SlideShare a Scribd company logo
1 of 102
1
Computational Fluid
Dynamics and Heat transfer
(CFDHT)
3. Conduction Heat Transfer
Dr. M. R. Nandgaonkar
Department of Mechanical Engineering
College of Engineering, Pune
2
Conduction Heat Transfer
Discretization Techniques :FDM,
FVM & FEM
 What is Discretization?
 Analytical Solution : Continuous
 Numerical Solution : Discrete
 Types of Discretization Technique
 FDM (Finite Difference Method): Most popular during
the early days of CFD
 FVM (Finite Volume Method): Gives greater flexibility in
handling complex geometry
 FEM (Finite Element Method): More commonly used in
Solid Mechanics rather than Fluid Mechanics
3
Discretization Techniques :FDM,
FVM & FEM
 Finite Difference Method
 Discrete grid points
 Finite Difference Quotient
 Finite Difference Equations and Solution
Methodology
 One-Dimensional Steady State Conduction
 One-Dimensional Unsteady State Conduction
4
5
FDM: Discrete Grid Points
6
P
(i,j) (i+1,j)
(i-1,j)
(i,j+1)
(i-1,j+1)
(i,j-1)
(i-1,j-1)
(i,j)
P
i
j
FDM: Finite Difference Quotient
3
2
4
2
1
2
2
( ) sin 2
0.2, 0.02 ( ) 0.9511
( ) ( )
0.9
0.9824 %
( ) ( )
2
823 3
0.9
.176%
899 %
(
(0.775
(
E
Error
0.01 Error
rr
)
)
)
or
f x x
x x f x x
f x f x x
f x x f x x
f f
x
f
f
x


      
  
      


 
 
7
I Guess Add to
Capture Slope
1 2
3
4
x
Taylor Series Expansion
Example :
f(x)
Add to account
for Curvature
FDM: Finite Difference Quotient
8
Taylor Series Expansion
2 2 3 3
1, , 2 3
, , ,
2 2 3 3
1, , 2 3
, , ,
2 3
1, ,
2 3
, ,
2 3
2 3
2
i j i j
i j i j i j
i j i j
i j i j i j
i j i j
i j i j
x x
x
x x x
x x
x
x x x
x
x x x x
  
 
  
 
 
  



   
    
 
     
   
 
  
     
   
    
 
     
   
 
  
     
   
 
   
 
  
    
 
   
      
 
2
,
1, ,
,
3
O
i j
i j i j
i j
x
x
x x
 
 
 
 

 

 

 

 

 
  
 
 
 
   
Finite Difference Quotient T.E (Truncation Error)
I Order Accurate
I Order Forward Difference
FDM: Finite Difference Quotient
9
 
2 3 2
, 1,
2 3
, , ,
, 1,
,
3 2 5 4
1, 1,
3 5
, , ,
2 3
2
2 3 5
O
i j i j
i j i j i j
i j i j
i j
i j i j
i j i j i j
x x
x x x x
x
x x
x x
x x x x
 
  
 

 
  


 
 
    
 
    
 
   
 
     
 
   
   
     
 

 

 
  
 
 
 
   

    
 
    
 
  

     
 
   
       

 
1, 1, 2
, 2
O
i j i j
i j
x
x x
 
  


 


 

 
  
 
 
 
   
II Order Accurate
 I Order Backward Difference
 II Order Central Difference
I Order Accurate
FDM: Finite Difference Quotient
 Higher Order Accurate Difference Quotients
 Disadvantage : By requiring more neighboring
grid points, results in more computational time
for each grid point computation
 Advantage : Smaller number of total grid
points in a flow solution to obtain comparable
overall accuracy
 II Order accuracy has been accepted in the
vast majority of CFD applications
10
FDM: Finite Difference Quotient
11
 
