SlideShare a Scribd company logo
1 of 70
Download to read offline
Resisted Motion
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                      (Newton’s 3rd Law)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                         R
        x                                x  g 
                                         
                                                   m
             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                         R
        x                                x  g 
                                         
                                                   m
             mg R
                              NOTE: greatest height still occurs
                                    when v = 0
Case 3 (downwards motion)
Case 3 (downwards motion)
Case 3 (downwards motion)




      m
       x
Case 3 (downwards motion)




      m
       x    mg
Case 3 (downwards motion)

            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R                        R
                             xg
                             
                                     m
      m
       x    mg
Case 3 (downwards motion)
                                      m  mg  R
                                       x
            R                                  R
                                       xg
                                       
                                               m
      m
       x    mg
                            NOTE: terminal velocity occurs
                                  when   0
                                        x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2

                    x  0, v  u
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                        R
                                                 xg
                                                 
                                                         m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x                                m   mg  kv 2
                                           x
                                                     k 2
               mg kv 2                        g  v
                                           x
                                                     m
                    x  0, v  u
dv  mg  kv 2
v 
 dx     m
dv  mg  kv 2
v 
 dx     m
 dx    mv
    
 dv  mg  kv 2
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
           u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
        m
        2k
           logmg  kv 2 u0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
      m
     2k
        logmg  kv 2 u0
     logmg  ku 2   logmg 
     m
     2k
     m      mg  ku 2 
     log             
     2k     mg 
     m    ku 2 
     log1    
     2k   mg 
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


    
      m
     2k
        logmg  kv 2 u0
     logmg  ku 2   logmg 
     m
     2k
     m      mg  ku 2             the greatest height
     log             
     2k       mg                      m      ku 2 
                                      is log1         metres
     m      ku 2                      2k     mg 
     log1       
     2k     mg 
k 2
   g  v
x
          m
k 2
    g  v
 x
           m
dv  mg  kv 2
    
dt         m
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
         u
       m      dv
       k  mg  v 2
   
         0
            k
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
    m      dv
    k  mg  v 2
   
      0
         k
                              u
    m k         1   k 
           tan    mg v 
                           
    k  mg                 0
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
     k  mg  v 2
   
        0
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                         
       kg                        
     m     1   k 
       tan   mg u 
                     
     kg             
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
     k  mg  v 2
   
        0
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                                                 m      1   k 
       kg                          it takes     tan    mg u  seconds
                                                                   
                                                  kg              
     m     1   k 
       tan   mg u 
                                       to reach the greatest height.
     kg             
(ii) A body of mass 5kg is dropped from a height at which the
     gravitational acceleration is g.
     Assuming that air resistance is proportional to speed v, the
     constant of proportion being 1 , find;
                                    8
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.

             1
               v
             8
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
                                             40log40 g  v 0
                                                                   v


                                             40log40 g  v   log40 g 
                                                     40 g 
                                             40 log          
                                                     40 g  v 
t       40 g 
    log          
40       40 g  v 
t       40 g 
        log          
    40       40 g  v 
               t
 40 g
         e   40
40 g  v
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
         e 40
40 g  v
40 g  v
              t
            
          e 40
 40 g
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
         e 40
40 g  v
40 g  v
              t
            
          e 40
 40 g             t
                
40 g  v  40 ge 40
                              t
                         
      v  40 g  40 ge       40


                     
                       t
      v  40 g 1  e 40 
                        
                        
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity occurs when   0
                                 x
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                         OR
                          
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
           e 40
  40 g  v
  40 g  v
                t
              
            e 40
   40 g             t
                  
  40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                  OR
                          
                                                                  
                                                                    t
b) the terminal velocity                   lim v  lim 40 g 1  e 40 
                                                                     
                                           t     t 
   terminal velocity1 occurs when   0
                                  x                                  
         i.e.0  g  v                            40 g
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
  40 g
          e  40
 40 g  v
 40 g  v
               t
             
           e 40
  40 g             t
                 
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                     OR
                          
                                                                     
                                                                       t
b) the terminal velocity                      lim v  lim 40 g 1  e 40 
                                                                        
                                              t     t 
   terminal velocity1 occurs when   0
                                  x                                     
         i.e.0  g  v                               40 g
                     40
             v  40 g                     terminal velocity is 40 g m/s
c) The distance it has fallen after time t
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                        t
                             
