SlideShare a Scribd company logo
1 of 39
Scintillation Detectors
Elton Smith JLab 2006 Detector/Computer Summer Lecture Series
Introduction
Components
Scintillator
Light Guides
Photomultiplier Tubes
Formalism/Electronics
Timing Resolution
Elton Smith / Scintillation Detectors
B field ~ 5/3 T
R = 3m
L = ½ p R = 4.71 m
p = 0.3 B R = 1.5 GeV/c
tp = L/bpc = 15.77 ns
tK = L/bKc = 16.53 ns
DtpK = 0.76 ns
Experiment basics
bp = p/√p2+mp
2 = 0.9957
bK = p/√p2+mK
2 = 0.9496
Particle Identification by time-of-flight (TOF) requires
Measurements with accuracies of ~ 0.1 ns
Elton Smith / Scintillation Detectors
Measure the Flight Time between two
Scintillators
Disc
Disc
TDC
Start
Stop
Particle Trajectory
Elton Smith / Scintillation Detectors
Propagation velocities
 c = 30 cm/ns
 vscint = c/n = 20 cm/ns
 veff = 16 cm/ns
 vpmt = 0.6 cm/ns
 vcable = 20 cm/ns
Dt ~ 0.1 ns
Dx ~ 3 cm
Elton Smith / Scintillation Detectors
TOF scintillators stacked for shipment
Elton Smith / Scintillation Detectors
CLAS detector open for repairs
Elton Smith / Scintillation Detectors
CLAS detector with FC pulled apart
Elton Smith / Scintillation Detectors
Start counter assembly
Elton Smith / Scintillation Detectors
Scintillator types
 Organic
 Liquid
 Economical
 messy
 Solid
 Fast decay time
 long attenuation length
 Emission spectra
 Inorganic
 Anthracene
 Unused standard
 NaI, CsI
 Excellent g resolution
 Slow decay time
 BGO
 High density, compact
Elton Smith / Scintillation Detectors
Photocathode spectral response
Elton Smith / Scintillation Detectors
Scintillator thickness
 Minimizing material vs. signal/background
 CLAS TOF: 5 cm thick
Penetrating particles (e.g. pions) loose 10 MeV
 Start counter: 0.3 cm thick
Penetrating particles loose 0.6 MeV
 Photons, e+e− backgrounds ~ 1MeV contribute
substantially to count rate
Thresholds may eliminate these in TOF
Elton Smith / Scintillation Detectors
Light guides
 Goals
Match (rectangular) scintillator to (circular) pmt
Optimize light collection for applications
 Types
Plastic
Air
None
“Winston” shapes
Elton Smith / Scintillation Detectors
acrylic
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
Elton Smith / Scintillation Detectors
Air with
reflective
boundary
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
%
5
4
1
1
2











