SlideShare a Scribd company logo
1 of 17
Download to read offline
Thin Airfoil Theory
2
• Lift coeffcient:
• Moment coeficient:
• Center of pressure:
• Aerodynamic Center:
Airfoil Characteristics
x
y
α
V∞
l
m
c
V
l
Cl
2
2
1
/ ∞
= ρ
3
Thin Airfoil Theory – Setup
Non-penetration condition?
Kutta condition?
Bernoulli?
Assumptions:
1. Airfoil is thin η << c
2. Angles/slopes are small e.g.
sinα ≈ α, cosα ≈ 1, slope ≈ angle
3. Airfoil only slightly disturbs
free stream u', v' << V∞
α
V∞
ηu
ηt
ηc
ηl (<0)
u=V∞cosα+u'
v=V∞sinα+v'
x
Chord c
Camber
t
c
l
t
c
u
l
u
t
l
u
c
η
η
η
η
η
η
η
η
η
η
η
η
−
=
+
=
−
=
+
=
or
)
(
)
(
2
1
2
1
½ Thickness
y
Symbols:
(cusped TE)
4
Thin Airfoil Theory - Simplifications
Bernoulli:
2
2
2
2
2
2
2
2
2
2
'
'
sin
'
2
cos
'
2
/
]
)
'
sin
(
)
'
cos
[(
1
/
)
(
1
∞
∞
∞
∞
∞
∞
∞
∞
−
−
−
−
=
+
+
+
−
=
+
−
=
V
v
V
u
V
v
V
u
V
v
V
u
V
V
v
u
Cp
α
α
α
α
Cp ≈
“Linearized Pressure
Coefficient”
Kutta Condition:
)
0
,
(
)
0
,
( −
+ = c
V
c
V
u=V∞cosα+u'
v=V∞sinα+v'
x
c
V(c,0+)
V(c,0-)
y
Assumptions:
1. Airfoil is thin η << c
2. Angles/slopes are small e.g.
sinα ≈ α, cosα ≈ 1, slope ≈ angle
3. Airfoil only slightly disturbs free
stream u', v' << V∞
5
Thin Airfoil Theory - Simplifications
dx
d
dx
d
V
x
v
dx
d
dx
d
V
x
v
V
x
v
dx
d
dx
d
t
c
t
c
u
u
t
c
η
η
α
η
η
α
η
η
α
η
η
+
+
−
≈
+
+
−
≈
+
≈
+
∞
+
∞
∞
)
0
,
(
'
)
,
(
'
)
,
(
'
Small disturbances
and angles:
Airfoil thin:
Exact:
Likewise for
lower surface: dx
d
dx
d
V
x
v t
c η
η
α −
+
−
≈
∞
− )
0
,
(
'
α
V∞
ηu
ηt
ηc
ηl (<0)
u=V∞cosα+u'
v=V∞sinα+v'
x
t
c
l
t
c
u
η
η
η
η
η
η
−
=
+
=
y
α
V∞
x
y
Exact:
Linearized:
y=0+
y=0- u(c,0+)=u(c,0-)
≈
± )
0
,
(x
Cp
dx
d
dx
d
V
x
v t
c η
η
α ±
+
−
≈
∞
± )
0
,
(
'
Or:
6
A Source Sheet
Jump in normal velocity component
A Vortex Sheet
Jump in tangential velocity component
7
Solving for the Flow
α
V∞
x
y
Linearized problem:
y=0+
y=0- u(c,0+)=u(c,0-)
∞
±
± −
≈ V
x
u
x
Cp /
)
0
,
(
2
)
0
,
(
dx
d
dx
d
V
x
v t
c η
η
α ±
+
−
≈
∞
± )
0
,
(
'
α
V∞
x
iy
Proposed Ideal Flow Solution:
y=0+
y=0-
x1 dx1
z
Source sheet
+ vortex sheet
∞
∞
∞
±
∞
±
±
−
=
⎭
⎬
⎫
⎩
⎨
⎧
−
= ∫ V
x
q
dx
x
x
x
V
V
x
W
V
x
v
c
2
)
(
)
(
)
(
2
1
)
0
,
(
'
Im
)
0
,
(
'
1
0 1
1
γ
π
∞
∞
∞
±
∞
±
∫ −
=
⎭
⎬
⎫
⎩
⎨
⎧
=
V
x
dx
x
x
x
q
V
V
x
W
V
x
u
c
2
)
(
)
(
)
(
2
1
)
0
,
(
'
Re
)
0
,
(
'
1
0 1
1 γ
π
m
So what?
Complex velocity at z
due to element dx1: 1
1
1
1
)
(
)
(
)
(
2
1
dx
x
z
x
i
x
q
−
− γ
π
Complex velocity at z
due to whole sheet: 1
0 1
1
1
)
(
)
(
)
(
2
1
)
(
' dx
x
iy
x
x
i
x
q
z
W
c
∫ −
+
−
=
γ
π
Complex velocity at
y=0± due to sheet:
K
1
0 1
1
1
)
(
)
(
)
(
2
1
)
0
,
(
' dx
x
x
x
i
x
q
x
W
c
∫ −
−
=
±
γ
π