                                   t
                                       
          x  40 g t  40e       40
                                       
                                      0
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                         t
                              t
          x  40 g t  40e    40

                               0
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                          t
                                     
          x  40 gt  1600 ge            40
                                               1600 g
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                         t
                              t
          x  40 g t  40e    40                            Exercise 8C;
                               0                       2, 4, 5, 6, 8, 10, 13, 16
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                          t
                                     
          x  40 gt  1600 ge            40
                                               1600 g

More Related Content

Viewers also liked

Xavier University- ALLTERE
Xavier University- ALLTEREXavier University- ALLTERE
Xavier University- ALLTERESumathySRE
 
WiseLine help video--Chinese
WiseLine help video--ChineseWiseLine help video--Chinese
WiseLine help video--Chineseguestf4b79a0
 
X Bintegrator Document Generation
X Bintegrator Document GenerationX Bintegrator Document Generation
X Bintegrator Document Generationsofieverreyken
 
X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)Nigel Simmons
 
Xbrl 創新之龍 經驗分享 公開版本
Xbrl 創新之龍 經驗分享 公開版本Xbrl 創新之龍 經驗分享 公開版本
Xbrl 創新之龍 經驗分享 公開版本Jyun-Yao Huang
 
Xarxes socials per a persones, institucions i empreses sociables. Recursos di...
Xarxes socials per a persones, institucions i empreses sociables. Recursos di...Xarxes socials per a persones, institucions i empreses sociables. Recursos di...
Xarxes socials per a persones, institucions i empreses sociables. Recursos di...Miquel Pueyo
 
Www.raypcb.com tag-chinaelectronicsfair.html
Www.raypcb.com  tag-chinaelectronicsfair.htmlWww.raypcb.com  tag-chinaelectronicsfair.html
Www.raypcb.com tag-chinaelectronicsfair.htmlgrace cheng
 
Xarxa 29 [castellano]
Xarxa 29 [castellano]Xarxa 29 [castellano]
Xarxa 29 [castellano]celiacscat
 
Www.raypcb.com tag-coppercladlaminatemanufacturingprocess.html
Www.raypcb.com  tag-coppercladlaminatemanufacturingprocess.htmlWww.raypcb.com  tag-coppercladlaminatemanufacturingprocess.html
Www.raypcb.com tag-coppercladlaminatemanufacturingprocess.htmlgrace cheng
 
Xarxes socials d'alt valor afegit
Xarxes socials d'alt valor afegitXarxes socials d'alt valor afegit
Xarxes socials d'alt valor afegitMICProductivity
 
Www.raypcb.com tag-commondefectsonpcb.html
Www.raypcb.com  tag-commondefectsonpcb.htmlWww.raypcb.com  tag-commondefectsonpcb.html
Www.raypcb.com tag-commondefectsonpcb.htmlgrace cheng
 
Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)
Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)
Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)ciudadania0910
 

Viewers also liked (16)

Xavier University- ALLTERE
Xavier University- ALLTEREXavier University- ALLTERE
Xavier University- ALLTERE
 
WiseLine help video--Chinese
WiseLine help video--ChineseWiseLine help video--Chinese
WiseLine help video--Chinese
 
Xen summit2010 globocom
Xen summit2010 globocomXen summit2010 globocom
Xen summit2010 globocom
 
X Bintegrator Document Generation
X Bintegrator Document GenerationX Bintegrator Document Generation
X Bintegrator Document Generation
 
X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)X2 T05 01 by parts (2010)
X2 T05 01 by parts (2010)
 
Xcellent choice comp plan short
Xcellent choice comp plan shortXcellent choice comp plan short
Xcellent choice comp plan short
 
Xbrl 創新之龍 經驗分享 公開版本
Xbrl 創新之龍 經驗分享 公開版本Xbrl 創新之龍 經驗分享 公開版本
Xbrl 創新之龍 經驗分享 公開版本
 
Xalacapa1
Xalacapa1Xalacapa1
Xalacapa1
 
Xarxes socials per a persones, institucions i empreses sociables. Recursos di...
Xarxes socials per a persones, institucions i empreses sociables. Recursos di...Xarxes socials per a persones, institucions i empreses sociables. Recursos di...
Xarxes socials per a persones, institucions i empreses sociables. Recursos di...
 