n
n
Rair
(reflectance at normal incidence)
Elton Smith / Scintillation Detectors
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
air
Elton Smith / Scintillation Detectors
acrylic
Reflective/Refractive boundaries
Scintillator
n = 1.58
PMT glass
n = 1.5
Large-angle
ray lost
Acceptance of incident rays at fixed angle depends
on position at the exit face of the scintillator
Elton Smith / Scintillation Detectors
Winston Cones - geometry
Elton Smith / Scintillation Detectors
Winston Cone - acceptance
Elton Smith / Scintillation Detectors
Photomultiplier tube, sensitive light meter
Photocathode
Electrodes
Dynodes
Anode
56 AVP pmt
g
e−
Gain ~ 106 - 107
Elton Smith / Scintillation Detectors
Voltage Dividers
d1 d2 d3
dN
dN-1
dN-2
a
k
g
4 2.5 1 1 1 1 1 1 1 1 1 1
16.5
RL
+HV
−HV
Equal Steps – Max Gain
4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5
21
RL
Intermediate
6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10
44
RL
Progressive
Timing Linearity
Elton Smith / Scintillation Detectors
Voltage
Divider
Active components
to minimize changes
to timing and rate
capability with HV
Capacitors for increased
linearity in
pulsed applications
Elton Smith / Scintillation Detectors
High voltage
 Positive (cathode at ground)
low noise, capacitative coupling
 Negative
Anode at ground (no HV on signal)
 No (high) voltage
Cockcroft-Walton bases
Elton Smith / Scintillation Detectors
Effect of magnetic field on pmt
Elton Smith / Scintillation Detectors
Housing
Elton Smith / Scintillation Detectors
Compact UNH divider design
Elton Smith / Scintillation Detectors
Dark counts
Solid : Sea level
Dashed: 30 m underground
Thermal
Noise
After-pulsing and
Glass radioactivity
Cosmic rays
Elton Smith / Scintillation Detectors
Signal for passing tracks
Elton Smith / Scintillation Detectors
Single photoelectron signal
Elton Smith / Scintillation Detectors
Pulse distortion in cable
Elton Smith / Scintillation Detectors
Electronics
trigger
dynode
Measure time
Measure pulse height
anode
Elton Smith / Scintillation Detectors
Formalism: Measure time and position
PL PR
TR
TL
X=0 X
X=−L/2 X=+L/2
eff
L
L v
x
T
T /
0


)
(
)
( 0
0
2
1
2
1
R
L
R
L
ave T
T
T
T
T 


 Mean is independent of x!
eff
R
R v
x
T
T /
0


  )
(
2
)
(
)
(
2
0
0
R
L
eff
R
L
R
L
eff
T
T
v
T
T
T
T
v
x 





Elton Smith / Scintillation Detectors
From single-photoelectron timing to
counter resolution
The uncertainty in determining the passage of a particle
through a scintillator has a statistical component, depending
on the number of photoelectrons Npe that create the pulse.
)
2
/
exp(
)
2
/
(
)
(
2
2
1
2
0





L
N
L
ns
pe
P
TOF





 1000

pe
N
Note: Parameters for CLAS
ns
062
.
0
0 
 Intrinsic timing of electronic circuits
ns
1
.
2
1 

cm
ns
P /
0118
.
0


)
15
(
36
.
0
134 counters
cm
L
cm 



)
22
(
430 counters
cm
cm


Combined scintillator and pmt response
Average path length variations in scintillator
Single
Photoelectron
Response

Elton Smith / Scintillation Detectors
Average time resolution
CLAS in Hall B
Elton Smith / Scintillation Detectors
Formalism: Measure energy loss
PL PR
TR
TL
X=0 X
X=−L/2 X=+L/2

/
0 x
L
L e
P
P 
 
/
0 x
R
R e
P
P 
0
0
R
L
R
L P
P
P
P
Energy 



Geometric mean is independent of x!
Elton Smith / Scintillation Detectors
Energy deposited in scintillator
Elton Smith / Scintillation Detectors
Uncertainties
Timing
Mass Resolution
Assume that one pmt measures a time with uncertainty dt
2
~
2
1 2
2 t
t
t
t R
L
ave
d
d
d
d 

2
~
)
2
1
( 2
2 t
v
t
t
v
x eff
R
L
eff
d
d
d
d 



g
E
m  2
2
2
2
2
2 1
)
1
( p
E
m







 




b
b
b
2
2
4
2
























p
p
m
m d
b
db
g
d
Elton Smith / Scintillation Detectors
Example: Kaon mass resolution by TOF
c
GeV
PK /
1
 GeV
EK 116
.
1
1
495
.
0 2



896
.
0










K
K
K
E
P
b 26
.
2










K
K
K
m
E
g
For a flight path of d = 500 cm, ns
ns
cm
cm
t 6
.
18
/
30
896
.
0
500











ns
t 15
.
0

d 01
.
0









p
p
d
Assume
  2
2
2
4
2
042
.
0
01
.
0
6
.
18
15
.
0
26
.
2 














m
m
d
MeV
mK 21
~
d

Note: 