N.B. Karamcheti defines the vortex
sheet strength with the opposite sign
8
Solving for the Flow
α
V∞
x
y
Linearized problem:
y=0+
y=0- u(c,0+)=u(c,0-)
∞
±
± −
≈ V
x
u
x
Cp /
)
0
,
(
2
)
0
,
(
dx
d
dx
d
V
x
v t
c η
η
α ±
+
−
≈
∞
± )
0
,
(
'
α
V∞
x
iy
Proposed Ideal Flow Solution:
y=0+
y=0-
x1 dx1
Source sheet
+ vortex sheet
∞
∞
± ±
−
−
= ∫ V
x
dx
x
x
x
q
V
x
C
c
p
)
(
)
(
)
(
1
)
0
,
( 1
0 1
1 γ
π
∞
∞
∞
±
±
−
= ∫ V
x
q
dx
x
x
x
V
V
x
v
c
2
)
(
)
(
)
(
2
1
)
0
,
(
'
1
0 1
1
γ
π
∞
∞
∞
±
∫ −
=
V
x
dx
x
x
x
q
V
V
x
u
c
2
)
(
)
(
)
(
2
1
)
0
,
(
'
1
0 1
1 γ
π
m
Kutta
condition:
0
)
(
so
2
)
(
)
(
)
(
2
1
2
)
(
)
(
)
(
2
1
so
)
0
,
(
'
)
0
,
(
'
1
0 1
1
1
0 1
1
=
+
−
=
−
−
=
∞
∞
∞
∞
∞
−
∞
+
∫
∫ c
V
c
dx
x
c
x
q
V
V
c
dx
x
c
x
q
V
V
c
u
V
c
u
c
c
γ
γ
π
γ
π
Non-
penetration: ∞
∞
±
−
=
±
+
− ∫ V
x
q
dx
x
x
x
i
V
dx
d
dx
d
c
t
c
2
)
(
)
(
)
(
2
1
1
0 1
1
γ
π
η
η
α
Pressure:
Solution
order?
Need q(x)?
Pressure Difference:
9
General Algebraic Solution
0
)
( =
c
γ
∞
∞
+
−
=
+
+
− ∫ V
x
q
dx
x
x
x
i
V
dx
d
dx
d
c
t
c
2
)
(
)
(
)
(
2
1
1
0 1
1
γ
π
η
η
α
How to solve for γ(x) w/o specifying ?
∞
∞
−
−
=
−
+
− ∫ V
x
q
dx
x
x
x
i
V
dx
d
dx
d
c
t
c
2
)
(
)
(
)
(
2
1
1
0 1
1
γ
π
η
η
α
add 1
0 1
1
)
(
)
(
2
1
)
( dx
x
x
x
i
V
x
dx
d
c
c
∫ −
=
+
−
∞
γ
π
η
α
+Kutta
)
(x
dx
d c
η
Non-penetration
α
V∞
x
0
θ
c
0
)
cos
1
(
/
)
cos
1
(
/
1
2
1
1
2
1
θ
θ
+
=
+
=
c
x
c
x
π
•Write γ as
•Solve integral for each term in
•Relate to for
dx
d c
η
10
General Algebraic Solution
Fourier Series Solution gives:
∑
∞
=
∞ +
−
−
−
=
1
)
sin(
2
sin
cos
1
)
2
(
/
)
(
n
n
o n
B
B
V θ
θ
θ
α
θ
γ
where: ∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
and we have that ∞
=
Δ V
Cp /
)
(
2
)
( θ
γ
θ
∫
∫
∫ +
Δ
−
=
Δ
−
=
Δ
−
=
=
∞
∞
0
4
1
1
0
0
2
2
2
1
2
2
2
1
sin
)
cos
1
)(
(
)
(
1
π
θ
θ
θ
θ
ρ
ρ
d
C
c
x
d
x
C
c
x
pdx
x
c
V
c
V
m
C p
p
c
O
mO
Substitute for γ(θ) and evaluate: )
(
2 1
0 B
B
Cl +
−
= π
πα
Substitute for γ(θ) and evaluate:
)
(
)
2
(
2
1
4
1
4
1
2
1
0
4
1
2
1
B
B
C
B
B
B
C
l
mO
+
+
−
=
+
+
+
−
=
π
π
πα
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
p
C
Δ
mO
l
=
=
∞ c
V
l
Cl 2
2
1
ρ
11
Transferring the moment - Conclusions
So,
• Lift varies linearly with α
• Lift curve slope is 2π
• Camber only acts to influence the zero lift angle of attack
• Thickness has no effect on lift and moment
• Lift acts…
• Aerodynamic center is…
•
• Center of pressure is…
=
mx
C
∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
mO
l
mx
)
(
2 1
0 B
B
Cl +
−
= π
πα
)
( 2
1
4
1
4
1
B
B
C
C l
mO +
+
−
= π
Now:
( )( )
∑
∞
=
−
−
−
=
Δ
1
0
)
sin(
4
sin
cos
1
2
2
)
(
n
n
p n
B
B
C θ
θ
θ
α
θ
12
Example 1 – Symmetric Foil
