SlideShare a Scribd company logo
1 of 21
Analytical constrained optimal Control
for Regulatory and Servo systems
Rodrigue Tchamna, Hien Cao Thi Thu, Moonyong Lee*
Optimal control is good, but constrained optimal
control is superior
The most important things are not necessarily the
most complicated
Shck Ca᷅mnà'
Problem
Formulation
 
2 2
0
min ( ) y ( ) ( '( ))y sp uy t t u t dt 


      
max( )y t y
max'( ) 'u t u
max( )u t u
PI System with proportional quick cancelled : Type-C Controller (I-P controller)
Note on the
structure of PID used
Fig.1. Block diagram of the PID feedback control of
unstable first order process.
     
 c
c c d
I
de tK
u t K e t e t dt K
dt


  
   
 
 c
c c d
I
E sK
U s K E s K sE s
s


  
Textbook/Ideal PID
     spe t y t y t 
     spE s Y s Y s 
Fig.2. Block diagram of the type C PID (or I-PD) feedback
control of unstable first order process.
Type C PID
Remove the setpoint from Proportional and derivative
     
 c
c c d
I
d y tK
u t K y t e t dt K
dt


        
   
 
 c
c c d
I
E sK
U s K Y s K s Y s
s


          
     spe t y t y t 
 spy t
 spy t
-
PI System with proportional quick cancelled : Type-C Controller (I-P controller)
Optimal Unconstraint case: Regulatory Unstable
 
2
2
;
2
2 u
y
K
D D



  
  
 
  
Variables Constraint level
Moderate
Moderate
Moderate
maxy
maxu
maxu
1
1 12
2 4
† †
2 †
1 1 1
;
2 42
c
 
 
  
    
      
     
2
u
y K
 

  
  
 
 
opt
†
†
2† †
I
1
1
4 1
c
c
opt c
c
K
K



  

 
 
 
 
  
 

Optimal constraint case: Regulatory Unstable
 
2
2
;
2
2 u
y
K
D D



  
  
 
  
Variables Constraint level
Moderate
Moderate
Tight
maxy
maxu
maxu
max
h
u
D




2
2
for 0 1
1
for 1
x 

 
  

 
 

 
 
c
2
c3 2
c 2 2
c
1
,
4
 
   
  
 
    
 
 
   
 
 
 
2
2 2 1
c 012
01
41 1
, 4 exp tan
2 4 3 2
0
c
c c h
c c c
c
h
c
h x for
x
u
for
D
   
        
      
 
 


   
            
 
  

 h
1
, 0
0
c
c c
h
h h
  
   

  

     
   
    
 01
4
h
c


 


Optimal constraint case: Regulatory Unstable
Variables Constraint level
Tight
Moderate
Moderate
maxy
maxu
maxu
 
2
2
;
2
2 u
y
K
D D



  
  
 
  
2
2
for 0 1
1
for 1
x 

 
  

 
 

max
g
y
K D




 
 
c
2
c3 2
c 2 2
c
1
,
4
 
   
  
 
    
 
 
 
1
2
1
2
2 tan
exp for 0 1
1
2exp( 1) for 1
2 tanh
exp for 1
1
x
g
xx
x
xx
 




 
    
  
  
 
   
  
g ( ) 0
0
c
c
c
g
g
g
  

  
 

  
   
Optimal constraint case: Regulatory Unstable
max max
g ; h
y u
K D D

 


 

Variables Constraint level
Tight
Moderate
Tight
maxy
maxu
maxu
 
1
2
1
2
2 tan
exp for 0 1
1
2exp( 1) for 1
2 tanh
exp for 1
1
x
g
xx
x
xx
 




 
    
  
  
 
   
  
   
 
 
 
2
2 2 1
c 012
01
41 1
, 4 exp tan
2 4 3 2
0
c
c c h
c c c
c
h
c
h x for
x
u
for
D
   
        
      
 
 


   
            
 
  

2
2
for 0 1
1
for 1
x 

 
  