Www.raypcb.com tag-chinaelectronicsfair.html
Www.raypcb.com  tag-chinaelectronicsfair.htmlWww.raypcb.com  tag-chinaelectronicsfair.html
Www.raypcb.com tag-chinaelectronicsfair.html
 
Xarxa 29 [castellano]
Xarxa 29 [castellano]Xarxa 29 [castellano]
Xarxa 29 [castellano]
 
Www.raypcb.com tag-coppercladlaminatemanufacturingprocess.html
Www.raypcb.com  tag-coppercladlaminatemanufacturingprocess.htmlWww.raypcb.com  tag-coppercladlaminatemanufacturingprocess.html
Www.raypcb.com tag-coppercladlaminatemanufacturingprocess.html
 
Xarxes socials d'alt valor afegit
Xarxes socials d'alt valor afegitXarxes socials d'alt valor afegit
Xarxes socials d'alt valor afegit
 
Www.raypcb.com tag-commondefectsonpcb.html
Www.raypcb.com  tag-commondefectsonpcb.htmlWww.raypcb.com  tag-commondefectsonpcb.html
Www.raypcb.com tag-commondefectsonpcb.html
 
Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)
Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)
Xamacka AsociacióN Juvenil (Irene, Lidia, Engracia Y Laura)
 
X3 drill practice
X3 drill practiceX3 drill practice
X3 drill practice
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 

Recently uploaded (20)

Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

X2 T06 02 resisted motion (2011)

  • 2. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion.
  • 3. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law)
  • 4. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 5. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 6. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x
  • 7. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x R
  • 8. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R
  • 9. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m
  • 10. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 11. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 12. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x
  • 13. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg
  • 14. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg R
  • 15. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m x mg R
  • 16. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x x  g   m mg R
  • 17. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x x  g   m mg R NOTE: greatest height still occurs when v = 0
  • 18. Case 3 (downwards motion)
  • 19. Case 3 (downwards motion)
  • 20. Case 3 (downwards motion) m x
  • 21. Case 3 (downwards motion) m x mg
  • 22. Case 3 (downwards motion) R m x mg
  • 23. Case 3 (downwards motion) m  mg  R x R m x mg
  • 24. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg
  • 25. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x
  • 26. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 27. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 28. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x
  • 29. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg
  • 30. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2
  • 31. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2 x  0, v  u
  • 32. Case 3 (downwards motion) m  mg  R x R R xg  m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x m   mg  kv 2 x k 2 mg kv 2    g  v x m x  0, v  u
  • 33. dv  mg  kv 2 v  dx m
  • 34. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2
  • 35. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0
  • 36. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0
  • 37. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0  logmg  ku 2   logmg  m 2k m  mg  ku 2   log  2k  mg  m  ku 2   log1   2k  mg 
  • 38. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  m 2k logmg  kv 2 u0  logmg  ku 2   logmg  m 2k m  mg  ku 2   the greatest height  log  2k  mg  m  ku 2  is log1   metres m  ku 2  2k  mg   log1   2k  mg 
  • 39. k 2    g  v x m
  • 40. k 2    g  v x m dv  mg  kv 2  dt m
  • 41. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k
  • 42. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0
  • 43. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  kg     m 1  k   tan   mg u   kg  
  • 44. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv k  mg  v 2  0 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  m 1  k  kg      it takes tan   mg u  seconds  kg   m 1  k   tan   mg u   to reach the greatest height. kg  
  • 45. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8
  • 46. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 47. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 48. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x
  • 49. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x 5g
  • 50. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 1 v 8 5 x 5g
  • 51. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 5 x 5g
  • 52. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40
  • 53. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v
  • 54. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v  40log40 g  v 0 v  40log40 g  v   log40 g   40 g   40 log   40 g  v 
  • 55. t  40 g   log  40  40 g  v 
  • 56. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v
  • 57. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g
  • 58. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40     
  • 59. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity
  • 60. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity occurs when   0 x
  • 61. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 62. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR   b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 63. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g
  • 64. t  40 g   log  40  40 g  v  t 40 g e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g  terminal velocity is 40 g m/s
  • 65. c) The distance it has fallen after time t
  • 66. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt  
  • 67. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0 
  • 68. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t  x  40 g t  40e 40   0
  • 69. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t x  40 g t  40e  40  0   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g
  • 70. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t x  40 g t  40e  40 Exercise 8C;  0 2, 4, 5, 6, 8, 10, 13, 16   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g