An airfoil has a straight camber line
defined as:
Determine the aerodynamic characteristics
and vortex sheet strength.
∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
ηu
ηt
ηc
ηl
)
(
)
( 2
1
4
1
4
1
B
B
C
C l
c
x
mx +
+
−
= π
)
(
2 1
0 B
B
Cl +
−
= π
πα
0
/ =
c
c
η
∑
∞
=
∞ +
−
−
−
=
1
)
sin(
2
sin
cos
1
)
2
(
/
)
(
n
n
o n
B
B
V θ
θ
θ
α
θ
γ
2
2
)
/
(
/
2
cos
1
)
sin(
1
)
/
(
2
cos
c
x
c
x
c
x
−
=
−
=
−
=
θ
θ
θ
13
Example 2 – Parabolic Foil
An airfoil has upper and lower surfaces
defined as:
Determine the aerodynamic characteristics
∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
ηu
ηt
ηc
ηl
)
(
)
( 2
1
4
1
4
1
B
B
C
C l
c
x
mx +
+
−
= π
)
(
2 1
0 B
B
Cl +
−
= π
πα
)
/
1
)(
/
(
3
.
0
/
)
/
1
)(
/
(
5
.
0
/
c
x
c
x
c
c
x
c
x
c
l
u
−
=
−
=
η
η
14
Example 3 – NACA 2412
A NACA 2412 airfoil has a camber line
given by the equations:
Determine the aerodynamic characteristics
∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
ηu
ηt
ηc
ηl
)
(
)
( 2
1
4
1
4
1
B
B
C
C l
c
x
mx +
+
−
= π
)
(
2 1
0 B
B
Cl +
−
= π
πα
1
/
)
/
(
/
/
0
)
/
(
/
10
4
2
36
2
45
2
90
1
10
4
2
16
2
10
1
≤
≤
−
+
=
≤
≤
−
=
c
x
c
x
c
x
c
x
c
x
c
x
c
c
η
η
⎪
⎪
⎩
⎪
⎪
⎨
⎧
≤
≤
−
≤
≤
−
=
1
10
4
9
1
45
2
10
4
0
4
1
10
1
c
x
c
x
c
x
c
x
dx
d c
η
( )
( )
⎪
⎪
⎩
⎪
⎪
⎨
⎧
≥
≥
+
−
≥
≥
+
−
=
0
cos
1
18
1
45
2
cos
1
8
1
10
1
p θ
θ
θ
θ
θ
π
θ
η p
c
dx
d
°
=
=
+
=
102
7722
.
1
)
cos
1
(
4
.
0 2
1
rad
p
p
θ
θ
15
∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
ηu
ηt
ηc
ηl
)
(
)
( 2
1
4
1
4
1
B
B
C
C l
c
x
mx +
+
−
= π
)
(
2 1
0 B
B
Cl +
−
= π
πα
( ) ( )
( ) ( )
( ) ( ) 0138
.
0
2
cos
cos
1
2
1
10
1
2
2
cos
cos
1
18
1
45
2
2
0815
.
0
cos
cos
1
2
1
10
1
2
cos
cos
1
18
1
45
2
2
009
.
0
cos
1
2
1
10
1
2
cos
1
18
1
45
2
2
0
2
0
1
0
0
=
⎟
⎠
⎞
⎜
⎝
⎛
+
−
+
⎟
⎠
⎞
⎜
⎝
⎛
+
−
=
−
=
⎟
⎠
⎞
⎜
⎝
⎛
+
−
+
⎟
⎠
⎞
⎜
⎝
⎛
+
−
=
=
+
−
+
+
−
=
∫
∫
∫
∫
∫
∫
π
θ
θ
π
θ
θ
π
θ
θ
θ
θ
θ
π
θ
θ
θ
π
θ
θ
θ
π
θ
θ
θ
π
θ
θ
π
θ
θ
π
p
p
p
p
p
p
d
d
B
d
d
B
d
d
B
°
=
⇒
+
=
+
−
=
08
.
2
2279
.
0
2
)
(
2 1
0
ol
l B
B
C
α
πα
π
πα
0532
.
0
)
( 2
1
4
1
4
/
−
=
+
= B
B
Cmc π
Use Matlab!
16
Comparison
with data
Cmc/4
Cl
http://naca.larc.nasa.gov/re
ports/1945/naca-report-824/
Summary of
airfoil data
Abbott, Ira H Von
Doenhoff, Albert E
Stivers, Louis, Jr
17
Example 4 – Helicopter Rotor
The loading distribution ΔCp is measured
on a helicopter rotor airfoil section as a
function of angle of attack. Estimate the
change in loading produced by a 2 degree
change in angle of attack.
∫
=
π
θ
θ
θ
η
π 0
)
cos(
)
(
2
d
n
dx
d
B c
n
α
V∞
x
0
θ
c
0
)
cos
1
(
/ 2
1
θ
+
=
c
x
π
ηu
ηt
ηc
ηl
)
(
)
( 2
1
4
1
4
1
B
B
C
C l
c
x
mx +
+
−
= π
)
(
2 1
0 B
B
Cl +
−
= π
πα