 
 

 
 h
0
, 0
g c
c
g
h
  
  
  

 
 01
4
h
c


 


Optimal constraint case: Regulatory Unstable
 
2
2
;
2
2 u
y
K
D D



  
  
 
  
Variables Constraint level
Moderate
Tight
Moderate
maxy
maxu
maxu
 
   
 
   
 
 
 
2 2 2 2
1
c 2 2
2 2 2 2
1
2 2
2 2
4 21
, 1 exp tan 0
2
4 21
1 exp tan 1
2
22
1 exp 1
2
4
1
c c c
f
c
c c c
f
c
cc
c
c c
f x for
x x
x for
x
for
       
   
    
      
 
    
  

  
   


     
       
    
     
      
    
 
    
 
 
 
 
 
2 2
1
2 2
21
exp tanh 1
2
c
c
x for
x
  

    

   
   
    
2
2
for 0 1
1
for 1
x 

 
  

 
 

max
f
u
D
 

 
 
c
2
c3 2
c 2 2
c
1
,
4
 
   
  
 
    
 
 
f ( , ) 0
0
c
c c
f
f f

   
  

   
    
 2
f
c


 


 f
g
, 0
( ) 0
c
c
f
g
  
  
  

 
Optimal constraint case: Regulatory Unstable
max max
fg ;
y u
K D D

  
 

Variables Constraint level
Tight
Tight
Moderate
maxy
maxu
maxu
 
1
2
1
2
2 tan
exp for 0 1
1
2exp( 1) for 1
2 tanh
exp for 1
1
x
g
xx
x
xx
 




 
    
  
  
 
   
  
2
2
for 0 1
1
for 1
x 

 
  

 
 

 
   
 
   
 
 
 
2 2 2 2
1
c 2 2
2 2 2 2
1
2 2
2 2
4 21
, 1 exp tan 0
2
4 21
1 exp tan 1
2
22
1 exp 1
2
4
1
c c c
f
c
c c c
f
c
cc
c
c c
f x for
x x
x for
x
for
       
   
    
      
 
    
  

  
   


     
       
    
     
      
    
 
    
 
 
 
 
 
2 2
1
2 2
21
exp tanh 1
2
c
c
x for
x
  

    

   
   
    
   01;
2 4
f h
c c
 
 
   
 
 
Optimal constraint case: Regulatory Unstable
Variables Constraint level
Moderate
Tight
Tight
maxy
maxu
maxu
   01;
2 4
f h
c c
 
 
   
 
 
max max
f ; h
u u
D D
 

 
 
2
2
for 0 1
1
for 1
x 

 
  

 
 

 
   
 
   
 
 
 
2 2 2 2
1
c 2 2
2 2 2 2
1
2 2
2 2
4 21
, 1 exp tan 0
2
4 21
1 exp tan 1
2
22
1 exp 1
2
4
1
c c c
f
c
c c c
f
c
cc
c
c c
f x for
x x
x for
x
for
       
   
    
      
 
    
  

  
   


     
       
    
     
      
    
 
    
 
 
 
 
 
2 2
1
2 2
21
exp tanh 1
2
c
c
x for
x
  

    

   
   
    
   
 
 
 
2
2 2 1
c 012
01
41 1
, 4 exp tan
2 4 3 2
0
c
c c h
c c c
c
h
c
h x for
x
u
for
D
   
        
      
 
 


   
            
 
  

 
 
f
h
, 0
, 0
c
c
f
h






  

 
opt
opt
c
opt
opt 2 optc
I c
1
1
4 1 ( )
c
opt
K
K



  

 
 
 
 
  
 

Servo plus proportional quick cancelled : Type-C Controller
-
Typical Example
Example case
constraint specification PI parameter
1 A 0.70 2.70 2.70 1.52 1.52
2 B 0.70 2.70 1.11 1.11 1.11
3 C 0.36 2.70 2.70 2.03 1.59
4 D 0.285 2.70 2.10 2.10 0.62
5 E 0.70 1.105 2.70 2.40 4.14
6 F 0.30 1.20 2.70 2.36 1.19
maxy maxu maxu CK I
10K  
p
10
( )
10 1
G s
s


