SlideShare a Scribd company logo
1 of 38
Robust and Optimal Control
A Two-port Framework Approach
Some Basic Concepts
1
Robust and Optimal Control - A Two-port Framework Approach
Concept
of
Norm
2
Robust and Optimal Control - A Two-port Framework Approach
Max(x)
sup(x)
Sup(x) appears in one of max(x) or “boundary”
sup(x) may not be one of max(x)
boundary
Max(x)
sup(x)
Difference between sup(x) and max(x)
t
x
x
t
3
Robust and Optimal Control - A Two-port Framework Approach
(1) Vector p-norm (for ):
Definition 2.3: Let be a vector in . The followings are norms on
<Vector norm>
Norm can be loosely understood as a description of size or volume.
 x
A vector norm, denoted by of any vector must have the following properties:
(1) unless,
(2) where is any constant and is the absolute value of
(3)
0
x  0 0

cx c x
 c | |
c c
x y x y
  
1
2
n
x
x
x
x
 
 
 

 
 
 
n
c n
c
1 p
  
1
1/
n
p
p i
i
p
x
x

 
  
 

(2) Vector 1-norm:
1
1
n
i
i
x x

 
(3) Vector 2-norm:
2
*
2
1
n
i
i
x x x x

  
(4) Vector - norm:
 1
max i
i n
x x
 


4
Robust and Optimal Control - A Two-port Framework Approach
Examples of vector norms
Given the vectors of a、b、c
find the vector norm respectively
( i.e., 1-norm, 2-norm, ∞-norm )
5
1
2
15
a
 
 
  
 
 
8
9
10
b
 
 
  
 
 
4
-6
12
c
 
 
  
 

 
1-norm of a vector
Definition : The 1-norm of any vector x is defined as 1
1
n
i
i
x x

 
1
1
1 2 15 18
n
i
i
a a

    

1
1
4 6 12 22
n
i
i
c c

      

1
1
7
9 0 2
8 1
n
i
i
b b

    

Robust and Optimal Control - A Two-port Framework Approach
6
Definition : The 2-norm of any vector x is defined as
2
*
2
1
n
i
i
x x x x

  
2-norm of vector
2 2 2 2
*
2
1
1 2 15 230
n
i
i
a a a a

     

2 2 2 2
*
2
1
4 6 12 196 14
n
i
i
c c c c

       

2 2 2 2
*
2
1
8 9 10 245
n
i
i
b b b b

     

∞ -norm of vector
Definition : The ∞-norm of any vector x is defined as
1
max i
i n
x x
  

5 15
1
a 
  10 10
b 
  12 12
c 
  
Robust and Optimal Control - A Two-port Framework Approach
Properties of vector norms
7
0 , 0 0
x unless
x x
x y x y
 
 

  
any constant and is the absolute value of
where is
  
(1)
(2)
(3)
1
2
15
a
 
 
  
 
 
2
4
30
d
 
 
  
 
 
2
d a

1
18
a 
2
230
a 
15
a 

vector norm of a:
1
36
d 
2
2 230
d 
30
d 

vector norm of d:
2
d a

1 8 9
2 9 11
15 10 25
e a b
     
     
  
     
     
     
 
1
45
e 
2
827
28.7576
e 

25
e 

vector norm of e:
1 1
45
a b
 
2 2
245 230
30.6577
a b
  

25
a b
 
 
vector norm of a+b:



Ex:
Robust and Optimal Control - A Two-port Framework Approach
In the case of matrices, a matrix norm satisfies
<Matrix norm>
(1) unless
0
A  0
A 
(2) where is any constant
A A
 
 
(3) A B A B
  
(4) AB A B

Definition : Let be a matrix in
The following gives a list of different matrix norms :
11 12 1
21 22 2
1 2
n
n
m m mn
m m m
m m m
M
m m m
 
 
 

 
 
 
m n
c 
(1) Matrix 1-norm (column sum):
1
1
max
m
j
i
ij
M m

 
(2) Matrix 2-norm:  
*
ma
2 x
M M M


(3) Matrix -norm (row sum):
 1
max
n
j
i
ij
M m


 
(4) Frobenius norm:  
*
F
M trace M M

8
Robust and Optimal Control - A Two-port Framework Approach
Examples of 1-norm
9
1
1
max 3 7
4
m
ij
j
i
A a

     

1
1
max 2 4 6
m
ij
j
i
C c

    

1
1
max 0 6 6
m
ij
j
i
B b

   

1-norm of a matrix (column sum)
Definition : The 1-norm of matrix M is defined as 1
1
max
m
ij
j
i
M m

 
Let
11 12 1
21 22 2
1 2
n
n
m n
m m mn
m m m
m m m
M
m m m

 
 
 

 
 
 
Choose the maximum
1 3
2 4
A

 
  

 
2 0
1 6
B

 
  

 
1 2
4 4
C
 
  
 
 
Robust and Optimal Control - A Two-port Framework Approach
Examples of matrix 2-norm
10
 
max
2
29.8661 5.4650
A A A
 
  
 
max
2
36.5624 6.0467
C C C
 
  
 
max
2
37.1208 6.0927
B B B
 
  
Definition : The 2-norm of matrix M is defined as  
max
2
M M M
 

5 11
11 25
A A
 
 
  

 
1
2
0.1339
29.8661







5 6
6 36
B B
  
  
 
1
2
3.8792
37.1208







17 18
18 20
C C
  
  
 
1
2
0.4376
36.5624







Robust and Optimal Control - A Two-port Framework Approach
Examples of matrix ∞ -norm (row sum)
11
1
max 2 4 6
m
ij
i
j
A a