2 4 2 6 4
1, , 1,
2 2 4 6
, , ,
2
1, , 1, 2
2 2
,
2
2, 1, , 1, 1,
2
,
2
2
4 6
2
16 30 16
1
i j i j i j
i j i j i j
i j i j i j
i j
i j i j i j i j i j
i j
x x
x x x x
x
x x
x
  
  
  

    

 
 
   
 
 
     
 
    
   
 
 
     
   
 
 
     
 
 
   

  
 
 
 
 
 
    
 


 

 
O
 
 
4
2
2
x
x
 
 
 
 

 
 
O
 II Order Central Second Difference
 IV Order Second Difference
II Order Accurate
IV Order
Accurate
FDM: Finite Difference Equation
and Solution Methodology
12
1, , 1, 1, 1,
,
2
2 1
3
4
5
2
6 2
2
2
1
2
0
2
2 1 0 0 0
0
1 2 1 0 0
0
At 0, ;
0
0 1 2 1 0
0
0 0 1 2 1
0 0 0 1 2
,
i j i j i j i j i j
b b
i j
b
b
T
x
x T T x L T T
T T T T T
T
x
T T
T
T
T
T T
   
  
  

    
 
   
 
     
 
   
  
 
   
 
     
 
   
 





 
 
 
  
 1-D Steady State Conduction
 G.E:
 B,C’s:
 F.D.Eq. :
 Tridiagonal Matrix:
 Solver
 Jacobi
 Gauss-Seidel
Tb1 Tb2
i=1 2 3 4 5 6 7
L
FDM: Finite Difference Equation
and Solution Methodology
13
 
1
1, , 1, 2
2
2
2
0
2
T.E=O( t, x )
As t 0 & x 0 T.E 0 F.D.Eq. is Consistent
At t 0;
n n n
n n
i j i j i j
T T T
T T
T T
t x
T T
t x



 
 


 

 
 
 
   



 
1-D Unsteady State Conduction
G.E:
I.C & B.C’s:
F.D.Eq. :
Reliability of num. results (within T.E.) Vs analytical results
If the difference equation is consistent
If the numerical algorithm is stable
If the B.C’s are handled properly
Tb1 Tb2
i=1 2 3 4 5 6 7
Tb1 Tb2
Tb1 Tb2
n+
1
n
n-
1
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
FVM: Finite Volumes
33
i
j
E
S
Ncell j
Ncell i
P
1
1
δxe
δys
δyn
Fictitious Cells:
i=1 & Ncell i; j=1,Ncell j
j=1 & Ncell j; i=1,Ncell i
Real Cells:
i=2,Ncell i-1; j=2,Ncell j-1
W
n
Δx
Δy
N
δxw
e
s
w
FVM: Finite Volume Equations
and Solution Methodology
34
 2-D Steady State Conduction
 G.E:
 Finite Volume Discretization:
2 2
2
2 2
2 2
, ,
, ,
0
0 0
ˆ
. 0
0
f f
f f
V V
f f
S S S
f e w f n s
f f
S S
f e w f n s
f f
P W N P P S
E P
e w n
e w n s
T T
T
x y
TdV TdV
T T
T ndS dS dS
x y
T T
dS dS
x y
T T T T T T
T T
S S S
x x x x
   

  
 
 
 
 
   
 
    
 
    
 
 
 
 
 
 
 
 
   
  

     
 
 
  
 
 
0
s
S
 
FVM: Finite Volume Equations and
Solution Methodology
35
 2-D Unsteady State Conduction
 G.E:
 Finite Volume Discretization:
 Explicit Method
 Implicit Method
2 2
2 2
1
mean P
1
1
T
t
T T T
t t t
P
n n
P P
P P P
V
n n n n n n
n n n n
P W N P P S
P P E P
P e w n s
e w n s
n n
P P
P
T T
x y
T T
dV V V V
t
T T T T T T
T T T T
V S S S S
t x x x x
T T
V
t


   




 
  
 
 
  
 
   
   
     
   