 








 b
db
d
g
fixed
for
m
m
2
Elton Smith / Scintillation Detectors
Velocity vs. momentum
p+
K+
p
Elton Smith / Scintillation Detectors
Summary
 Scintillator counters have a few simple
components
Systems are built out of these counters
Fast response allows for accurate timing
 The time resolution required for particle
identification is the result of the time
response of individual components
scaled by √Npe

More Related Content

Similar to ES_scintillation_detectors_06.ppt

Alternating current and voltages
Alternating current and voltagesAlternating current and voltages
Alternating current and voltagesBhavik Koradiya
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 dAnurak Atthasit
 
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.pptRS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.pptfurqonalfahmi3
 
Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.AbdelRahmanMohamedNe
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerJim Jenkins
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage2461998
 
Lecture 3 ctft
Lecture 3   ctftLecture 3   ctft
Lecture 3 ctftfmuddeen
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesSimen Li
 
Time-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTTime-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTUT Technology
 
4. Analytical Applications I_Voltammetric Detectors.ppt
4.   Analytical Applications I_Voltammetric Detectors.ppt4.   Analytical Applications I_Voltammetric Detectors.ppt
4. Analytical Applications I_Voltammetric Detectors.pptAbidJan4
 
Characterization of the Wireless Channel
Characterization of the Wireless ChannelCharacterization of the Wireless Channel
Characterization of the Wireless ChannelSuraj Katwal
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
 
Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2Mark Baevsky
 

Similar to ES_scintillation_detectors_06.ppt (20)

Q canalytic aas2
Q canalytic aas2Q canalytic aas2
Q canalytic aas2
 
Alternating current and voltages
Alternating current and voltagesAlternating current and voltages
Alternating current and voltages
 
Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
 
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.pptRS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
RS_Fundamentals_Day12gsdh_sHJAHSJAJHKAK.ppt
 
Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course Sampler
 
generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
 
Basic concepts
Basic conceptsBasic concepts
Basic concepts
 
Lecture 3 ctft
Lecture 3   ctftLecture 3   ctft
Lecture 3 ctft
 
PAM
PAMPAM
PAM
 
Diodos
DiodosDiodos
Diodos
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
Time-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTTime-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SST
 
4. Analytical Applications I_Voltammetric Detectors.ppt
4.   Analytical Applications I_Voltammetric Detectors.ppt4.   Analytical Applications I_Voltammetric Detectors.ppt
4. Analytical Applications I_Voltammetric Detectors.ppt
 
UT 3.ppt
UT 3.pptUT 3.ppt
UT 3.ppt
 
Ut P3
Ut P3Ut P3
Ut P3
 
BASIC CT FOR RADIOGRAPHY STUDENTS
BASIC CT FOR RADIOGRAPHY STUDENTSBASIC CT FOR RADIOGRAPHY STUDENTS
BASIC CT FOR RADIOGRAPHY STUDENTS
 
Characterization of the Wireless Channel
Characterization of the Wireless ChannelCharacterization of the Wireless Channel
Characterization of the Wireless Channel
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2Baevsky_Liberzon_ICME2015_v2
Baevsky_Liberzon_ICME2015_v2
 

Recently uploaded

Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Cherry
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCherry
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Fabiano Dalpiaz
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationAreesha Ahmad
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisAreesha Ahmad
 
Daily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter PhysicsDaily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter PhysicsWILSONROMA4
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Cherry
 
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...Cherry
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Cherry
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.takadzanijustinmaime
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Cherry
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismAreesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methodsimroshankoirala
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 

Recently uploaded (20)

Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
Daily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter PhysicsDaily Lesson Log in Science 9 Fourth Quarter Physics
Daily Lesson Log in Science 9 Fourth Quarter Physics
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 