    

1
max 8
4 4
m
ij
i
j
C c


     

1
max 1 6 7
m
ij
i
j
B b


    

Definition : The ∞ -norm of matrix M is defined as
1
max
m
ij
i
j
M m


 
Let
11 12 1
21 22 2
1 2
n
n
m n
m m mn
m m m
m m m
M
m m m

 
 
 

 
 
 
Choose the maximum
1 3
2 4
A

 
  

 
2 0
1 6
B

 
  

 
1 2
4 4
C
 
  
 
 
Robust and Optimal Control - A Two-port Framework Approach
12
  30 5.4772
F
A trace A A

  
  37 6.0828
F
C trace C C

  
  6.4031
41
F
B trace B B

  
Forbenius-norm of a matrix
Definition : The Forbenius-norm of matrix M is defined as  
F
M trace M M


5 11
11 25
A A
 
 
  

 
5 6
6 36
B B
  
  
 
17 18
18 20
C C
  
  
 
11 12 1
21 22 2
1 2
n
n
m m mn
n n n
n n n
M M
n n n

 
 
 

 
 
 
  ii
trace M M M

 
Robust and Optimal Control - A Two-port Framework Approach
1 1
224
A B  2 2
134.5222
A B 
147
A B
 

Matrix norm of AB:
134.8110
F F
A B 
Properties of matrix norms
13
0 , A 0
A unless
x x
A B A B
AB A B
 
 

  

any constant
where is

(1)
(2)
(3) Let D AB

(4)
1 3
2 5
A

 
  

 
20 1
-8 -1
B

 
  
 
4 4
0 7
D
 
  
 
1
11
D  2
8.3523
D 
8
D 

Matrix norms of D:
9
F
D 
Robust and Optimal Control - A Two-port Framework Approach
<Signal norm>
Let the time signal be measurable.
Definition : The 1-norm of a signal is defined as
y
1
: y dt
y


 
Definition : The 2-norm of a signal is defined as 2
2
: y dt
y


 
y
Definition : The -norm of a signal is defined as
y
 : sup
y y


<System norm>
Let the system should be linear, time-invariant and causal.
Definition :The 1-norm of a system is defined as
( )
G s 1
1
( ) : ( )
2
G s G j d
 



 
Definition : The 2-norm of a system is defined as
( )
G s 2
2
1
( ) : ( )
2
G s G j d
 



 
Let the state-space realization of a system be . The norm can be
determined by , where is the observability gramian .
( )
s A B
G s
C D
 
  
 
 
2
( ) T
G s tr B PB
 P
Definition The -norm of a system is defined as
 ( )
G s ( ) : sup ( )
G s G j




14
Robust and Optimal Control - A Two-port Framework Approach
Example : Given a linear system below, please determine its -norm and Bode plot.

 
0 1 0
-5 2 1
5 1
x x u
y x
   
 
   

   

15
 
0 1 0
-5 2 1
5 1
x x u
y x
   
 
   

   

2
5
(s)
2 5
s
G
s s


 
Matlab Code:
(s) 1.3214
G 

Robust and Optimal Control - A Two-port Framework Approach
<Hankel norm>
Definition : Hankel norm is used for determining the residual energy of a
system before . For a stable system described as , the
Hankel norm is defined as
0
t  ( ) ( )
y t Hu t

2
0
0
( ,0)
( ) ( )
sup
( ) ( )
T
H T
u L
y t y t
H
u t u t dt
 






This can be determined by  
max
H
H PQ


are the observability gramian and controllability gramian
and
P Q
16
Robust and Optimal Control - A Two-port Framework Approach
Example : Given a linear system as below, please determine its norm
and Hankel norm.
 
G s 2
H
 
1 0 1
0 2 1
1 2
x x u
y x

   
 
   

   
 
Observability Gramian:
0
1 1
2 3
1 1
3 4
T
A T A
P e C Ce d
 


 
 
   
 
 
 

0
1 2
2 3
2
1
3
T
A T A
Q e BB e d
 


 

 
   
 

 
 

 
2
1
6
T
G tr B PB
 
 
max
1
6
H
G PQ

 
Hence
Controllability Gramian
17
Robust and Optimal Control - A Two-port Framework Approach
Controllability and observability
<Controllability>
Physical meaning:There exists a state feedback gain F such that all eigenvalues of
A+BF can be assigned arbitrarily.
The following statements are equivalent
(1) The n-dimensional pair (A,B) is controllable
(2) The controllability matrix has full row rank.
(3) The matrix has full row rank at every eigenvalue of A
(4) The matrix is nonsingular for any
In addition, if all eigenvalues of A have negative real parts, then the unique solution of
is positive definite. The solution is called the controllability Gramain defined by
1
n
B AB A B

 
 
 
I A B
 
  0
0
T
t
A T A
c
W t e BB e d
 

 
 0
t 
n n

T T
c c
AW W A BB
  
0
T
A T A
c
W e BB e d
 


  18
Robust and Optimal Control - A Two-port Framework Approach
(1) The n-dimensional pair (A,C) is observable
(2) The observability matrix has full column rank.
(3) The matrix has full column rank at every eigenvalue of A
(4) The matrix is nonsingular for any
In addition, if all eigenvalues of A have negative real parts, then the unique solution of
is positive definite. The solution is called the observability Gramain defined by
Controllability and observability
<Observability>
Physical meaning:There exists an observer gain H such that all eigenvalues of A+HC
can be assigned arbitrarily.
The following statements are equivalent
1
n
C
CA
CA 
 
 
 
 
 
 
I A
C
 
 
 