More Related Content

Similar to Thin Airfoil Theory - Key Concepts and Algebraic Solutions

Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdfShikhaSingla15
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdfGARRYB4
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manualnodyligomi
 
Math cad prime ncees excercise 444 solution
Math cad prime   ncees excercise 444 solutionMath cad prime   ncees excercise 444 solution
Math cad prime ncees excercise 444 solutionJulio Banks
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
Numerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface ReservoirNumerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface ReservoirJeffrey Daniels
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...Belinda Marchand
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in indiaCss Founder
 

Similar to Thin Airfoil Theory - Key Concepts and Algebraic Solutions (20)

Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Beam buckling
Beam bucklingBeam buckling
Beam buckling
 
stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
UNIT I_4.pdf
UNIT I_4.pdfUNIT I_4.pdf
UNIT I_4.pdf
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
 
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
QMC: Transition Workshop - Applying Quasi-Monte Carlo Methods to a Stochastic...
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Math cad prime ncees excercise 444 solution
Math cad prime   ncees excercise 444 solutionMath cad prime   ncees excercise 444 solution
Math cad prime ncees excercise 444 solution
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Numerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface ReservoirNumerical Simulation Study of a 1-D Subsurface Reservoir
Numerical Simulation Study of a 1-D Subsurface Reservoir
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 10 7 ed
Capitulo 10 7 edCapitulo 10 7 ed
Capitulo 10 7 ed
 