   
   
 
  
 
        
 
  

 


1 1 1 1 1 1
1 1 n n n n n n
n n
P W N P P S
E P
e w n s
e w n s
T T T T T T
T T
S S S S
x x x x

   
     
 
 
  

      
 
 
36
FVM: 1-D Steady State Heat Conduction
G.E:
37
FVM: 1-D Steady State Heat Conduction
38
FVM: 1-D Steady State Heat Conduction
39
FVM: 1-D Steady State Heat Conduction
40
FVM: 1-D Steady State Heat Conduction
41
FVM: 1-D Steady State Heat Conduction
42
FVM :1-D Unsteady State Conduction
43
FVM :1-D Unsteady State Conduction
44
Discrete Representation of Domain:
Grid Generation (Finite CV)
45
Discrete Representation of Domain:
Grid Generation (Finite CV)
46
Grid Generation
47
Grid Generation
48
Derivation of PDE or LAE
49
Derivation of DIFFERENTIAL Equation:
Steady State Heat Conduction
50
Derivation of Algebraic Equation:
Steady State Heat Conduction
51
Derivation of Algebraic Equation:
Steady State Heat Conduction
52
Derivation of Algebraic Equation:
Steady State Heat Conduction
53
A Plate subjected to
Constant Temperature on the Boundary
54
FVM: 2-D Steady State Heat Conduction
55
.
FVM: 2-D Steady State Heat Conduction
56
FVM: 2-D Steady State Heat Conduction
57
Solution Algorithm:
2-D Steady State Conduction
58
Solution Algorithm:
2-D Steady State Conduction
59
Results: 2-D Steady State Conduction
60
Results: 2-D Steady State Conduction
61
Results: 2-D Steady State Conduction
62
FVM : 2-D Steady State Conduction
63
FVM : 2-D Steady State Conduction
64
A Plate subjected to different Types of
Thermal Boundary Conditions
65
Discrete Representation of
Boundary Conditions
66
Results: 2-D Steady State Conduction
67
Results: 2-D Steady State Conduction
68
Results: 2-D Steady State Conduction
69
Results: 2-D Steady State Conduction
70
FVM : 2-D Unsteady State Conduction
71
Derivation of Algebraic Equation:
Unsteady State Heat Conduction
72
Derivation of Algebraic Equation:
Unsteady State Heat Conduction
73
FVM : 2-D Unsteady State Conduction
74
Unsteady State Heat Conduction:
Computational Stencil
75
2-D Unsteady State Conduction:
Explicit Vs Implicit Approach
76
Grid points for
Heat Fluxes and Temperature
77
A Pseudo Code:
2-D Unsteady State Conduction
78
Solution Algorithm:
2-D Unsteady State Conduction
79
Solution Algorithm:
2-D Unsteady State Conduction
80
FVM :1-D Unsteady State Conduction
with Heat Generation
81
FVM :1-D Unsteady State Conduction
with Heat Generation
82
FVM :1-D Unsteady State Conduction
with Heat Generation
83
FVM :1-D Unsteady State Conduction
with Heat Generation
84
FVM : 2-D Unsteady State Conduction
85
FVM : 2-D Unsteady State Conduction
86
FVM : 2-D Unsteady State Conduction
87
Special Topics: Computational Multi-Solid
Heat Transfer (CMSHT)
88
Special Topics: CMSHT –
Grid Generation
89
Special Topics: CMSHT –
Interface Treatment
90
Special Topics: Result-CMSHT
91
Special Topics: CMSHT
92
Special Topics: CMSHT
93
Special Topics: Nonlinearity in
Conduction Heat Transfer
94
Special Topics: Nonlinearity in
Conduction Heat Transfer
95
Special Topics: Nonlinearity in
Conduction Heat Transfer
96
Derivation of DIFFERENTIAL Equation:
Unsteady State Heat Conduction
97
Derivation of ALGEBRAIC Equation:
Unsteady State Heat Conduction
98
Derivation of Algebraic Equation:
Steady State Heat Conduction
99
Derivation of Algebraic Equation:
Steady State Heat Conduction
100
Discrete Representation of Domain:
Grid Generation (Finite CV)
101
Grid points for
Heat Fluxes and Temperature
102
A Pseudo Code:
2-D Unsteady State Conduction