ES_scintillation_detectors_06.ppt

  • 1. Scintillation Detectors Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution
  • 2. Elton Smith / Scintillation Detectors B field ~ 5/3 T R = 3m L = ½ p R = 4.71 m p = 0.3 B R = 1.5 GeV/c tp = L/bpc = 15.77 ns tK = L/bKc = 16.53 ns DtpK = 0.76 ns Experiment basics bp = p/√p2+mp 2 = 0.9957 bK = p/√p2+mK 2 = 0.9496 Particle Identification by time-of-flight (TOF) requires Measurements with accuracies of ~ 0.1 ns
  • 3. Elton Smith / Scintillation Detectors Measure the Flight Time between two Scintillators Disc Disc TDC Start Stop Particle Trajectory
  • 4. Elton Smith / Scintillation Detectors Propagation velocities  c = 30 cm/ns  vscint = c/n = 20 cm/ns  veff = 16 cm/ns  vpmt = 0.6 cm/ns  vcable = 20 cm/ns Dt ~ 0.1 ns Dx ~ 3 cm
  • 5. Elton Smith / Scintillation Detectors TOF scintillators stacked for shipment
  • 6. Elton Smith / Scintillation Detectors CLAS detector open for repairs
  • 7. Elton Smith / Scintillation Detectors CLAS detector with FC pulled apart
  • 8. Elton Smith / Scintillation Detectors Start counter assembly
  • 9. Elton Smith / Scintillation Detectors Scintillator types  Organic  Liquid  Economical  messy  Solid  Fast decay time  long attenuation length  Emission spectra  Inorganic  Anthracene  Unused standard  NaI, CsI  Excellent g resolution  Slow decay time  BGO  High density, compact
  • 10. Elton Smith / Scintillation Detectors Photocathode spectral response
  • 11. Elton Smith / Scintillation Detectors Scintillator thickness  Minimizing material vs. signal/background  CLAS TOF: 5 cm thick Penetrating particles (e.g. pions) loose 10 MeV  Start counter: 0.3 cm thick Penetrating particles loose 0.6 MeV  Photons, e+e− backgrounds ~ 1MeV contribute substantially to count rate Thresholds may eliminate these in TOF
  • 12. Elton Smith / Scintillation Detectors Light guides  Goals Match (rectangular) scintillator to (circular) pmt Optimize light collection for applications  Types Plastic Air None “Winston” shapes
  • 13. Elton Smith / Scintillation Detectors acrylic Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5
  • 14. Elton Smith / Scintillation Detectors Air with reflective boundary Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5 % 5 4 1 1 2            n n Rair (reflectance at normal incidence)
  • 15. Elton Smith / Scintillation Detectors Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5 air
  • 16. Elton Smith / Scintillation Detectors acrylic Reflective/Refractive boundaries Scintillator n = 1.58 PMT glass n = 1.5 Large-angle ray lost Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator
  • 17. Elton Smith / Scintillation Detectors Winston Cones - geometry
  • 18. Elton Smith / Scintillation Detectors Winston Cone - acceptance
  • 19. Elton Smith / Scintillation Detectors Photomultiplier tube, sensitive light meter Photocathode Electrodes Dynodes Anode 56 AVP pmt g e− Gain ~ 106 - 107
  • 20. Elton Smith / Scintillation Detectors Voltage Dividers d1 d2 d3 dN dN-1 dN-2 a k g 4 2.5 1 1 1 1 1 1 1 1 1 1 16.5 RL +HV −HV Equal Steps – Max Gain 4 2.5 1 1 1 1 1 1 1.4 1.6 3 2.5 21 RL Intermediate 6 2.5 1 1.25 1.5 1.5 1.75 2.5 3.5 4.5 8 10 44 RL Progressive Timing Linearity
  • 21. Elton Smith / Scintillation Detectors Voltage Divider Active components to minimize changes to timing and rate capability with HV Capacitors for increased linearity in pulsed applications