 
0
( ) 0
T
t
A T A
o
W t e C Ce d
 

 
 0
t 
n n

T T
o o
A W W A C C
  
  0
T
A T A
o
W t e C Ce d
 


  19
Robust and Optimal Control - A Two-port Framework Approach
Functional spaces
Laplace transform
Inverse transform
2
H
 
2 0,
L 
Laplace transform
Inverse transform
P
P
 
2 ,
L    
2
L jR
Laplace transform
Inverse transform
P
P
2
H 
 
2 ,0
L 
The space (for ) consists of all Lebesgue measurable functions
defined in the interval such that
The space consists of all Lebesgue measureable functions such that
p
L 1 p
   ( )
w t
( , )
 
 
1
: ( )
p p
p
w w t dt


  

L
( )
w t
: sup ( )
t R
w ess w t


  
Let be a subspace of in which every
function is analytic in , and be a
subspace of in which every function is
analytic and bounded in the open right half
plane.
2
H 2
L
Re( ) 0
s  H
L
20
Robust and Optimal Control - A Two-port Framework Approach
2
2
( )
( )
G s L
G s H


2
2
[ *( ) ( )]
1
( ) ( )
2
Trace G j G j d
G s G j d
  
 





 
 
  
 
 


( )
( )
G s L
G s H




( ) sup [ ( )]
sup [ ( )]
G j ess G j
H G j


  
 


  
  
21
Robust and Optimal Control - A Two-port Framework Approach
<System norm>
Let G(s) be linear, time-invariant and causal stable system.
2
2
1
( ) : ( )
2
G s G j d
 



 
( ) : sup ( )
G s G j




22
Robust and Optimal Control - A Two-port Framework Approach
RL
GH
BH
RH
Strictly
proper
2
RH
Stable
A
B C
E
F G
H
( 3)( 4) ( 1)
: :
( 1)( 2) ( 4)
( 7) ( 20)
: :
( 5) ( 3)( 5)
( 4)( 5) ( 1)
: :
( 6)( 7) ( 2)( 4)
( 20) ( 1)( 2)
: :
( 3)( 5) ( 3)(
s s s
A B
s s s
s s
C D
s s s
s s s
E F
s s s s
s s s
G H
s s s s
  
  
 
  
  
   
  
    4)( 5)
s 
Example
D
23
Robust and Optimal Control - A Two-port Framework Approach
RL
GH
BH
RH
Strictly
proper
RH 

2
RL
2
RH
2
RH 
Stable
Anti-Stable
A
B C
E
F G
H
I
J
( 3)( 4) ( 1)
: :
( 1)( 2) ( 4)
( 7) ( 20)
: :
( 5) ( 3)( 5)
( 4)( 5) ( 1)
: :
( 6)( 7) ( 2)( 4)
( 20) ( 1)( 2)
: :
( 3)( 5) ( 3)(
s s s
A B
s s s
s s
C D
s s s
s s s
E F
s s s s
s s s
G H
s s s s
  
  
 
  
  
   
  
    4)( 5)
( 3) ( 4)( 6)
: :
( 1)( 2) ( 3)( 5)
s
s s s
I J
s s s s

  
   
Example
D
24
Robust and Optimal Control - A Two-port Framework Approach
Example : Determine the following systems and evaluate which function space is
located.
(1) (2) (3)
2
2
1 3
( ) ( )
1 ( 1)( 2
(
1 )
)
s s
G s G s
s
s
G s
s s s


 
  
(1) It is clear that is stable and for
. Hence . By decomposition of , one has
1( )
G s 2
1 sup sup
sup ( ) 1
1 1
j
j
G j

 
 
 
  

  

0
  1
G H
 1
G
1
1
( ) 1
1 1
s
G s
s s
  
 
2
1 2
1
( )
2
1 1 1
(1 )(1 )
2 1 1
1 1 1 1
(1 )
2 1 1 ( 1)( 1)
G G j d
d
j j
d
j j j j
 


  

    






 
  
 
 
  
 
  
 
 
   
 
     
 





1 2 1
( ) , ( )
G s H G s H
 
25
Robust and Optimal Control - A Two-port Framework Approach
Example : Determine the following each system and evaluate which function space
is located.
(1) (2) (3)
1 3
2
2
( ) ( )
1 ( 1)
( )
)
1 ( 2
s
G s
s
s s
G s G s
s s s
 
  


(2) By definition, because of ;
, because of ;
, because of .
2 2 2 2
( ) , ( ) , ( )
G s L G s H G s H
 
  
2 ( )
G s L
 2
2
( )
sup
s
1
up ( )
j
j
G j







 
2 2
( )
G s H

2
( )
G j d
 


 

2 ( )
G s H

2
Re( ) 0
sup
1
s
s
s

 

26
Robust and Optimal Control - A Two-port Framework Approach
Example : Determine the following systems and evaluate which function space is
located.
(1) (2) (3)
2
1 2 3
( ) ( ) ( )
( 1)(
1 1 2)
s s
G s G s
s s
s
G s
s s
 
 

 
(3) , because is not analytic at ;
, because is analytic on axis and satisfies
, because is not analytic at .
3 ( )
G s H
 3 ( )
G s 1
s 
3 ( )
G s L
 3 ( )
G s j sup ( )
G j

  
3 2
( )
G s H
 3 ( )
G s 1
s 
3 3 2 3
( ) , ( ) , ( )
G s L G s H G s H
 
  
27
Robust and Optimal Control - A Two-port Framework Approach
A complex square matrix is called unitary if the inverse is equal to
the complex conjugate transpose: * *
A A AA I
 