More Related Content

Similar to cfdht-fvm-unit3.ppt

Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
Waveguiding Structures  Part 4 (Rectangular and Circular Waveguide).pptxWaveguiding Structures  Part 4 (Rectangular and Circular Waveguide).pptx
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptxPawanKumar391848
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014Edhole.com
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Solving the Poisson Equation
Solving the Poisson EquationSolving the Poisson Equation
Solving the Poisson EquationShahzaib Malik
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...Belinda Marchand
 
Finite difference method for charge calculation
Finite difference method for charge calculationFinite difference method for charge calculation
Finite difference method for charge calculationSmit Shah
 
Achieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeAchieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeUtrecht University
 
Application of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferApplication of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferShivshambhu Kumar
 
Lecture 4 from virtual university of pakistan
Lecture 4 from virtual university of pakistanLecture 4 from virtual university of pakistan
Lecture 4 from virtual university of pakistanSaba Hanif
 
Olexander Gurbych ITEM 2018
Olexander Gurbych ITEM 2018Olexander Gurbych ITEM 2018
Olexander Gurbych ITEM 2018ITEM
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory EffectsSohail Khanifar
 
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics Computational Materials Science Initiative
 

Similar to cfdht-fvm-unit3.ppt (20)

10 slides
10 slides10 slides
10 slides
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
Waveguiding Structures  Part 4 (Rectangular and Circular Waveguide).pptxWaveguiding Structures  Part 4 (Rectangular and Circular Waveguide).pptx
Waveguiding Structures Part 4 (Rectangular and Circular Waveguide).pptx
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Admission in india 2014
Admission in india 2014Admission in india 2014
Admission in india 2014
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
numerical.ppt
numerical.pptnumerical.ppt
numerical.ppt
 
Solving the Poisson Equation
Solving the Poisson EquationSolving the Poisson Equation
Solving the Poisson Equation
 
3320 cyclic codes.ppt
3320 cyclic codes.ppt3320 cyclic codes.ppt
3320 cyclic codes.ppt
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 
Finite difference method for charge calculation
Finite difference method for charge calculationFinite difference method for charge calculation
Finite difference method for charge calculation
 
Achieving the Neel state in an optical lattice
Achieving the Neel state in an optical latticeAchieving the Neel state in an optical lattice
Achieving the Neel state in an optical lattice
 
Application of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat TransferApplication of Numerical Methods (Finite Difference) in Heat Transfer
Application of Numerical Methods (Finite Difference) in Heat Transfer
 
Lecture 4 from virtual university of pakistan
Lecture 4 from virtual university of pakistanLecture 4 from virtual university of pakistan
Lecture 4 from virtual university of pakistan
 
Olexander Gurbych ITEM 2018
Olexander Gurbych ITEM 2018Olexander Gurbych ITEM 2018
Olexander Gurbych ITEM 2018
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
 
2006 devmodel
2006 devmodel2006 devmodel
2006 devmodel
 
UNIT I_1.pdf
UNIT I_1.pdfUNIT I_1.pdf
UNIT I_1.pdf
 
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics
CMSI計算科学技術特論A (2015) 第13回 Parallelization of Molecular Dynamics
 

Recently uploaded

ALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfMadan Karki
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AISheetal Jain
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailingAshishSingh1301
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message QueuesLinux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message QueuesRashidFaridChishti
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfJNTUA
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisDr.Costas Sachpazis
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docxrahulmanepalli02
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfJNTUA
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksIJECEIAES
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..MaherOthman7
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...Amil baba
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfmahaffeycheryld
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.benjamincojr
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1T.D. Shashikala
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)NareenAsad
 