Analytical constrained optimal Control
for Regulatory and Servo systems
Rodrigue Tchamna, Hien Cao Thi Thu, Moonyong Lee*

More Related Content

Similar to Optimal constrained control for regulatory systems

19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdfrabeamatouk
 
Video lectures for b.tech
Video lectures for b.techVideo lectures for b.tech
Video lectures for b.techEdhole.com
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final PresentationAmritesh Maitra
 
A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesASQ Reliability Division
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filternozomuhamada
 
Week3 ap3421 2019_part1
Week3 ap3421 2019_part1Week3 ap3421 2019_part1
Week3 ap3421 2019_part1David Cian
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...
Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...
Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...DrSebastianEngel
 
Solution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDMSolution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDMSyeilendra Pramuditya
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...HarrisonBall1
 
7.3_Nonlinear Programming-LagrangeExamples.pptx
7.3_Nonlinear Programming-LagrangeExamples.pptx7.3_Nonlinear Programming-LagrangeExamples.pptx
7.3_Nonlinear Programming-LagrangeExamples.pptxethannguyen1618
 
Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingShehzadAhmed90
 
IEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to Systems
IEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to SystemsIEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to Systems
IEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to SystemsIEEE Computer Society Computing Now
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppttariqqureshi33
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSyeilendra Pramuditya
 

Similar to Optimal constrained control for regulatory systems (20)

19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
 
Video lectures for b.tech
Video lectures for b.techVideo lectures for b.tech
Video lectures for b.tech
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modes
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
cfdht-fvm-unit3.ppt
cfdht-fvm-unit3.pptcfdht-fvm-unit3.ppt
cfdht-fvm-unit3.ppt
 
Week3 ap3421 2019_part1
Week3 ap3421 2019_part1Week3 ap3421 2019_part1
Week3 ap3421 2019_part1
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...
Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...
Optimal Control for Linear Second-Order Hyperbolic Equations by BV-Functions ...
 
Solution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDMSolution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDM
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
 
UNIT I_2.pdf
UNIT I_2.pdfUNIT I_2.pdf
UNIT I_2.pdf
 
7.3_Nonlinear Programming-LagrangeExamples.pptx
7.3_Nonlinear Programming-LagrangeExamples.pptx7.3_Nonlinear Programming-LagrangeExamples.pptx
7.3_Nonlinear Programming-LagrangeExamples.pptx
 
Pscc june2016
Pscc june2016Pscc june2016
Pscc june2016
 
Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeing
 
Chapter 7 1
Chapter 7 1Chapter 7 1
Chapter 7 1
 
IEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to Systems
IEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to SystemsIEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to Systems
IEEE 1149.1-2013 Addresses Challenges in Test Re-Use from IP to IC to Systems
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
Unit 5 inverters
Unit 5 invertersUnit 5 inverters
Unit 5 inverters
 
SPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta MethodsSPSF04 - Euler and Runge-Kutta Methods
SPSF04 - Euler and Runge-Kutta Methods
 

More from Rodrigue Tchamna

Recursion Algorithms Derivation
Recursion Algorithms DerivationRecursion Algorithms Derivation
Recursion Algorithms DerivationRodrigue Tchamna
 
Mets camerounais (bamilekes) en langue fe'efe'e (nufi)
Mets camerounais (bamilekes) en langue fe'efe'e (nufi)Mets camerounais (bamilekes) en langue fe'efe'e (nufi)
Mets camerounais (bamilekes) en langue fe'efe'e (nufi)Rodrigue Tchamna
 
Les animaux en langue bamileke nufi (fe'efe'e)
Les animaux en langue bamileke nufi (fe'efe'e)Les animaux en langue bamileke nufi (fe'efe'e)
Les animaux en langue bamileke nufi (fe'efe'e)Rodrigue Tchamna
 
Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...
Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...
Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...Rodrigue Tchamna
 
Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial
Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial
Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial Rodrigue Tchamna
 
Salutations en langues camerounaises short
Salutations en langues camerounaises shortSalutations en langues camerounaises short
Salutations en langues camerounaises shortRodrigue Tchamna
 
Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...
Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...
Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...Rodrigue Tchamna
 

More from Rodrigue Tchamna (7)

Recursion Algorithms Derivation
Recursion Algorithms DerivationRecursion Algorithms Derivation
Recursion Algorithms Derivation
 
Mets camerounais (bamilekes) en langue fe'efe'e (nufi)
Mets camerounais (bamilekes) en langue fe'efe'e (nufi)Mets camerounais (bamilekes) en langue fe'efe'e (nufi)
Mets camerounais (bamilekes) en langue fe'efe'e (nufi)
 
Les animaux en langue bamileke nufi (fe'efe'e)
Les animaux en langue bamileke nufi (fe'efe'e)Les animaux en langue bamileke nufi (fe'efe'e)
Les animaux en langue bamileke nufi (fe'efe'e)
 
Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...
Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...
Sumo tutorial: 1) Manual Network creation, 2) OSM to Netwrok, 3) OD Matrix to...
 
Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial
Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial
Sumo, Simulation of Urban Mobility, (DLR, Open Source) tutorial
 
Salutations en langues camerounaises short
Salutations en langues camerounaises shortSalutations en langues camerounaises short
Salutations en langues camerounaises short
 
Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...
Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...
Mbɑ̄' yòh yì á ntáb pʉ̄h lɑ́, dhì zǒ mʉ̀ ! Notre père qui est aux cieux, rest...
 

Recently uploaded

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 

Recently uploaded (20)