A square matrix is called orthogonal if it is real and satisfies
( )
T T
i
diag
A A AA 


A square matrix is called normal if . A normal matrix
has the decomposition of where and is a
diagonal matrix.
* *
ZZ Z Z

Z
*
Z U U
  *
UU I
 
Some definitions of matrix
28
A square matrix is called orthonormal if it is real and satisfies
and 1
T T
A A AA I A
  
Robust and Optimal Control - A Two-port Framework Approach
29
Robust and Optimal Control - A Two-port Framework Approach
Concept
of
positive real
30
Robust and Optimal Control - A Two-port Framework Approach
31
Positive semi-definite
A n× n matrix M is called to be positive semi-definite if
Example:
*
0
z Mz 
2 1 0
1 2 1
0 1 2
M

 
 
  
 
 

 
       
   
2 2 2
2 2
2 2
2 2 2
2 2 2 2 2
0
T T
a
z Mz z M z a b a b c b c b
c
a ab b bc c
a a b b c c
 
 
 
       
   
 
 
    
     

a
Let z b
c
 
 

 
 
 
M is positive definite
Robust and Optimal Control - A Two-port Framework Approach
32
Definition of positive real:
A p×p proper rational transfer function matrix G(s) is positive real
if
 poles of all elements of G(s) are in Re[s]≤0 ;
 for all real ω in which jω is not a pole of any element of G(s),
G(jω)+GT (-jω)≥0 (positive semi-definite);
 any pure imaginary pole jω of any element of G(s) is a simple pole
and (positive semi-definite)
, where
 
   
2
lim det 0
p q T
G j G j

  


 
  
 
   
T
q rank G G
 
   
 
Robust and Optimal Control - A Two-port Framework Approach
33
Definition of strictly positive real:
A p×p proper rational transfer function matrix G(s) is strictly positive real
if
 Poles of all elements of G(s) are in Re[s]<0 .
 For all real ω for which jω is not a pole of any element of G(s),
G(jω)+GT (-jω)>0 (positive definite)
 Any pure imaginary pole jω of any element of G(s) is a simple pole
and (positive definite)
, where
 
   
2
lim det 0
T
p q
G j G j

  


 
  
 
   
T
rank
q G G
 
  
  
Robust and Optimal Control - A Two-port Framework Approach
34
Example 1:
 
1
, 0
G s a and a
s a
  

 
1. -
pole a G s is Hurwitz
 
   
   
2
2. 0, for all
1 1 2
where q= 0
=
T
T
G j G j
j j
rank G G
a
a a a
  
  
   

 
 








 
   
2 2
2
2
3. lim det
2
lim 2 , as
0 p=1, q=0
p q T
G j G j
a
a
a




 




 
 
 
 


Sol:
G is strictly positive real
Robust and Optimal Control - A Two-port Framework Approach
1
sC
R
( )
i
V s


sL
( )
o
V s


( )
I s
35
Example 2:
Sol:
Consider a RLC circuit as shown in Fig.1. Please verify
that whether the system is positive real when
(a)
(b)
Fig.1
2 0.5 2
L C R
  
0 0.5 2
L C R
  
( ) ( ) ( ) ( )
( ) ( )
1
1
i
o
V s R I s I s I s
V s I s
sC
s
sL
C

  



 


2
( ) 1
( )
( ) 1
o
i
V s
G s
V s LCs RCs
  
 
According to KVL rule,
Robust and Optimal Control - A Two-port Framework Approach
1
sC
R
( )
i
V s


sL
( )
o
V s


( )
I s
36
Sol:
Fig.1
(a)
2 2
( ) 1 1
1. ( )
( ) 1 1
o
i
V s
G s
V s LCs RCs s s
  
   
1
3
2
pole j
   
   
 
 
2
2
2 2 2
2
2
2
2 2
1 1 2(1 )
(
2.
( ) 1 ( ) 1 1
2
1,
1
1 )
0
T
G j G j
j j j j
if then

 
     

 


    
    

 




Thus, G is not positive real
0.5
2 2
C R
L 
 
Example 2-1:
Robust and Optimal Control - A Two-port Framework Approach
1
sC
R
( )
i
V s


sL
( )
o
V s


( )
I s
37
Example 2-2:
Sol:
Fig.1
0.5
0 2
C R
L 
 
(a)
2
( ) 1 1
1. ( )
( ) 1 1
o
i
V s
G s
V s LCs RCs s
  
  
1
pole
  
    2 2
1 1 (1- ) (1+ ) 2
2. for all real
1 1- 1
>
1
0
T j j
G j G j
j j
 
  
   

     
  
 
   
2
2
2
3. lim det
2
2 0
lim , as p=1, q=0
1
p q T
G j G j


  







 
 
 
 

Thus, G is strictly positive real
Robust and Optimal Control - A Two-port Framework Approach
38
Example 3:
 
2 1
1 2
1 2
2 1
s
s s
G s
s s

 
 
 
  

 
 
 
 
 
1. 1, 2
pole G s is Hurwitz
   
   
 
2
2 2
2 2
2 1 2 1 2 2 2
1 2 1 2 1 4
2.
1 2 1 2 2 4
2 1 2 1 4 1
T
j j j
j j j j
G j G j
j
j j j j
   
     
 

     
   
     
 
     
       
     
    

     
     
       
     
Sol:
G is strictly positive real
 
 
2
2 2
2 2
2 2 2
1 4
2 4
4 1
j
a
a b
b
j
 
 

 
 
 
  
 
 
  
  
 
 
 
   