Recently uploaded (20)

ALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdfALCOHOL PRODUCTION- Beer Brewing Process.pdf
ALCOHOL PRODUCTION- Beer Brewing Process.pdf
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AI
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message QueuesLinux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..Maher Othman Interior Design Portfolio..
Maher Othman Interior Design Portfolio..
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdf
 
electrical installation and maintenance.
electrical installation and maintenance.electrical installation and maintenance.
electrical installation and maintenance.
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)
 

cfdht-fvm-unit3.ppt

  • 1. 1 Computational Fluid Dynamics and Heat transfer (CFDHT) 3. Conduction Heat Transfer Dr. M. R. Nandgaonkar Department of Mechanical Engineering College of Engineering, Pune
  • 3. Discretization Techniques :FDM, FVM & FEM  What is Discretization?  Analytical Solution : Continuous  Numerical Solution : Discrete  Types of Discretization Technique  FDM (Finite Difference Method): Most popular during the early days of CFD  FVM (Finite Volume Method): Gives greater flexibility in handling complex geometry  FEM (Finite Element Method): More commonly used in Solid Mechanics rather than Fluid Mechanics 3
  • 4. Discretization Techniques :FDM, FVM & FEM  Finite Difference Method  Discrete grid points  Finite Difference Quotient  Finite Difference Equations and Solution Methodology  One-Dimensional Steady State Conduction  One-Dimensional Unsteady State Conduction 4
  • 5. 5
  • 6. FDM: Discrete Grid Points 6 P (i,j) (i+1,j) (i-1,j) (i,j+1) (i-1,j+1) (i,j-1) (i-1,j-1) (i,j) P i j
  • 7. FDM: Finite Difference Quotient 3 2 4 2 1 2 2 ( ) sin 2 0.2, 0.02 ( ) 0.9511 ( ) ( ) 0.9 0.9824 % ( ) ( ) 2 823 3 0.9 .176% 899 % ( (0.775 ( E Error 0.01 Error rr ) ) ) or f x x x x f x x f x f x x f x x f x x f f x f f x                          7 I Guess Add to Capture Slope 1 2 3 4 x Taylor Series Expansion Example : f(x) Add to account for Curvature
  • 8. FDM: Finite Difference Quotient 8 Taylor Series Expansion 2 2 3 3 1, , 2 3 , , , 2 2 3 3 1, , 2 3 , , , 2 3 1, , 2 3 , , 2 3 2 3 2 i j i j i j i j i j i j i j i j i j i j i j i j i j i j x x x x x x x x x x x x x x x x x                                                                                                                      2 , 1, , , 3 O i j i j i j i j x x x x                                     Finite Difference Quotient T.E (Truncation Error) I Order Accurate I Order Forward Difference
  • 9. FDM: Finite Difference Quotient 9   2 3 2 , 1, 2 3 , , , , 1, , 3 2 5 4 1, 1, 3 5 , , , 2 3 2 2 3 5 O i j i j i j i j i j i j i j i j i j i j i j i j i j x x x x x x x x x x x x x x x                                                                                                                             1, 1, 2 , 2 O i j i j i j x x x                              II Order Accurate  I Order Backward Difference  II Order Central Difference I Order Accurate