Formulas for RCC.pdf
Formulas for RCC.pdfFormulas for RCC.pdf
Formulas for RCC.pdf
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...Formations Near The Libration Points: Design Strategies Using Natural And Non...
Formations Near The Libration Points: Design Strategies Using Natural And Non...
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in india
 

Recently uploaded

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 

Recently uploaded (20)

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 

Thin Airfoil Theory - Key Concepts and Algebraic Solutions

  • 2. 2 • Lift coeffcient: • Moment coeficient: • Center of pressure: • Aerodynamic Center: Airfoil Characteristics x y α V∞ l m c V l Cl 2 2 1 / ∞ = ρ
  • 3. 3 Thin Airfoil Theory – Setup Non-penetration condition? Kutta condition? Bernoulli? Assumptions: 1. Airfoil is thin η << c 2. Angles/slopes are small e.g. sinα ≈ α, cosα ≈ 1, slope ≈ angle 3. Airfoil only slightly disturbs free stream u', v' << V∞ α V∞ ηu ηt ηc ηl (<0) u=V∞cosα+u' v=V∞sinα+v' x Chord c Camber t c l t c u l u t l u c η η η η η η η η η η η η − = + = − = + = or ) ( ) ( 2 1 2 1 ½ Thickness y Symbols: (cusped TE)
  • 4. 4 Thin Airfoil Theory - Simplifications Bernoulli: 2 2 2 2 2 2 2 2 2 2 ' ' sin ' 2 cos ' 2 / ] ) ' sin ( ) ' cos [( 1 / ) ( 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ − − − − = + + + − = + − = V v V u V v V u V v V u V V v u Cp α α α α Cp ≈ “Linearized Pressure Coefficient” Kutta Condition: ) 0 , ( ) 0 , ( − + = c V c V u=V∞cosα+u' v=V∞sinα+v' x c V(c,0+) V(c,0-) y Assumptions: 1. Airfoil is thin η << c 2. Angles/slopes are small e.g. sinα ≈ α, cosα ≈ 1, slope ≈ angle 3. Airfoil only slightly disturbs free stream u', v' << V∞
  • 5. 5 Thin Airfoil Theory - Simplifications dx d dx d V x v dx d dx d V x v V x v dx d dx d t c t c u u t c η η α η η α η η α η η + + − ≈ + + − ≈ + ≈ + ∞ + ∞ ∞ ) 0 , ( ' ) , ( ' ) , ( ' Small disturbances and angles: Airfoil thin: Exact: Likewise for lower surface: dx d dx d V x v t c η η α − + − ≈ ∞ − ) 0 , ( ' α V∞ ηu ηt ηc ηl (<0) u=V∞cosα+u' v=V∞sinα+v' x t c l t c u η η η η η η − = + = y α V∞ x y Exact: Linearized: y=0+ y=0- u(c,0+)=u(c,0-) ≈ ± ) 0 , (x Cp dx d dx d V x v t c η η α ± + − ≈ ∞ ± ) 0 , ( ' Or:
  • 6. 6 A Source Sheet Jump in normal velocity component A Vortex Sheet Jump in tangential velocity component
  • 7. 7 Solving for the Flow α V∞ x y Linearized problem: y=0+ y=0- u(c,0+)=u(c,0-) ∞ ± ± − ≈ V x u x Cp / ) 0 , ( 2 ) 0 , ( dx d dx d V x v t c η η α ± + − ≈ ∞ ± ) 0 , ( ' α V∞ x iy Proposed Ideal Flow Solution: y=0+ y=0- x1 dx1 z Source sheet + vortex sheet ∞ ∞ ∞ ± ∞ ± ± − = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ − = ∫ V x q dx x x x V V x W V x v c 2 ) ( ) ( ) ( 2 1 ) 0 , ( ' Im ) 0 , ( ' 1 0 1 1 γ π ∞ ∞ ∞ ± ∞ ± ∫ − = ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = V x dx x x x q V V x W V x u c 2 ) ( ) ( ) ( 2 1 ) 0 , ( ' Re ) 0 , ( ' 1 0 1 1 γ π m So what? Complex velocity at z due to element dx1: 1 1 1 1 ) ( ) ( ) ( 2 1 dx x z x i x q − − γ π Complex velocity at z due to whole sheet: 1 0 1 1 1 ) ( ) ( ) ( 2 1 ) ( ' dx x iy x x i x q z W c ∫ − + − = γ π Complex velocity at y=0± due to sheet: K 1 0 1 1 1 ) ( ) ( ) ( 2 1 ) 0 , ( ' dx x x x i x q x W c ∫ − − = ± γ π N.B. Karamcheti defines the vortex sheet strength with the opposite sign
  • 8. 8 Solving for the Flow α V∞ x y Linearized problem: y=0+ y=0- u(c,0+)=u(c,0-) ∞ ± ± − ≈ V x u x Cp / ) 0 , ( 2 ) 0 , ( dx d dx d V x v t c η η α ± + − ≈ ∞ ± ) 0 , ( ' α V∞ x iy Proposed Ideal Flow Solution: y=0+ y=0- x1 dx1 Source sheet + vortex sheet ∞ ∞ ± ± − − = ∫ V x dx x x x q V x C c p ) ( ) ( ) ( 1 ) 0 , ( 1 0 1 1 γ π ∞ ∞ ∞ ± ± − = ∫ V x q dx x x x V V x v c 2 ) ( ) ( ) ( 2 1 ) 0 , ( ' 1 0 1 1 γ π ∞ ∞ ∞ ± ∫ − = V x dx x x x q V V x u c 2 ) ( ) ( ) ( 2 1 ) 0 , ( ' 1 0 1 1 γ π m Kutta condition: 0 ) ( so 2 ) ( ) ( ) ( 2 1 2 ) ( ) ( ) ( 2 1 so ) 0 , ( ' ) 0 , ( ' 1 0 1 1 1 0 1 1 = + − = − − = ∞ ∞ ∞ ∞ ∞ − ∞ + ∫ ∫ c V c dx x c x q V V c dx x c x q V V c u V c u c c γ γ π γ π Non- penetration: ∞ ∞ ± − = ± + − ∫ V x q dx x x x i V dx d dx d c t c 2 ) ( ) ( ) ( 2 1 1 0 1 1 γ π η η α Pressure: Solution order? Need q(x)? Pressure Difference:
  • 9. 9 General Algebraic Solution 0 ) ( = c γ ∞ ∞ + − = + + − ∫ V x q dx x x x i V dx d dx d c t c 2 ) ( ) ( ) ( 2 1 1 0 1 1 γ π η η α How to solve for γ(x) w/o specifying ? ∞ ∞ − − = − + − ∫ V x q dx x x x i V dx d dx d c t c 2 ) ( ) ( ) ( 2 1 1 0 1 1 γ π η η α add 1 0 1 1 ) ( ) ( 2 1 ) ( dx x x x i V x dx d c c ∫ − = + − ∞ γ π η α +Kutta ) (x dx d c η Non-penetration α V∞ x 0 θ c 0 ) cos 1 ( / ) cos 1 ( / 1 2 1 1 2 1 θ θ + = + = c x c x π •Write γ as •Solve integral for each term in •Relate to for dx d c η
  • 10. 10 General Algebraic Solution Fourier Series Solution gives: ∑ ∞ = ∞ + − − − = 1 ) sin( 2 sin cos 1 ) 2 ( / ) ( n n o n B B V θ θ θ α θ γ where: ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n and we have that ∞ = Δ V Cp / ) ( 2 ) ( θ γ θ ∫ ∫ ∫ + Δ − = Δ − = Δ − = = ∞ ∞ 0 4 1 1 0 0 2 2 2 1 2 2 2 1 sin ) cos 1 )( ( ) ( 1 π θ θ θ θ ρ ρ d C c x d x C c x pdx x c V c V m C p p c O mO Substitute for γ(θ) and evaluate: ) ( 2 1 0 B B Cl + − = π πα Substitute for γ(θ) and evaluate: ) ( ) 2 ( 2 1 4 1 4 1 2 1 0 4 1 2 1 B B C B B B C l mO + + − = + + + − = π π πα α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π p C Δ mO l = = ∞ c V l Cl 2 2 1 ρ
  • 11. 11 Transferring the moment - Conclusions So, • Lift varies linearly with α • Lift curve slope is 2π • Camber only acts to influence the zero lift angle of attack • Thickness has no effect on lift and moment • Lift acts… • Aerodynamic center is… • • Center of pressure is… = mx C ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π mO l mx ) ( 2 1 0 B B Cl + − = π πα ) ( 2 1 4 1 4 1 B B C C l mO + + − = π Now: ( )( ) ∑ ∞ = − − − = Δ 1 0 ) sin( 4 sin cos 1 2 2 ) ( n n p n B B C θ θ θ α θ