 
2 2
2 2
2 2 2 2 2 2 2 2
2
2 2
2 2
2 2 2 2
2 2 4 2 2 4
1 4 4 1 1 4 4 1
2 2 4
1 1
0
a
j j j j
a b a b a ab ab b
b
a b
 
   
       

 
 
 
 

      
   
       
   
 


 


 
   
2
3. lim det , s
0 a 2, 1
p q T
G j G j p q

  


 
  
 
 

More Related Content

Similar to 05_Norms_2023_.pptx

12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
Amritesh Maitra
 
IFAC2008art
IFAC2008artIFAC2008art
IFAC2008art
Yuri Kim
 
Bounded variables new
Bounded variables newBounded variables new
Bounded variables new
Samo Alwatan
 
Design of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).pptDesign of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).ppt
khinmuyaraye
 
digital-signal-processing-objective.docx
digital-signal-processing-objective.docxdigital-signal-processing-objective.docx
digital-signal-processing-objective.docx
Srinivasu Raju
 

Similar to 05_Norms_2023_.pptx (20)

determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
Determinants
DeterminantsDeterminants
Determinants
 
Ingeniería de control: Tema 3. El método del espacio de estados
Ingeniería de control: Tema 3. El método del espacio de estadosIngeniería de control: Tema 3. El método del espacio de estados
Ingeniería de control: Tema 3. El método del espacio de estados
 
lecture1 (10).ppt
lecture1 (10).pptlecture1 (10).ppt
lecture1 (10).ppt
 
IFAC2008art
IFAC2008artIFAC2008art
IFAC2008art
 
Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...Modelling design and control of an electromechanical mass lifting system usin...
Modelling design and control of an electromechanical mass lifting system usin...
 
Bounded variables new
Bounded variables newBounded variables new
Bounded variables new
 
Chaotic Communication for mobile applica
Chaotic Communication for mobile applicaChaotic Communication for mobile applica
Chaotic Communication for mobile applica
 
FinalReport
FinalReportFinalReport
FinalReport
 
RoCo MSc Seminar
RoCo MSc SeminarRoCo MSc Seminar
RoCo MSc Seminar
 
frequency responce.ppt
frequency responce.pptfrequency responce.ppt
frequency responce.ppt
 
Design of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).pptDesign of Linear Control Systems(0).ppt
Design of Linear Control Systems(0).ppt
 
Ies electronics engineering - control system
Ies   electronics engineering - control systemIes   electronics engineering - control system
Ies electronics engineering - control system
 
digital-signal-processing-objective.docx
digital-signal-processing-objective.docxdigital-signal-processing-objective.docx
digital-signal-processing-objective.docx
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Planning Under Uncertainty With Markov Decision Processes
Planning Under Uncertainty With Markov Decision ProcessesPlanning Under Uncertainty With Markov Decision Processes
Planning Under Uncertainty With Markov Decision Processes
 
chp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.pptchp-1-matrices-determinants1.ppt
chp-1-matrices-determinants1.ppt
 
chp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).pptchp-1-matrices-determinants1 (2).ppt
chp-1-matrices-determinants1 (2).ppt
 
Hidden Markov Models
Hidden Markov ModelsHidden Markov Models
Hidden Markov Models
 