  • 22. Elton Smith / Scintillation Detectors High voltage  Positive (cathode at ground) low noise, capacitative coupling  Negative Anode at ground (no HV on signal)  No (high) voltage Cockcroft-Walton bases
  • 23. Elton Smith / Scintillation Detectors Effect of magnetic field on pmt
  • 24. Elton Smith / Scintillation Detectors Housing
  • 25. Elton Smith / Scintillation Detectors Compact UNH divider design
  • 26. Elton Smith / Scintillation Detectors Dark counts Solid : Sea level Dashed: 30 m underground Thermal Noise After-pulsing and Glass radioactivity Cosmic rays
  • 27. Elton Smith / Scintillation Detectors Signal for passing tracks
  • 28. Elton Smith / Scintillation Detectors Single photoelectron signal
  • 29. Elton Smith / Scintillation Detectors Pulse distortion in cable
  • 30. Elton Smith / Scintillation Detectors Electronics trigger dynode Measure time Measure pulse height anode
  • 31. Elton Smith / Scintillation Detectors Formalism: Measure time and position PL PR TR TL X=0 X X=−L/2 X=+L/2 eff L L v x T T / 0   ) ( ) ( 0 0 2 1 2 1 R L R L ave T T T T T     Mean is independent of x! eff R R v x T T / 0     ) ( 2 ) ( ) ( 2 0 0 R L eff R L R L eff T T v T T T T v x      
  • 32. Elton Smith / Scintillation Detectors From single-photoelectron timing to counter resolution The uncertainty in determining the passage of a particle through a scintillator has a statistical component, depending on the number of photoelectrons Npe that create the pulse. ) 2 / exp( ) 2 / ( ) ( 2 2 1 2 0      L N L ns pe P TOF       1000  pe N Note: Parameters for CLAS ns 062 . 0 0   Intrinsic timing of electronic circuits ns 1 . 2 1   cm ns P / 0118 . 0   ) 15 ( 36 . 0 134 counters cm L cm     ) 22 ( 430 counters cm cm   Combined scintillator and pmt response Average path length variations in scintillator Single Photoelectron Response 
  • 33. Elton Smith / Scintillation Detectors Average time resolution CLAS in Hall B
  • 34. Elton Smith / Scintillation Detectors Formalism: Measure energy loss PL PR TR TL X=0 X X=−L/2 X=+L/2  / 0 x L L e P P    / 0 x R R e P P  0 0 R L R L P P P P Energy     Geometric mean is independent of x!
  • 35. Elton Smith / Scintillation Detectors Energy deposited in scintillator
  • 36. Elton Smith / Scintillation Detectors Uncertainties Timing Mass Resolution Assume that one pmt measures a time with uncertainty dt 2 ~ 2 1 2 2 t t t t R L ave d d d d   2 ~ ) 2 1 ( 2 2 t v t t v x eff R L eff d d d d     g E m  2 2 2 2 2 2 1 ) 1 ( p E m              b b b 2 2 4 2                         p p m m d b db g d
  • 37. Elton Smith / Scintillation Detectors Example: Kaon mass resolution by TOF c GeV PK / 1  GeV EK 116 . 1 1 495 . 0 2    896 . 0           K K K E P b 26 . 2           K K K m E g For a flight path of d = 500 cm, ns ns cm cm t 6 . 18 / 30 896 . 0 500            ns t 15 . 0  d 01 . 0          p p d Assume   2 2 2 4 2 042 . 0 01 . 0 6 . 18 15 . 0 26 . 2                m m d MeV mK 21 ~ d  Note:                       b db d g fixed for m m 2
  • 38. Elton Smith / Scintillation Detectors Velocity vs. momentum p+ K+ p
  • 39. Elton Smith / Scintillation Detectors Summary  Scintillator counters have a few simple components Systems are built out of these counters Fast response allows for accurate timing  The time resolution required for particle identification is the result of the time response of individual components scaled by √Npe