max 位置/スケールで最大の信号を出力する S2 C2 Max Max Tuning C1 S2 Max S1 Machine Learning: C2の出力ベクトル(各形状の最大類似度) Tuning から機械学習を用いてカテゴリを学習。
  • 19. 物体の変形への耐性  以下の変形は、どの物体のカテゴリにも共通 位置の変化 スケールの変化 回転(画像平面上)  以下の変形は、物体のカテゴリ毎に見えが違う 向きの変化 照明の変化
  • 20. HMAXモデルの拡張 視点に変化に頑健なHMAXモデル • S3/C3層を追加 • S3層は様々な顔の向きのテンプレー トを持つ • C3層では、すべての顔の向きを統合 S/Cユニットの出力モデル     w  xj  n rw ( x)  max  exp   1 2  t   2 t, j    j 1  応答 テンプレート Sユニットへの (位置t) 入力
  • 21. 実験  視点変化および照明変化につい て実験  視点変化:  S2パッチx2000  S3パッチx10人x71視点  C3ユニットx10  照明変化:  S2パッチx80  S3パッチx80人x15照明  C3ユニットx80  パッチ作成に使用した画像と学 習/試験画像は別  学習画像数:1枚  (1-shot learning)  試験画像を入力し、学習画像と の類似度を算出
  • 26. 結論  視覚皮質の腹側経路における生理学の知見に基づいた モデルを用いて、視点や照明に頑健な認識を行うために は、そのカテゴリ専用のモジュール(回路)を構築してや る必要がある。  マカクザルのML/MF、およびAM領域は拡張HMAXモデ ルのC2, S3, C3ユニットに対応する。  顔のような3次元的構造を持つものは、視点の変化に よって見え方が大きく変わるため、独自のモジュールを 持つ必要がある。  顔認識は、専用のリソースを与える必要があるほど重要  人体認識のモジュールも見つかっているが、同様の理由と推 察できる。