Recently uploaded

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 

05_Norms_2023_.pptx

  • 1. Robust and Optimal Control A Two-port Framework Approach Some Basic Concepts 1
  • 2. Robust and Optimal Control - A Two-port Framework Approach Concept of Norm 2
  • 3. Robust and Optimal Control - A Two-port Framework Approach Max(x) sup(x) Sup(x) appears in one of max(x) or “boundary” sup(x) may not be one of max(x) boundary Max(x) sup(x) Difference between sup(x) and max(x) t x x t 3
  • 4. Robust and Optimal Control - A Two-port Framework Approach (1) Vector p-norm (for ): Definition 2.3: Let be a vector in . The followings are norms on <Vector norm> Norm can be loosely understood as a description of size or volume.  x A vector norm, denoted by of any vector must have the following properties: (1) unless, (2) where is any constant and is the absolute value of (3) 0 x  0 0  cx c x  c | | c c x y x y    1 2 n x x x x              n c n c 1 p    1 1/ n p p i i p x x          (2) Vector 1-norm: 1 1 n i i x x    (3) Vector 2-norm: 2 * 2 1 n i i x x x x     (4) Vector - norm:  1 max i i n x x     4
  • 5. Robust and Optimal Control - A Two-port Framework Approach Examples of vector norms Given the vectors of a、b、c find the vector norm respectively ( i.e., 1-norm, 2-norm, ∞-norm ) 5 1 2 15 a            8 9 10 b            4 -6 12 c             1-norm of a vector Definition : The 1-norm of any vector x is defined as 1 1 n i i x x    1 1 1 2 15 18 n i i a a        1 1 4 6 12 22 n i i c c          1 1 7 9 0 2 8 1 n i i b b       
  • 6. Robust and Optimal Control - A Two-port Framework Approach 6 Definition : The 2-norm of any vector x is defined as 2 * 2 1 n i i x x x x     2-norm of vector 2 2 2 2 * 2 1 1 2 15 230 n i i a a a a         2 2 2 2 * 2 1 4 6 12 196 14 n i i c c c c           2 2 2 2 * 2 1 8 9 10 245 n i i b b b b         ∞ -norm of vector Definition : The ∞-norm of any vector x is defined as 1 max i i n x x     5 15 1 a    10 10 b    12 12 c    
  • 7. Robust and Optimal Control - A Two-port Framework Approach Properties of vector norms 7 0 , 0 0 x unless x x x y x y         any constant and is the absolute value of where is    (1) (2) (3) 1 2 15 a            2 4 30 d            2 d a  1 18 a  2 230 a  15 a   vector norm of a: 1 36 d  2 2 230 d  30 d   vector norm of d: 2 d a  1 8 9 2 9 11 15 10 25 e a b                                    1 45 e  2 827 28.7576 e   25 e   vector norm of e: 1 1 45 a b   2 2 245 230 30.6577 a b     25 a b     vector norm of a+b:    Ex:
  • 8. Robust and Optimal Control - A Two-port Framework Approach In the case of matrices, a matrix norm satisfies <Matrix norm> (1) unless 0 A  0 A  (2) where is any constant A A     (3) A B A B    (4) AB A B  Definition : Let be a matrix in The following gives a list of different matrix norms : 11 12 1 21 22 2 1 2 n n m m mn m m m m m m M m m m              m n c  (1) Matrix 1-norm (column sum): 1 1 max m j i ij M m    (2) Matrix 2-norm:   * ma 2 x M M M   (3) Matrix -norm (row sum):  1 max n j i ij M m     (4) Frobenius norm:   * F M trace M M  8
  • 9. Robust and Optimal Control - A Two-port Framework Approach Examples of 1-norm 9 1 1 max 3 7 4 m ij j i A a         1 1 max 2 4 6 m ij j i C c        1 1 max 0 6 6 m ij j i B b       1-norm of a matrix (column sum) Definition : The 1-norm of matrix M is defined as 1 1 max m ij j i M m    Let 11 12 1 21 22 2 1 2 n n m n m m mn m m m m m m M m m m               Choose the maximum 1 3 2 4 A          2 0 1 6 B          1 2 4 4 C         
  • 10. Robust and Optimal Control - A Two-port Framework Approach Examples of matrix 2-norm 10   max 2 29.8661 5.4650 A A A        max 2 36.5624 6.0467 C C C        max 2 37.1208 6.0927 B B B      Definition : The 2-norm of matrix M is defined as   max 2 M M M    5 11 11 25 A A           1 2 0.1339 29.8661        5 6 6 36 B B         1 2 3.8792 37.1208        17 18 18 20 C C         1 2 0.4376 36.5624       
  • 11. Robust and Optimal Control - A Two-port Framework Approach Examples of matrix ∞ -norm (row sum) 11 1 max 2 4 6 m ij i j A a         1 max 8 4 4 m ij i j C c          1 max 1 6 7 m ij i j B b         Definition : The ∞ -norm of matrix M is defined as 1 max m ij i j M m     Let 11 12 1 21 22 2 1 2 n n m n m m mn m m m m m m M m m m               Choose the maximum 1 3 2 4 A          2 0 1 6 B          1 2 4 4 C         
  • 12. Robust and Optimal Control - A Two-port Framework Approach 12   30 5.4772 F A trace A A       37 6.0828 F C trace C C       6.4031 41 F B trace B B     Forbenius-norm of a matrix Definition : The Forbenius-norm of matrix M is defined as   F M trace M M   5 11 11 25 A A           5 6 6 36 B B         17 18 18 20 C C         11 12 1 21 22 2 1 2 n n m m mn n n n n n n M M n n n                 ii trace M M M   
  • 13. Robust and Optimal Control - A Two-port Framework Approach 1 1 224 A B  2 2 134.5222 A B  147 A B    Matrix norm of AB: 134.8110 F F A B  Properties of matrix norms 13 0 , A 0 A unless x x A B A B AB A B          any constant where is  (1) (2) (3) Let D AB  (4) 1 3 2 5 A          20 1 -8 -1 B         4 4 0 7 D        1 11 D  2 8.3523 D  8 D   Matrix norms of D: 9 F D 