  • 10. FDM: Finite Difference Quotient  Higher Order Accurate Difference Quotients  Disadvantage : By requiring more neighboring grid points, results in more computational time for each grid point computation  Advantage : Smaller number of total grid points in a flow solution to obtain comparable overall accuracy  II Order accuracy has been accepted in the vast majority of CFD applications 10
  • 11. FDM: Finite Difference Quotient 11   2 4 2 6 4 1, , 1, 2 2 4 6 , , , 2 1, , 1, 2 2 2 , 2 2, 1, , 1, 1, 2 , 2 2 4 6 2 16 30 16 1 i j i j i j i j i j i j i j i j i j i j i j i j i j i j i j i j x x x x x x x x x x                                                                                                          O     4 2 2 x x              O  II Order Central Second Difference  IV Order Second Difference II Order Accurate IV Order Accurate
  • 12. FDM: Finite Difference Equation and Solution Methodology 12 1, , 1, 1, 1, , 2 2 1 3 4 5 2 6 2 2 2 1 2 0 2 2 1 0 0 0 0 1 2 1 0 0 0 At 0, ; 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0 1 2 , i j i j i j i j i j b b i j b b T x x T T x L T T T T T T T T x T T T T T T T                                                                             1-D Steady State Conduction  G.E:  B,C’s:  F.D.Eq. :  Tridiagonal Matrix:  Solver  Jacobi  Gauss-Seidel Tb1 Tb2 i=1 2 3 4 5 6 7 L
  • 13. FDM: Finite Difference Equation and Solution Methodology 13   1 1, , 1, 2 2 2 2 0 2 T.E=O( t, x ) As t 0 & x 0 T.E 0 F.D.Eq. is Consistent At t 0; n n n n n i j i j i j T T T T T T T t x T T t x                            1-D Unsteady State Conduction G.E: I.C & B.C’s: F.D.Eq. : Reliability of num. results (within T.E.) Vs analytical results If the difference equation is consistent If the numerical algorithm is stable If the B.C’s are handled properly Tb1 Tb2 i=1 2 3 4 5 6 7 Tb1 Tb2 Tb1 Tb2 n+ 1 n n- 1
  • 14. 14
  • 15. 15
  • 16. 16
  • 17. 17
  • 18. 18
  • 19. 19
  • 20. 20
  • 21. 21
  • 22. 22
  • 23. 23
  • 24. 24
  • 25. 25
  • 26. 26
  • 27. 27
  • 28. 28
  • 29. 29
  • 30. 30
  • 31. 31
  • 32. 32
  • 33. FVM: Finite Volumes 33 i j E S Ncell j Ncell i P 1 1 δxe δys δyn Fictitious Cells: i=1 & Ncell i; j=1,Ncell j j=1 & Ncell j; i=1,Ncell i Real Cells: i=2,Ncell i-1; j=2,Ncell j-1 W n Δx Δy N δxw e s w
  • 34. FVM: Finite Volume Equations and Solution Methodology 34  2-D Steady State Conduction  G.E:  Finite Volume Discretization: 2 2 2 2 2 2 2 , , , , 0 0 0 ˆ . 0 0 f f f f V V f f S S S f e w f n s f f S S f e w f n s f f P W N P P S E P e w n e w n s T T T x y TdV TdV T T T ndS dS dS x y T T dS dS x y T T T T T T T T S S S x x x x                                                                            0 s S  
  • 35. FVM: Finite Volume Equations and Solution Methodology 35  2-D Unsteady State Conduction  G.E:  Finite Volume Discretization:  Explicit Method  Implicit Method 2 2 2 2 1 mean P 1 1 T t T T T t t t P n n P P P P P V n n n n n n n n n n P W N P P S P P E P P e w n s e w n s n n P P P T T x y T T dV V V V t T T T T T T T T T T V S S S S t x x x x T T V t                                                                             1 1 1 1 1 1 1 1 n n n n n n n n P W N P P S E P e w n s e w n s T T T T T T T T S S S S x x x x                              
  • 36. 36 FVM: 1-D Steady State Heat Conduction G.E:
  • 37. 37 FVM: 1-D Steady State Heat Conduction