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 

Optimal constrained control for regulatory systems

  • 1.
  • 2. Analytical constrained optimal Control for Regulatory and Servo systems Rodrigue Tchamna, Hien Cao Thi Thu, Moonyong Lee*
  • 3. Optimal control is good, but constrained optimal control is superior The most important things are not necessarily the most complicated Shck Ca᷅mnà'
  • 5.   2 2 0 min ( ) y ( ) ( '( ))y sp uy t t u t dt           max( )y t y max'( ) 'u t u max( )u t u PI System with proportional quick cancelled : Type-C Controller (I-P controller)
  • 6. Note on the structure of PID used
  • 7. Fig.1. Block diagram of the PID feedback control of unstable first order process.        c c c d I de tK u t K e t e t dt K dt             c c c d I E sK U s K E s K sE s s      Textbook/Ideal PID      spe t y t y t       spE s Y s Y s  Fig.2. Block diagram of the type C PID (or I-PD) feedback control of unstable first order process. Type C PID Remove the setpoint from Proportional and derivative        c c c d I d y tK u t K y t e t dt K dt                   c c c d I E sK U s K Y s K s Y s s                   spe t y t y t   spy t  spy t
  • 8. - PI System with proportional quick cancelled : Type-C Controller (I-P controller)
  • 9. Optimal Unconstraint case: Regulatory Unstable   2 2 ; 2 2 u y K D D               Variables Constraint level Moderate Moderate Moderate maxy maxu maxu 1 1 12 2 4 † † 2 † 1 1 1 ; 2 42 c                          2 u y K              opt † † 2† † I 1 1 4 1 c c opt c c K K                     
  • 10. Optimal constraint case: Regulatory Unstable   2 2 ; 2 2 u y K D D               Variables Constraint level Moderate Moderate Tight maxy maxu maxu max h u D     2 2 for 0 1 1 for 1 x                  c 2 c3 2 c 2 2 c 1 , 4                               2 2 2 1 c 012 01 41 1 , 4 exp tan 2 4 3 2 0 c c c h c c c c h c h x for x u for D                                                   h 1 , 0 0 c c c h h h                             01 4 h c      
  • 11. Optimal constraint case: Regulatory Unstable Variables Constraint level Tight Moderate Moderate maxy maxu maxu   2 2 ; 2 2 u y K D D               2 2 for 0 1 1 for 1 x              max g y K D         c 2 c3 2 c 2 2 c 1 , 4                       1 2 1 2 2 tan exp for 0 1 1 2exp( 1) for 1 2 tanh exp for 1 1 x g xx x xx                             g ( ) 0 0 c c c g g g                 
  • 12. Optimal constraint case: Regulatory Unstable max max g ; h y u K D D         Variables Constraint level Tight Moderate Tight maxy maxu maxu   1 2 1 2 2 tan exp for 0 1 1 2exp( 1) for 1 2 tanh exp for 1 1 x g xx x xx                                       2 2 2 1 c 012 01 41 1 , 4 exp tan 2 4 3 2 0 c c c h c c c c h c h x for x u for D                                                  2 2 for 0 1 1 for 1 x                 h 0 , 0 g c c g h              01 4 h c      
  • 13. Optimal constraint case: Regulatory Unstable   2 2 ; 2 2 u y K D D               Variables Constraint level Moderate Tight Moderate maxy maxu maxu                   2 2 2 2 1 c 2 2 2 2 2 2 1 2 2 2 2 4 21 , 1 exp tan 0 2 4 21 1 exp tan 1 2 22 1 exp 1 2 4 1 c c c f c c c c f c cc c c c f x for x x x for x for                                                                                                   2 2 1 2 2 21 exp tanh 1 2 c c x for x                        2 2 for 0 1 1 for 1 x              max f u D        c 2 c3 2 c 2 2 c 1 , 4                     f ( , ) 0 0 c c c f f f                    2 f c      
  • 14.  f g , 0 ( ) 0 c c f g             Optimal constraint case: Regulatory Unstable max max fg ; y u K D D        Variables Constraint level Tight Tight Moderate maxy maxu maxu   1 2 1 2 2 tan exp for 0 1 1 2exp( 1) for 1 2 tanh exp for 1 1 x g xx x xx                             2 2 for 0 1 1 for 1 x                                2 2 2 2 1 c 2 2 2 2 2 2 1 2 2 2 2 4 21 , 1 exp tan 0 2 4 21 1 exp tan 1 2 22 1 exp 1 2 4 1 c c c f c c c c f c cc c c c f x for x x x for x for                                                                                                   2 2 1 2 2 21 exp tanh 1 2 c c x for x                           01; 2 4 f h c c            
  • 15. Optimal constraint case: Regulatory Unstable Variables Constraint level Moderate Tight Tight maxy maxu maxu    01; 2 4 f h c c             max max f ; h u u D D        2 2 for 0 1 1 for 1 x                                2 2 2 2 1 c 2 2 2 2 2 2 1 2 2 2 2 4 21 , 1 exp tan 0 2 4 21 1 exp tan 1 2 22 1 exp 1 2 4 1 c c c f c c c c f c cc c c c f x for x x x for x for                                                                                                   2 2 1 2 2 21 exp tanh 1 2 c c x for x                                  2 2 2 1 c 012 01 41 1 , 4 exp tan 2 4 3 2 0 c c c h c c c c h c h x for x u for D                                                      f h , 0 , 0 c c f h            
  • 16. opt opt c opt opt 2 optc I c 1 1 4 1 ( ) c opt K K                      Servo plus proportional quick cancelled : Type-C Controller -
  • 18. Example case constraint specification PI parameter 1 A 0.70 2.70 2.70 1.52 1.52 2 B 0.70 2.70 1.11 1.11 1.11 3 C 0.36 2.70 2.70 2.03 1.59 4 D 0.285 2.70 2.10 2.10 0.62 5 E 0.70 1.105 2.70 2.40 4.14 6 F 0.30 1.20 2.70 2.36 1.19 maxy maxu maxu CK I 10K   p 10 ( ) 10 1 G s s  
  • 19.
  • 20.
  • 21. Analytical constrained optimal Control for Regulatory and Servo systems Rodrigue Tchamna, Hien Cao Thi Thu, Moonyong Lee*