  • 14. Robust and Optimal Control - A Two-port Framework Approach <Signal norm> Let the time signal be measurable. Definition : The 1-norm of a signal is defined as y 1 : y dt y     Definition : The 2-norm of a signal is defined as 2 2 : y dt y     y Definition : The -norm of a signal is defined as y  : sup y y   <System norm> Let the system should be linear, time-invariant and causal. Definition :The 1-norm of a system is defined as ( ) G s 1 1 ( ) : ( ) 2 G s G j d        Definition : The 2-norm of a system is defined as ( ) G s 2 2 1 ( ) : ( ) 2 G s G j d        Let the state-space realization of a system be . The norm can be determined by , where is the observability gramian . ( ) s A B G s C D          2 ( ) T G s tr B PB  P Definition The -norm of a system is defined as  ( ) G s ( ) : sup ( ) G s G j     14
  • 15. Robust and Optimal Control - A Two-port Framework Approach Example : Given a linear system below, please determine its -norm and Bode plot.    0 1 0 -5 2 1 5 1 x x u y x                 15   0 1 0 -5 2 1 5 1 x x u y x                 2 5 (s) 2 5 s G s s     Matlab Code: (s) 1.3214 G  
  • 16. Robust and Optimal Control - A Two-port Framework Approach <Hankel norm> Definition : Hankel norm is used for determining the residual energy of a system before . For a stable system described as , the Hankel norm is defined as 0 t  ( ) ( ) y t Hu t  2 0 0 ( ,0) ( ) ( ) sup ( ) ( ) T H T u L y t y t H u t u t dt         This can be determined by   max H H PQ   are the observability gramian and controllability gramian and P Q 16
  • 17. Robust and Optimal Control - A Two-port Framework Approach Example : Given a linear system as below, please determine its norm and Hankel norm.   G s 2 H   1 0 1 0 2 1 1 2 x x u y x                   Observability Gramian: 0 1 1 2 3 1 1 3 4 T A T A P e C Ce d                    0 1 2 2 3 2 1 3 T A T A Q e BB e d                        2 1 6 T G tr B PB     max 1 6 H G PQ    Hence Controllability Gramian 17
  • 18. Robust and Optimal Control - A Two-port Framework Approach Controllability and observability <Controllability> Physical meaning:There exists a state feedback gain F such that all eigenvalues of A+BF can be assigned arbitrarily. The following statements are equivalent (1) The n-dimensional pair (A,B) is controllable (2) The controllability matrix has full row rank. (3) The matrix has full row rank at every eigenvalue of A (4) The matrix is nonsingular for any In addition, if all eigenvalues of A have negative real parts, then the unique solution of is positive definite. The solution is called the controllability Gramain defined by 1 n B AB A B        I A B     0 0 T t A T A c W t e BB e d       0 t  n n  T T c c AW W A BB    0 T A T A c W e BB e d       18
  • 19. Robust and Optimal Control - A Two-port Framework Approach (1) The n-dimensional pair (A,C) is observable (2) The observability matrix has full column rank. (3) The matrix has full column rank at every eigenvalue of A (4) The matrix is nonsingular for any In addition, if all eigenvalues of A have negative real parts, then the unique solution of is positive definite. The solution is called the observability Gramain defined by Controllability and observability <Observability> Physical meaning:There exists an observer gain H such that all eigenvalues of A+HC can be assigned arbitrarily. The following statements are equivalent 1 n C CA CA              I A C         0 ( ) 0 T t A T A o W t e C Ce d       0 t  n n  T T o o A W W A C C      0 T A T A o W t e C Ce d       19
  • 20. Robust and Optimal Control - A Two-port Framework Approach Functional spaces Laplace transform Inverse transform 2 H   2 0, L  Laplace transform Inverse transform P P   2 , L     2 L jR Laplace transform Inverse transform P P 2 H    2 ,0 L  The space (for ) consists of all Lebesgue measurable functions defined in the interval such that The space consists of all Lebesgue measureable functions such that p L 1 p    ( ) w t ( , )     1 : ( ) p p p w w t dt       L ( ) w t : sup ( ) t R w ess w t      Let be a subspace of in which every function is analytic in , and be a subspace of in which every function is analytic and bounded in the open right half plane. 2 H 2 L Re( ) 0 s  H L 20
  • 21. Robust and Optimal Control - A Two-port Framework Approach 2 2 ( ) ( ) G s L G s H   2 2 [ *( ) ( )] 1 ( ) ( ) 2 Trace G j G j d G s G j d                        ( ) ( ) G s L G s H     ( ) sup [ ( )] sup [ ( )] G j ess G j H G j                21
  • 22. Robust and Optimal Control - A Two-port Framework Approach <System norm> Let G(s) be linear, time-invariant and causal stable system. 2 2 1 ( ) : ( ) 2 G s G j d        ( ) : sup ( ) G s G j     22
  • 23. Robust and Optimal Control - A Two-port Framework Approach RL GH BH RH Strictly proper 2 RH Stable A B C E F G H ( 3)( 4) ( 1) : : ( 1)( 2) ( 4) ( 7) ( 20) : : ( 5) ( 3)( 5) ( 4)( 5) ( 1) : : ( 6)( 7) ( 2)( 4) ( 20) ( 1)( 2) : : ( 3)( 5) ( 3)( s s s A B s s s s s C D s s s s s s E F s s s s s s s G H s s s s                          4)( 5) s  Example D 23
  • 24. Robust and Optimal Control - A Two-port Framework Approach RL GH BH RH Strictly proper RH   2 RL 2 RH 2 RH  Stable Anti-Stable A B C E F G H I J ( 3)( 4) ( 1) : : ( 1)( 2) ( 4) ( 7) ( 20) : : ( 5) ( 3)( 5) ( 4)( 5) ( 1) : : ( 6)( 7) ( 2)( 4) ( 20) ( 1)( 2) : : ( 3)( 5) ( 3)( s s s A B s s s s s C D s s s s s s E F s s s s s s s G H s s s s                          4)( 5) ( 3) ( 4)( 6) : : ( 1)( 2) ( 3)( 5) s s s s I J s s s s         Example D 24
  • 25. Robust and Optimal Control - A Two-port Framework Approach Example : Determine the following systems and evaluate which function space is located. (1) (2) (3) 2 2 1 3 ( ) ( ) 1 ( 1)( 2 ( 1 ) ) s s G s G s s s G s s s s        (1) It is clear that is stable and for . Hence . By decomposition of , one has 1( ) G s 2 1 sup sup sup ( ) 1 1 1 j j G j                0   1 G H  1 G 1 1 ( ) 1 1 1 s G s s s      2 1 2 1 ( ) 2 1 1 1 (1 )(1 ) 2 1 1 1 1 1 1 (1 ) 2 1 1 ( 1)( 1) G G j d d j j d j j j j                                                            1 2 1 ( ) , ( ) G s H G s H   25