  • 12. 12 Example 1 – Symmetric Foil An airfoil has a straight camber line defined as: Determine the aerodynamic characteristics and vortex sheet strength. ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π ηu ηt ηc ηl ) ( ) ( 2 1 4 1 4 1 B B C C l c x mx + + − = π ) ( 2 1 0 B B Cl + − = π πα 0 / = c c η ∑ ∞ = ∞ + − − − = 1 ) sin( 2 sin cos 1 ) 2 ( / ) ( n n o n B B V θ θ θ α θ γ 2 2 ) / ( / 2 cos 1 ) sin( 1 ) / ( 2 cos c x c x c x − = − = − = θ θ θ
  • 13. 13 Example 2 – Parabolic Foil An airfoil has upper and lower surfaces defined as: Determine the aerodynamic characteristics ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π ηu ηt ηc ηl ) ( ) ( 2 1 4 1 4 1 B B C C l c x mx + + − = π ) ( 2 1 0 B B Cl + − = π πα ) / 1 )( / ( 3 . 0 / ) / 1 )( / ( 5 . 0 / c x c x c c x c x c l u − = − = η η
  • 14. 14 Example 3 – NACA 2412 A NACA 2412 airfoil has a camber line given by the equations: Determine the aerodynamic characteristics ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π ηu ηt ηc ηl ) ( ) ( 2 1 4 1 4 1 B B C C l c x mx + + − = π ) ( 2 1 0 B B Cl + − = π πα 1 / ) / ( / / 0 ) / ( / 10 4 2 36 2 45 2 90 1 10 4 2 16 2 10 1 ≤ ≤ − + = ≤ ≤ − = c x c x c x c x c x c x c c η η ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ≤ ≤ − ≤ ≤ − = 1 10 4 9 1 45 2 10 4 0 4 1 10 1 c x c x c x c x dx d c η ( ) ( ) ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ ≥ ≥ + − ≥ ≥ + − = 0 cos 1 18 1 45 2 cos 1 8 1 10 1 p θ θ θ θ θ π θ η p c dx d ° = = + = 102 7722 . 1 ) cos 1 ( 4 . 0 2 1 rad p p θ θ
  • 15. 15 ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π ηu ηt ηc ηl ) ( ) ( 2 1 4 1 4 1 B B C C l c x mx + + − = π ) ( 2 1 0 B B Cl + − = π πα ( ) ( ) ( ) ( ) ( ) ( ) 0138 . 0 2 cos cos 1 2 1 10 1 2 2 cos cos 1 18 1 45 2 2 0815 . 0 cos cos 1 2 1 10 1 2 cos cos 1 18 1 45 2 2 009 . 0 cos 1 2 1 10 1 2 cos 1 18 1 45 2 2 0 2 0 1 0 0 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − = − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − = = + − + + − = ∫ ∫ ∫ ∫ ∫ ∫ π θ θ π θ θ π θ θ θ θ θ π θ θ θ π θ θ θ π θ θ θ π θ θ π θ θ π p p p p p p d d B d d B d d B ° = ⇒ + = + − = 08 . 2 2279 . 0 2 ) ( 2 1 0 ol l B B C α πα π πα 0532 . 0 ) ( 2 1 4 1 4 / − = + = B B Cmc π Use Matlab!
  • 17. 17 Example 4 – Helicopter Rotor The loading distribution ΔCp is measured on a helicopter rotor airfoil section as a function of angle of attack. Estimate the change in loading produced by a 2 degree change in angle of attack. ∫ = π θ θ θ η π 0 ) cos( ) ( 2 d n dx d B c n α V∞ x 0 θ c 0 ) cos 1 ( / 2 1 θ + = c x π ηu ηt ηc ηl ) ( ) ( 2 1 4 1 4 1 B B C C l c x mx + + − = π ) ( 2 1 0 B B Cl + − = π πα