  • 38. 38 FVM: 1-D Steady State Heat Conduction
  • 39. 39 FVM: 1-D Steady State Heat Conduction
  • 40. 40 FVM: 1-D Steady State Heat Conduction
  • 41. 41 FVM: 1-D Steady State Heat Conduction
  • 42. 42 FVM :1-D Unsteady State Conduction
  • 43. 43 FVM :1-D Unsteady State Conduction
  • 44. 44 Discrete Representation of Domain: Grid Generation (Finite CV)
  • 45. 45 Discrete Representation of Domain: Grid Generation (Finite CV)
  • 49. 49 Derivation of DIFFERENTIAL Equation: Steady State Heat Conduction
  • 50. 50 Derivation of Algebraic Equation: Steady State Heat Conduction
  • 51. 51 Derivation of Algebraic Equation: Steady State Heat Conduction
  • 52. 52 Derivation of Algebraic Equation: Steady State Heat Conduction
  • 53. 53 A Plate subjected to Constant Temperature on the Boundary
  • 54. 54 FVM: 2-D Steady State Heat Conduction
  • 55. 55 . FVM: 2-D Steady State Heat Conduction
  • 56. 56 FVM: 2-D Steady State Heat Conduction
  • 59. 59 Results: 2-D Steady State Conduction
  • 60. 60 Results: 2-D Steady State Conduction
  • 61. 61 Results: 2-D Steady State Conduction
  • 62. 62 FVM : 2-D Steady State Conduction
  • 63. 63 FVM : 2-D Steady State Conduction
  • 64. 64 A Plate subjected to different Types of Thermal Boundary Conditions
  • 66. 66 Results: 2-D Steady State Conduction
  • 67. 67 Results: 2-D Steady State Conduction
  • 68. 68 Results: 2-D Steady State Conduction
  • 69. 69 Results: 2-D Steady State Conduction
  • 70. 70 FVM : 2-D Unsteady State Conduction
  • 71. 71 Derivation of Algebraic Equation: Unsteady State Heat Conduction
  • 72. 72 Derivation of Algebraic Equation: Unsteady State Heat Conduction
  • 73. 73 FVM : 2-D Unsteady State Conduction
  • 74. 74 Unsteady State Heat Conduction: Computational Stencil
  • 75. 75 2-D Unsteady State Conduction: Explicit Vs Implicit Approach
  • 76. 76 Grid points for Heat Fluxes and Temperature
  • 77. 77 A Pseudo Code: 2-D Unsteady State Conduction
  • 80. 80 FVM :1-D Unsteady State Conduction with Heat Generation
  • 81. 81 FVM :1-D Unsteady State Conduction with Heat Generation
  • 82. 82 FVM :1-D Unsteady State Conduction with Heat Generation
  • 83. 83 FVM :1-D Unsteady State Conduction with Heat Generation
  • 84. 84 FVM : 2-D Unsteady State Conduction
  • 85. 85 FVM : 2-D Unsteady State Conduction
  • 86. 86 FVM : 2-D Unsteady State Conduction
  • 87. 87 Special Topics: Computational Multi-Solid Heat Transfer (CMSHT)
  • 88. 88 Special Topics: CMSHT – Grid Generation
  • 89. 89 Special Topics: CMSHT – Interface Treatment
  • 93. 93 Special Topics: Nonlinearity in Conduction Heat Transfer
  • 94. 94 Special Topics: Nonlinearity in Conduction Heat Transfer
  • 95. 95 Special Topics: Nonlinearity in Conduction Heat Transfer
  • 96. 96 Derivation of DIFFERENTIAL Equation: Unsteady State Heat Conduction
  • 97. 97 Derivation of ALGEBRAIC Equation: Unsteady State Heat Conduction
  • 98. 98 Derivation of Algebraic Equation: Steady State Heat Conduction
  • 99. 99 Derivation of Algebraic Equation: Steady State Heat Conduction
  • 100. 100 Discrete Representation of Domain: Grid Generation (Finite CV)
  • 101. 101 Grid points for Heat Fluxes and Temperature
  • 102. 102 A Pseudo Code: 2-D Unsteady State Conduction