  • 26. Robust and Optimal Control - A Two-port Framework Approach Example : Determine the following each system and evaluate which function space is located. (1) (2) (3) 1 3 2 2 ( ) ( ) 1 ( 1) ( ) ) 1 ( 2 s G s s s s G s G s s s s        (2) By definition, because of ; , because of ; , because of . 2 2 2 2 ( ) , ( ) , ( ) G s L G s H G s H      2 ( ) G s L  2 2 ( ) sup s 1 up ( ) j j G j          2 2 ( ) G s H  2 ( ) G j d        2 ( ) G s H  2 Re( ) 0 sup 1 s s s     26
  • 27. Robust and Optimal Control - A Two-port Framework Approach Example : Determine the following systems and evaluate which function space is located. (1) (2) (3) 2 1 2 3 ( ) ( ) ( ) ( 1)( 1 1 2) s s G s G s s s s G s s s        (3) , because is not analytic at ; , because is analytic on axis and satisfies , because is not analytic at . 3 ( ) G s H  3 ( ) G s 1 s  3 ( ) G s L  3 ( ) G s j sup ( ) G j     3 2 ( ) G s H  3 ( ) G s 1 s  3 3 2 3 ( ) , ( ) , ( ) G s L G s H G s H      27
  • 28. Robust and Optimal Control - A Two-port Framework Approach A complex square matrix is called unitary if the inverse is equal to the complex conjugate transpose: * * A A AA I   A square matrix is called orthogonal if it is real and satisfies ( ) T T i diag A A AA    A square matrix is called normal if . A normal matrix has the decomposition of where and is a diagonal matrix. * * ZZ Z Z  Z * Z U U   * UU I   Some definitions of matrix 28 A square matrix is called orthonormal if it is real and satisfies and 1 T T A A AA I A   
  • 29. Robust and Optimal Control - A Two-port Framework Approach 29
  • 30. Robust and Optimal Control - A Two-port Framework Approach Concept of positive real 30
  • 31. Robust and Optimal Control - A Two-port Framework Approach 31 Positive semi-definite A n× n matrix M is called to be positive semi-definite if Example: * 0 z Mz  2 1 0 1 2 1 0 1 2 M                            2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 T T a z Mz z M z a b a b c b c b c a ab b bc c a a b b c c                                   a Let z b c            M is positive definite
  • 32. Robust and Optimal Control - A Two-port Framework Approach 32 Definition of positive real: A p×p proper rational transfer function matrix G(s) is positive real if  poles of all elements of G(s) are in Re[s]≤0 ;  for all real ω in which jω is not a pole of any element of G(s), G(jω)+GT (-jω)≥0 (positive semi-definite);  any pure imaginary pole jω of any element of G(s) is a simple pole and (positive semi-definite) , where       2 lim det 0 p q T G j G j                  T q rank G G        
  • 33. Robust and Optimal Control - A Two-port Framework Approach 33 Definition of strictly positive real: A p×p proper rational transfer function matrix G(s) is strictly positive real if  Poles of all elements of G(s) are in Re[s]<0 .  For all real ω for which jω is not a pole of any element of G(s), G(jω)+GT (-jω)>0 (positive definite)  Any pure imaginary pole jω of any element of G(s) is a simple pole and (positive definite) , where       2 lim det 0 T p q G j G j                  T rank q G G        
  • 34. Robust and Optimal Control - A Two-port Framework Approach 34 Example 1:   1 , 0 G s a and a s a       1. - pole a G s is Hurwitz           2 2. 0, for all 1 1 2 where q= 0 = T T G j G j j j rank G G a a a a                              2 2 2 2 3. lim det 2 lim 2 , as 0 p=1, q=0 p q T G j G j a a a                     Sol: G is strictly positive real
  • 35. Robust and Optimal Control - A Two-port Framework Approach 1 sC R ( ) i V s   sL ( ) o V s   ( ) I s 35 Example 2: Sol: Consider a RLC circuit as shown in Fig.1. Please verify that whether the system is positive real when (a) (b) Fig.1 2 0.5 2 L C R    0 0.5 2 L C R    ( ) ( ) ( ) ( ) ( ) ( ) 1 1 i o V s R I s I s I s V s I s sC s sL C            2 ( ) 1 ( ) ( ) 1 o i V s G s V s LCs RCs      According to KVL rule,
  • 36. Robust and Optimal Control - A Two-port Framework Approach 1 sC R ( ) i V s   sL ( ) o V s   ( ) I s 36 Sol: Fig.1 (a) 2 2 ( ) 1 1 1. ( ) ( ) 1 1 o i V s G s V s LCs RCs s s        1 3 2 pole j             2 2 2 2 2 2 2 2 2 2 1 1 2(1 ) ( 2. ( ) 1 ( ) 1 1 2 1, 1 1 ) 0 T G j G j j j j j if then                                Thus, G is not positive real 0.5 2 2 C R L    Example 2-1:
  • 37. Robust and Optimal Control - A Two-port Framework Approach 1 sC R ( ) i V s   sL ( ) o V s   ( ) I s 37 Example 2-2: Sol: Fig.1 0.5 0 2 C R L    (a) 2 ( ) 1 1 1. ( ) ( ) 1 1 o i V s G s V s LCs RCs s       1 pole        2 2 1 1 (1- ) (1+ ) 2 2. for all real 1 1- 1 > 1 0 T j j G j G j j j                          2 2 2 3. lim det 2 2 0 lim , as p=1, q=0 1 p q T G j G j                      Thus, G is strictly positive real
  • 38. Robust and Optimal Control - A Two-port Framework Approach 38 Example 3:   2 1 1 2 1 2 2 1 s s s G s s s                      1. 1, 2 pole G s is Hurwitz           2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 1 4 2. 1 2 1 2 2 4 2 1 2 1 4 1 T j j j j j j j G j G j j j j j j                                                                                    Sol: G is strictly positive real     2 2 2 2 2 2 2 2 1 4 2 4 4 1 j a a b b j                                     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 4 1 4 4 1 1 4 4 1 2 2 4 1 1 0 a j j j j a b a b a ab ab b b a b                                                              2 3. lim det , s 0 a 2, 1 p q T G j G j p q               